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Abstract 1 

Acute myeloid leukemia (AML) is a multi-clonal disease, existing as a milieu of clones with unique 2 

but related genotypes as initiating clones acquire subsequent mutations. However, bulk 3 

sequencing cannot fully capture AML clonal architecture or the clonal evolution that occurs as 4 

patients undergo therapy. To interrogate clonal evolution, we performed simultaneous single cell 5 

molecular profiling and immunophenotyping on 43 samples from 32 NPM1-mutant AML patients 6 

at different stages of disease. Here we show that diagnosis and relapsed AML samples display 7 

similar clonal architecture patterns, but signaling mutations can drive increased clonal diversity 8 

specifically at relapse. We uncovered unique genotype-immunophenotype relationships 9 

regardless of disease state, suggesting leukemic lineage trajectories can be hard-wired by the 10 

mutations present. Analysis of longitudinal samples from patients on therapy identified dynamic 11 

clonal, transcriptomic, and immunophenotypic changes. Our studies provide resolved 12 

understanding of leukemic clonal evolution and the relationships between genotype and cell state 13 

in leukemia biology. 14 
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Main 15 

Acute myeloid leukemia (AML) is an aggressive blood cancer that arises from the aberrant 16 

expansion of mutant hematopoietic stem and progenitor cells, which leads to the blockade of 17 

normal differentiation. Variant allele frequencies (VAF) inferred from large-scale bulk sequencing 18 

studies largely suggest that AML initiating mutations in epigenetic regulators (TET2, DNMT3A, 19 

IDH1/2) are followed by mutations in signaling genes (RAS, FLT3)1-3. One of the most recurrently 20 

mutated AML genes is nucleophosmin 1, NPM1, which is mutated in approximately 30% of adults 21 

with AML1-3. NPM1-mutant AML is considered a distinct disease entity by both the World Health 22 

Organization (WHO) and International Consensus Classification (ICC)4,5 and typically harbors  23 

epigenetic modifier and/or signaling gene co-mutations6,7. However, the synergistic interactions 24 

of these mutations and their contributions towards clonal fitness and transformation remain to be 25 

uncovered. 26 

 27 

Recent large cohort single cell multiomic (DNA + cell surface protein expression) studies by us 28 

and others have assessed the clonal architecture of myeloid malignancies, including AML, and 29 

provided improved resolution to AML clonal heterogeneity8-11. These studies revealed that 30 

mutations in epigenetic regulators vs signaling genes have different representation in the 31 

dominant clone, and mutational combinations may affect lineage output8,9. Longitudinal sampling 32 

of AML patients while undergoing targeted therapy with FLT3 or IDH inhibitors were performed in 33 

small cohorts and suggested significant dynamics in clones over time and while under selective 34 

pressure12-14. These bulk sequencing and single cell multiomic studies highlight the need to better 35 

understand clonal evolution while patients undergo therapy and to assess how specific 36 

combinations of mutations may create divergent evolutionary trajectories for leukemia even within 37 

similarly classified AML patients (i.e. NPM1-mutant AML).   38 

 39 
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In this study, we perform single cell multiomic analysis on 609,314 cells in 43 samples from 32 40 

NPM1-mutated AML patients to interrogate how different co-mutations may dictate evolutionary 41 

trajectories for mutant clones. We first interrogate clonal architecture patterns in NPM1-mutated 42 

AML across different disease states and how co-mutations affect clonal framework patterns in 43 

individual patient samples. We identify genotype-immunophenotype correlations within the cohort 44 

to understand how co-mutations affect differentiation patterns in AML. We next analyze clonal 45 

evolution in longitudinal samples from 8 patients who underwent 7+3 chemotherapy and identify 46 

distinct patterns in clonal changes, even across patients with the same genotype. Using a 47 

complementary single cell multiomic approach, CITE-seq, we further investigate gene expression 48 

differences at diagnosis and relapse, unveiling significant alterations in connected signaling 49 

cascades and protein ubiquitination pathways, suggestive of alternative signaling as cells respond 50 

to therapy.  51 

 52 

Results 53 

Clonal architecture patterns suggest similar heterogeneity levels between diagnosis and relapse 54 

samples  55 

We performed simultaneous single cell molecular profiling and cell surface protein expression 56 

(DNA+Protein) sequencing on 609,314 cells from 43 samples from 32 patients with NPM1-57 

mutated AML. NPM1 and all co-mutations were initially identified and confirmed through targeted 58 

bulk sequencing (Fig. 1ab; Extended Table 1). The most common co-mutations identified with 59 

bulk sequencing were in FLT3 (n = 17), IDH1/2 (n = 15), and TET2 (n = 14). Eighty seven percent 60 

of patients had two or more mutations in addition to NPM1 mutations. We queried samples from 61 

patients at different stages of disease, including diagnosis (n = 20), complete response (CR; n = 62 

4) while on therapy, and relapse (n = 19) (Fig. 1b; Extended Data Fig. 1). For 24 patients, we 63 

sequenced a single sample from their disease course. Eight patients from our cohort were 64 

longitudinally sampled (2-3 samples) while on variations of a standard cytotoxic chemotherapy 65 
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regimen, known as 7+315, which consists of 7 days of continuous cytarabine with 3 days of 66 

dauno/doxo-rubicin (Extended Data Fig. 1; Extended Table 2). For each patient we generated 67 

a clonograph to determine the abundance and heterogeneity of clones present in each patient 68 

(Fig. 1c).  69 

   70 

We first investigated differences in clonal architecture between the various disease states: 71 

diagnosis, CR, and relapse across the entire cohort. There were no significant differences in the 72 

number of mutations per sample or the number of mutations in the dominant clone (defined as 73 

the largest non-wildtype clone) between disease states (Extended Data Fig. 2ab), suggesting 74 

that alterations to mutational burden are not the main driver of response or relapse. No significant 75 

difference in dominant clone size between diagnosis and relapse was observed (Fig. 2a). There 76 

was, however, a significant decrease in the number of distinct clones per sample (P = 0.007) and 77 

Shannon diversity index (P = 0.005) from diagnosis to CR and subsequent increase in these same 78 

parameters from CR to relapse (number of clones, P = 0.03; Shannon diversity index, P = 0.03; 79 

Fig. 2bc). This pattern suggests that the clonal heterogeneity observed at initial diagnosis returns 80 

with relapse through expansion of the existing clones and/or the development of new clones that 81 

replace ones lost during therapy and response. 82 

   83 

Presence of signaling mutations correlate with increased heterogeneity at relapse 84 

We then examined whether there were differences in the clonal framework among diagnosis and 85 

relapse samples classified by co-mutations in epigenetic modifier genes (IDH1/2, TET2, 86 

DNMT3A) versus stratification based on the presence or absence of signaling gene mutations 87 

(FLT3, RAS/MAPK). We observed no differences in the number of mutations/clones or dominant 88 

clone size between samples harboring different epigenetic gene mutations (Extended Data Fig. 89 

2cde). Correspondingly, we also did not see significant differences in clonal diversity between 90 

samples stratified by epigenetic gene mutations (Fig. 2d). However, samples with mutations in 91 
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signaling genes, RAS/MAPK and FLT3, were observed to have an increased number of mutations 92 

(None vs RAS P = 0.004, vs. FLT3 P = 0.0003) and clones (None vs RAS P = 0.0003, vs FLT3 P 93 

= 0.0002) compared to samples without signaling mutations with no notable difference in the 94 

dominant clone size (Extended Data Fig. 2fgh). Further, FLT3 mutant samples were found to 95 

have increased clonal diversity as compared with samples without any signaling mutations (P = 96 

0.002; Fig. 2e). Critically, this signaling mutant-driven increase in clonal complexity was uniquely 97 

identified in the relapse setting, as we did not observe significant differences in the clonal metrics 98 

in diagnosis samples (Extended Data Fig. 2ij, Fig. 2f). These findings significantly improve the 99 

resolution and add clinical context for a similar pattern we observed previously in a larger cohort 100 

identifying an increase in clonal diversity in AML samples with mutations in signaling genes8. 101 

Moreover, these findings suggest that patients who harbor signaling gene mutations may undergo 102 

relapse through increasing overall clonal diversity and polyclonality, where multiple clones are 103 

competing for increased clonal fitness and dominance. However, patients without signaling gene 104 

mutations do not show increased clonal heterogeneity in the relapse setting, suggesting they may 105 

utilize alternative mechanisms to drive relapse. 106 

   107 

Mutational cooperativity levels vary based on co-mutation 108 

We next investigated patterns of mutational cooperativity in NPM1-mutated AML samples. Our 109 

previous study suggested that NPM1 mutations may drive clonal expansion when co-mutant with 110 

epigenetic modifiers and signaling mutations, albeit to varying degrees based on the co-mutation8. 111 

Aligning with our previous study, we observed similar patterns across all epigenetic co-mutations, 112 

with an increased relative clone size of double-mutant clones compared with single-mutant TET2 113 

(P = 0.03), IDH2 (P < 0.0001), or DNMT3A clones (P = 0.01) and/or single-mutant NPM1 clones 114 

(TET2 P = 0.03; IDH2 P < 0.0001; DNMT3A P = 0.03) identified in the sample (Fig. 2g). Between 115 

the epigenetic mutations, we noted a stronger trend towards increased double mutant clone size 116 

for IDH2/NPM1 co-mutant clones compared to DNMT3A or TET2 co-mutant clones. Conversely, 117 
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for samples with co-occurring signaling gene mutations, there was more variability in the size of 118 

NPM1 single mutant clones with less evidence of cooperativity in the NPM1-RAS or NPM1-FLT3 119 

double mutant clones (Extended Data Fig. 2k). Significant clonal expansion was more evident 120 

when comparing single mutant FLT3 (P = 0.003) or NRAS (P = 0.04) to double mutant clones. 121 

These studies suggest that mutational cooperativity is highly context dependent and may vary 122 

significantly based on co-mutation identity and the synergy between the cellular alterations 123 

imparted by both NPM1 and the co-mutation. 124 

 125 

Immunophenotypic analysis reveals lineage biases across disease stages 126 

We next assessed cell surface protein expression across the sample cohort at single cell 127 

resolution. Analysis of the single cell surface protein expression (scProtein) confirmed that 128 

overlapping immunophenotypes could be observed across individual samples and patients within 129 

the cohort (Extended Data Fig. 3a). Cells were then clustered into 31 unique communities based 130 

on similarities in their aggregated expression of measured cell surface markers with each 131 

community defined by the expression of more than one marker (Fig. 3a; Extended Data Fig. 132 

3bc). Upon stratification of samples based on disease stage (Diagnosis, CR, Relapse), we found 133 

that the heterogeneity of community representation calculated by a Shannon index is not 134 

significantly different (Extended Data Fig. 3de). However, we did observe certain communities 135 

that were enriched or depleted in representation based on disease stage (Fig. 3b, Extended 136 

Data Fig. 3d). CR samples were enriched in representation in clusters 3 and 4, which contained 137 

28.7% (cluster 3 = 16.5%; cluster 4 = 12.2%) of total cells from CR samples, compared to 8.8% 138 

(cluster 3 = 3.8%; cluster 4 = 5.0%) and 7.1% (cluster 3 = 3.5%; cluster 4 = 3.6%) of cells from 139 

Diagnosis and Relapse samples, respectively. Clusters 3 and 4 harbored cells with the highest 140 

expression of the classical T-cell markers CD3, CD4, and CD8 (Fig. 3bc, Extended Data Fig. 141 

3c). Leukemic samples (Diagnosis/Relapse), on the other hand, were found to be enriched in 142 

clusters 0, 2, and 16 which contained 21.8% and 25.9% of total cells from Diagnosis and Relapse 143 
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samples, respectively. These clusters expressed higher levels of CD38, CD117 and CD123, 144 

known markers for leukemic blasts as well as enrichment of CD11b, CD64, and CD14 shown to 145 

be expressed on monocytic AML blasts and myeloid progenitors (Fig. 3bc, Extended Data Fig. 146 

3c). There were certain clusters with stable representation regardless of disease stage, including 147 

clusters 6, enriched in B-cell markers CD19 and CD22 (3.8% Diagnosis, 3.9% CR, 4.2% 148 

Relapse). Lastly, we observed similar representation in cluster 8 across disease states (3.4% 149 

Diagnosis, 3.0% CR, 3.2% Relapse), which express CD11b, CD64, and CD14 without 150 

stem/progenitor markers and cluster 11 (3.4% Diagnosis, 3.8% CR, 2.7% Relapse) with 151 

expression of promyelocytic markers CD141, CD71 and CD49d, suggesting that certain 152 

immunophenotypes are always generated regardless of disease state.  153 

 154 

scProtein uncovers genotype-specific immunophenotypic patterns 155 

We next examined how specific genotypes within NPM1-mutant AML affected 156 

immunophenotypes and lineage biases. We observed that genotypes could indeed alter lineage 157 

output, albeit to varying degrees, aligning with our previous findings with a smaller initial scProtein 158 

panel8. We observed that all mutant cells were significantly excluded from the T-cell clusters, to 159 

different degrees depending upon the mutations. Amongst the mutated cells, TET2 mutant cells 160 

were the most abundant (odds ratio [OR] = 0.379 and 0.292 for clusters 3 and 4, respectively) 161 

whilst NPM1 and FLT3 were markedly rare (NPM1 OR = 0.057 and 0.063, NRAS OR = 0.159 and 162 

0.157 for clusters 3 and 4, respectively; Extended Data Fig. 3d). We next grouped clones by 163 

genotype from the entire cohort and investigated alterations to marker expression. We uncovered 164 

stark contrasts between clones harboring DNMT3A, TET2, and IDH2 (Fig. 3d; Extended Data 165 

Fig. 3c). Clones harboring DNMT3A-mutations were enriched for higher CD38 expression and 166 

lower CD11b expression compared to clones harboring TET2- and IDH2-mutations (avg scaled 167 

expression CD38: DNMT3A-clones 0.40+/-1.32 vs IDH2-clones 0.21+/-0.23 or TET2-clones -168 

0.42+/-1.22; CD11b: DNMT3A-clones -1.24+/-0.30 vs IDH2-clones 0.40+/-0.32 or TET2-clones 169 
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1.00+/-0.26). Clones harboring IDH2-mutations showed increased expression of stem/progenitor 170 

markers such as CD141 previously suggested to represent neoplastic clones16, as well as CD34 171 

and CD117 (avg scaled expression CD141: IDH2-clones 0.81+/-0.90 vs DNMT3A-clones -1.05+/-172 

0.76 or TET2-clones 0.30+/-0.33; CD34: IDH2-clones 0.92+/-1.06 vs DNMT3A-clones -0.43+/-173 

0.52 or TET2-clones -0.36+/-0.45; CD117: IDH2-clones 0.90+/-0.82 vs DNMT3A-clones -0.43+/-174 

1.05 or TET2-clones -0.23+/-0.71). Strikingly, clones harboring TET2-mutations diverged 175 

significantly from DNMT3A- and IDH2-mutant clones in that they were instead enriched for 176 

markers including CD14, CD11b and CD64, prominent mature monocytic markers (avg scaled 177 

expression CD14: TET2-clones 1.20+/-0.59 vs DNMT3A-clones -0.79+/-0.34 or IDH2-clones -178 

0.42+/-0.73; CD64: TET2-clones 0.78+/-0.50 vs DNMT3A-clones -0.36+/-1.3 or IDH2-clones 179 

0.02+/-0.24). These findings suggest that epigenetic mutations including DNMT3A, TET2, and 180 

IDH2 may dictate lineage biases and differentiation potential that is inherited by subsequent 181 

clones. 182 

183 

Next, we found that NRAS- and FLT3- mutant clones of the same epigenetic genotype possessed 184 

different immunophenotypic patterns (Fig. 3d; Extended Data Fig. 3c). Compared to 185 

DNMT3A/NPM1/NRAS-mutant cells (DNR), DNMT3A/NPM1/FLT3 co-mutant cells (DNF) 186 

expressed 25.1-fold more CD123 and 14.0-fold more CD117, the latter being previously 187 

suggested by immunophenotyping studies17,18 (average expression CD123: DNF: 55.9 vs DNR: 188 

2.22; CD117: DNF: 29.6 vs DNR: 2.1). TET2-mutant clones harbored similar patterns with 189 

TET2/NPM1/FLT3 co-mutant clones showing higher expression of CD117 and CD123 compared 190 

to TET2/NPM1/NRAS mutant clones (average expression CD117: TNF: 44.1 vs TNR: 7.28; 191 

CD123: TNF: 55.5 vs TNR: 6.75). In IDH2 mutant clones, an opposite trend was observed with 192 

IDH2/NPM1/NRAS mutant clones expressing 5.4-fold higher CD117 and 7.1-fold higher CD34 193 

compared to IDH2/NPM1/FLT3 co-mutant clones, suggesting the IDH2/NPM1/NRAS combination 194 

harbors a strong stem/progenitor phenotype (average expression CD117: INR: 186.6 vs INF: 195 
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34.8; CD34: INR: 40.7 vs INF: 5.69). Moreover, FLT3-mutant clones showed increased 196 

expression of CD25, previously reported as a biomarker of FLT3-mutant cells19 as well as CD30 197 

and CD69, both of which are known to be expressed on AML blasts with increased self-renewal 198 

and stem-like properties20,21. These results imply that signaling mutations can refine further 199 

lineage trajectories established by epigenetic mutations in antecedent clones, creating unique 200 

genotype-immunophenotype relationships. 201 

202 

Longitudinal sampling of patients during therapy undercovers genotypic and immunophenotypic 203 

clonal evolution 204 

To investigate how standard cytotoxic chemotherapy affects patients on a clonal and 205 

immunophenotypic level, we obtained longitudinal samples from NPM1-mutant AML patients 206 

(n=8) undergoing 7+3 chemotherapy (Extended Table 1, Extended Data Fig. 1). Profiling of 207 

longitudinal samples revealed variable patterns in clonal evolution but most patients displayed 208 

notable alterations in the number of mutations and clones from diagnosis to complete response 209 

and/or relapse (Fig. 4a; Extended Data Fig. 4a). Interestingly, even in patients whose mutations 210 

remained the same, the distribution of mutant clones fluctuated throughout therapy. Our previous 211 

studies and others have identified significant genotype-immunophenotype correlations in RAS 212 

and/or FLT3-mutant clones8,9,12. In our cohort, we had two patients in particular who gained or lost 213 

signaling mutations while on therapy. In one patient, a dominant NRAS-mutant clone harboring 214 

co-occurring TET2/NPM1 mutations was lost during therapy (Pt G; Fig. 4bc; Extended Data Fig. 215 

4b). We found that the loss of this triple mutant clone in the relapse sample correlated with 216 

increased expression of dendritic and monocytic markers CD135 (FLT3) and CD16, respectively 217 

(CD135 P = 1.1 x 10-209, CD16 P = 9.6 x 10-15; Fig. 4de). The clonal evolution in Pt G was also 218 

correlated with decreased expression of myeloid and stem/progenitor markers CD33 and CD117 219 

(CD33 P = 7.2 x 10-211, CD117 P = 5.2 x 10-57; Fig. 4e; Extended Data Fig. 4cd), Conversely, in 220 

a second patient, separate RAS and FLT3-mutant subclones were acquired upon relapse (Pt I; 221 
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Fig. 4fg; Extended Data Fig. 4e). We found that compared to the diagnosis sample, the relapsed 222 

disease was enriched for higher expression of CD117 across the sample but also CD14 (CD117 223 

P = 9.3 x 10-31, CD14 P = 5.0 x 10-235; Fig. 4h; Extended Data Fig. 4f). These findings confirm 224 

previously identified genotype-immunophenotype relationships and further suggest that 7+3 225 

therapy can have varying effects on clonality and immunophenotype. Moreover, we have 226 

observed the profound alterations that gains/losses of signaling mutations have on the 227 

immunophenotype of a patient’s disease during therapy. 228 

 229 

Significant clonal evolution is correlated with genotypic, transcriptional, and immunophenotypic 230 

alterations 231 

Our patient cohort also included a patient (Pt F) who displayed significant clonal evolution, i.e. a 232 

clonal sweep where the genotype and clones of the leukemia significantly changed8 (Fig. 5a; 233 

Extended Data Fig. 5a). This patient was initially diagnosed with AML that harbored TET2 and 234 

NPM1 co-mutations. However, upon relapse on 7+3 therapy the patient instead harbored an IDH1 235 

mutation co-occurring with the NPM1 mutation with no evidence of the initial TET2-mutant clones 236 

(Fig. 5a, Extended Data Fig. 5a). scProtein analysis revealed that while diagnosis clones were 237 

enriched for expression of monocytic markers CD14, CD11b, and CD33 (all P values P < 1.0 x 238 

10-250), clones identified at relapse were enriched for CD117 expression suggesting a more 239 

immature phenotype following therapy (CD117 P = 8.24 x 10-11; Fig. 5bc, Extended Data Fig. 240 

5bc). We next sought to connect these immunophenotypic changes to the clones identified at 241 

each disease state. We found genotype-immunophenotype relationships consistent with our 242 

cohort analysis (Fig. 3d). TET2-mutant clones at diagnosis showed increased expression of 243 

monocytic markers CD14, CD11b, CD16, and CD64 (adj P value for all < 1.0 x 10-80; Fig. 5d, 244 

Extended Data Fig. 5d). Conversely, IDH1-mutant clones at relapse showed decreased 245 

expression of monocytic markers in favor of CD117 (adj P value = 8.2 x 10-11). These findings 246 

reconfirm the existence of genotype-immunophenotype relationships and that they can drastically 247 
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alter the immunophenotype of a patient’s disease based on the gain or loss of certain mutations 248 

and clones during therapy. Notably, these findings indicate that relapse can manifest in a more 249 

immature cell state, in contrast to numerous reports indicating monocytic differentiation is a 250 

therapy escape mechanism22-24.  251 

 252 

To connect these immunophenotype changes to gene expression changes, we performed single 253 

cell RNA-seq with cellular indexing of transcriptomes and epitopes (CITE-seq) analysis of the 254 

AML samples. We queried the matched samples from Pt F (Fig. 5), which showed drastic clonal 255 

evolution and an IDH2-mutant relapse sample (Pt B) whose IDH2 mutation was stable from 256 

diagnosis and relapse (Fig. 6). First, we identified captured cell types through label transfer from 257 

a normal adult hematopoiesis reference25. These AML samples contained cell clusters identified 258 

as Multilineage/GMPs (Multilin-GMP-1), monocytes (Intermediate Mono, Classical/Non-classical 259 

Mono, Mono), dendritic cells (pre-DC, cDC), and T cells (CD8, CD4) (Fig. 6a; Extended Data 260 

Fig. 6a). Compared to the diagnosis sample, we identified a decrease in Intermediate Mono-1 261 

and Intermediate Mono-2 cells and an increase in Multilin-GMP-1 cells in relapsed samples 262 

(Extended Data Fig. 6b). We subsequently focused on immunophenotype changes within the 263 

three samples across the three most prevalent cell clusters (Extended Data Fig. 6c). A subset of 264 

Multilin-GMP cells in the relapse samples trended towards increased CD117 expression 265 

compared to the diagnosis sample (Pt F relapse: did not reach significance; Pt B relapse: 266 

P<0.0002; Fig. 6b), aligning with our findings of IDH2-mutant clones and heightened expression 267 

of stem/progenitor markers. Moreover, a prominent intermediate monocyte population 268 

(Intermediate Mono 1) showed increased expression of CD14 and CD11b in the Pt F diagnosis 269 

sample compared to the paired relapse sample (CD14 P < 0.0001; CD11b P = 0.0008; Fig. 6cd). 270 

When we evaluated the gene expression of shared cell surface markers between our CITE-seq 271 

and scDNA+Protein immunophenotype panels, we found that expression of certain marker genes 272 

like CD14 and ITGAM (CD11b) correlated well with protein expression, whereas other genes like 273 
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IL3RA (CD123) had stable RNA expression compared to variable cell surface expression across 274 

the three clusters (Extended Data Fig. 6cd). Overall, these findings suggest that CITE-seq can 275 

refine the immunophenotype patterns observed in our scDNA+Protein analysis to specific cell 276 

populations.  277 

 278 

We next interrogated significant gene expression changes between diagnosis and relapse, 279 

focusing on the cell populations which correlated with our scProtein immunophenotypic 280 

alterations. Upon comparing our diagnosis sample to the patient paired (Pt F) and unpaired (Pt 281 

B) relapse samples, we found significant differential expression of several protein ubiquitination 282 

genes including upregulation of HUWE1 and HECTD1, E3 ubiquitin ligases with established roles 283 

in leukemia26 and stem cell27 proliferation and regeneration, respectively (Fig. 6ef). Multiple genes 284 

involved in Wnt/b-catenin pathway activation, previously shown to be important in MLL-285 

rearranged and HOX-dependent leukemia development28-30, were upregulated in relapse 286 

samples, including AXIN1, LRRFIP2, and UBE2B. Protein interaction analysis uncovered a 287 

significant upregulation of multiple kinase and phosphatase genes including KRAS, BRAF,  and 288 

PIK3CA, suggesting transcriptional changes to the RAS-MAPK-PI3K pathways and other 289 

signaling networks, known to play roles in development of therapy resistance24,31,32 (Fig. 6fg). 290 

Further, SMURF2 was found to be upregulated as well in relapse samples, which has been 291 

previously implicated in controlling KRAS protein stability33. RAS/MAPK pathway activating 292 

mutations have been commonly found at relapse from various targeted therapies12,23,34,35. Our 293 

results indicate that there is substantial gene expression dysregulation of signaling cascades, 294 

including RAS/MAPK, even in the absence of activating mutations. Collectively, these studies 295 

indicate that the genotypes of AML clones play significant roles in dictating the cellular 296 

immunophenotypes and clonal lineage potentials, underscoring the need for further resolution of 297 

genotype-transcriptome-immunophenotype relationships in AML development and evolution.   298 

 299 
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Discussion 300 

NPM1 is one of the most commonly mutated genes in AML1-3,6, and previous studies have 301 

suggested different levels of synergy between NPM1 and co-occurring mutations8,9,36, as well as 302 

significant clonal changes while patients are undergoing targeted therapies12,13. In this study, we 303 

have utilized scDNA+Protein analysis to further examine the clonal architecture patterns in NPM1-304 

mutated AML samples, as well as understand genotype-immunophenotype correlations as 305 

patients undergo standard of care chemotherapy. We first identified that differences in clonal 306 

architecture exist depending on the co-occurring mutations with NPM1 on a patient level. Notably, 307 

we also found that RAS/FLT3-mutant AMLs had significantly increased clonal diversity, 308 

particularly in the relapse setting, suggesting that AMLs with signaling gene mutations may use 309 

clonal heterogeneity to drive relapse compared to AMLs without signaling genes. The findings in 310 

our study could be critical in understanding why further insight into these mutations and mutational 311 

combinations holds importance for even more nuanced risk stratification for AML patients. While 312 

our studies here focus on a very common subtype of AML with co-mutations that exist broadly 313 

across all AML patients, the scDNA targeted amplicon panel does exclude the identification of all 314 

possible mutations that exist and/or are gained and lost during therapy. The mutational 315 

cooperativity analyses in our study are important in helping to understand differences in clone 316 

sizes; however, our cooperativity results may be limited by potential allele dropout in NPM1 single-317 

mutant clones. Furthermore, additional non-somatic alterations may be playing a role in 318 

leukemogenesis and clonal evolution37,38, which could be further explored by scRNA sequencing 319 

and scATAC-seq. 320 

321 

Additionally, our single cell immunophenotypic analyses in this study revealed specific genotype-322 

immunophenotype relationships. Surprisingly our data suggests that mutations thought of as 323 

initiating mutations, (DNMT3A, TET2, and IDH1/2), seem to dictate the lineage trajectories for 324 

subsequent clones. For instance, we found that DNMT3A- and IDH-mutant clones, with or without 325 
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NPM1 and signaling mutations, show enrichment in hematopoietic stem/progenitor cell markers 326 

CD117, CD123, and CD34. Meanwhile, TET2-mutant clones show increased expression of 327 

monocytic markers CD14, CD11b, and CD64. The remarkable divergence between DNMT3A and 328 

TET2, the two most frequent mutations found in clonal hematopoiesis39, suggests that the 329 

immunophenotypes of the mutant leukemic clones may be influenced even by these early 330 

mutations during leukemogenesis. Moreover, our studies infer that while initiating mutations 331 

provide possible lineage trajectories, signaling mutations can refine these trajectories, again 332 

underscoring that the genotype-immunophenotype relationships are highly unique to the 333 

combination of mutations. Further studies are needed to understand the importance of these 334 

relationships and how they impact response to both cytotoxic and targeted therapies.  335 

 336 

Our study found notable clonal and immunophenotypic changes from diagnosis to relapse as 337 

patients underwent standard cytotoxic chemotherapy. Relapse and refractory disease are major 338 

contributors to the dismal outcomes observed in AML patients, with a 5-10% 5-year survival rate 339 

in patients with relapsed/refractory disease40. A better understanding of resistance mechanisms 340 

and leukemic evolution as patients undergo therapy, can influence clinical management and 341 

therapeutic options for AML patients. Interrogating longitudinal samples from patients who 342 

underwent 7+3 therapy, we found that most patients’ disease expressed more of an immature 343 

phenotype in relapse, previously suggested in small studies of AML samples41. This is in contrast 344 

with the changes that are observed the combination of the BCL-2 inhibitor, venetoclax, and 345 

hypomethylating agent, azacitidine (Ven/Aza) and other recent therapies. A recurrent mechanism 346 

of acquired resistance/relapse for Ven/Aza lies in the expansion of a myelomonocytic phenotype 347 

blast population, characterized by higher CD11b/CD14 expression and enriched for NRAS/MAPK 348 

mutations22-24,34. While outside the scope of this study, these divergent findings bring into question 349 

whether the selective pressures imposed by different treatment regimens influence how leukemic 350 

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.623033doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623033
http://creativecommons.org/licenses/by-nc-nd/4.0/


clones respond and therefore how clonotypes and immunophenotypes will change during therapy 351 

and upon relapse. 352 

 353 

Lastly, we performed CITE-seq on matched diagnosis and relapse samples from two patients in 354 

our cohort, one of whom displayed significant clonal evolution while on 7+3 therapy. In doing so, 355 

we could identify cell populations displaying the immunophenotype alterations correlating with the 356 

clonal evolution and uncover significant gene expression changes. These gene expression 357 

changes suggest that dysregulation of signaling pathways and ubiquitination pathways can play 358 

a role in clonal evolution while on therapy. Not surprisingly, RAS-MAPK-PI3K pathways were 359 

among the significantly upregulated pathways, which align with many recent studies of resistant 360 

disease12,23,34,35. Notably, neither of the relapse samples harbored or acquired RAS/MAPK 361 

signaling mutations but instead upregulated the intrinsic pathway through transcriptional 362 

alterations. While this analysis was limited to a small number of samples, these findings highlight 363 

the need to understand how clones are evolving both at the genotype and immunophenotype 364 

level, but also at the transcriptomic level. Truly integrated trimodal analysis of genotype, 365 

transcriptome, and immunophenotype is yet to be obtained, but will likely provide a new level of 366 

understanding of how mutations synergize to drive leukemic development and disease 367 

progression.  368 

 369 

Analyzing clonal evolution at a single-cell level provides insights into how NPM1 mutations 370 

cooperate with epigenetic and signaling mutations to generate clonal complexity, underlying 371 

resistance to treatment.  Matched CITE-seq analysis suggests widespread changes to biological 372 

processes including signaling and protein ubiquitination pathways. These studies nominate 373 

dynamic pathway changes that might contribute to disease relapse. Collectively, our investigation 374 

underscores the need to further study AML patients longitudinally and at high cellular resolution, 375 

to discover mechanisms of response and relapse to current therapies. We anticipate that similar 376 
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integrated multiomic approaches will enable new risk stratifications that predict treatment 377 

responses and inform therapeutic strategies that target cancer as an evolving, multi-clonal 378 

disease. 379 
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Fig. 1. NPM1-mutated AML patient cohort. a) Oncoprint of samples in patient cohort (n=32) 380 

depicting mutations identified by targeted bulk sequencing. For patients with more than one 381 

sample, only the diagnosis sample is displayed. b) Table of patient cohort (n=43 samples) 382 

describing breakdown of samples by epigenetic co-mutation and disease state. c) Clonograph of 383 

a representative patient sample (Pt I diagnosis) depicting clones present in sample. The height of 384 

each bar represents the cell count of the clone identified below. Clone genotype is depicted by 385 

color with wildtype (WT) in light beige and heterozygous mutations in orange denoted.  386 
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Figure 2
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Fig. 2. Clonal architecture patterns and mutational cooperativity by single-cell DNA 387 

sequencing. a-c) Bar graphs of clonal architecture metrics for entire cohort by disease state, 388 

including (a) dominant clone size, (b) number of clones, and (c) clonal diversity, calculated by the 389 

Shannon diversity index (mean ± SD, n = 43). d) Violin plot of Shannon diversity index for 390 

diagnosis and relapse samples harboring epigenetic mutations (n = 30) in TET2 (red), IDH1/2 391 

(blue) or DNMT3A (purple). Samples with more than one epigenetic mutation were excluded from 392 

analysis. e) Violin plot of Shannon diversity index for diagnosis and relapse samples with 393 

RAS/MAPK (n=13; orange), FLT3 (n=11; green), or no signaling gene mutations (n=16; None; 394 

black). Samples with both a RAS/MAPK and FLT3 mutation were excluded. f) Number of clones 395 

identified in samples with RAS/MAPK (n=13; orange), FLT3 (n=11; green), or no signaling gene 396 

mutations (n=16; None; black) stratified by disease state (Diagnosis, left panel; Relapse, right 397 

panel). Kruskal-Wallis test was used to determine statistical significance amongst groups (a-f). g) 398 

Fraction of sample in single- and double-mutant clones in samples with DNMT3A-NPM1 (n = 9; 399 

left panel), IDH2-NPM1 (n = 12; center panel), and TET2-NPM1 (n = 20; right panel) mutations. 400 

Individual samples denoted by connecting lines. Two-way ANOVA used to determine statistical 401 

significance (g) *P<0.05, **P<0.01, ***P<0.001 denoted for all panels.  402 
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Fig. 3. Identification of genotype-immunophenotype relationships using simultaneous 403 

single-cell DNA+Protein sequencing. a) Uniform manifold approximation and projection 404 

(UMAP) plot of 31 communities identified based on aggregate protein data from entire patient 405 

cohort (n=43) with cells clustered by immunophenotype. b) Fraction of cells within a given disease 406 

stage (diagnosis, CR, relapse) clustered into the 31 communities previously identified across 407 

cohort with colors matching community identity in Fig. 3a. c) Bar graphs depicting fraction of cells 408 

from a given disease state (diagnosis, CR, relapse) identified within a community. Community 409 

number with corresponding immunophenotype signature based on immunophenotype markers 410 

enriched within that community denoted. Colors of community denoted in UMAP in Extended Data 411 

Fig. 3b. d) Dot plot depicting expression of immunophenotypic markers by genotype-specific 412 

clones. Normalized expression of each marker depicted by color (blue = low, red = high) with size 413 

of dot denoting the fraction of cells within each genotyped clone that expresses the marker. 414 

Immunophenotype markers grouped by corresponding lineage associations. Top bar, gray = WT, 415 

green spectrum = DNMT3A clones, red spectrum = TET2 clones, blue spectrum = IDH2 clones. 416 

Full genotype for each column denoted at bottom of the dotplot.  417 
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Figure 4
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Fig. 4. Clonal and immunophenotypic single cell analysis of longitudinal patient samples 418 

while undergoing 7+3 chemotherapy. a) Changes in number of clones for NPM1-mutant 419 

patients (n=8) where samples were analyzed longitudinally while undergoing therapy. Individual 420 

patients are indicated by connecting line with point at each disease state for which sample was 421 

available. Blue = IDH2 co-mutation at diagnosis by bulk sequencing (n=4 patients); Red = TET2 422 

co-mutation at diagnosis by bulk sequencing (n=4 patients). b-e) Analysis of paired samples of 423 

representative patient G (Pt G) that underwent clonal change during treatment. b) Changes in 424 

clone frequencies at each disease state. Only genotypes identified in 1% or higher of total cells 425 

from at least one sample are depicted for clarity. Color of line denotes specific genotype also used 426 

in Fig. 4c. c) Uniform manifold approximation and projection (UMAP) plot of Pt G samples at 427 

diagnosis (left), CR (center), and relapse (right) clustered by immunophenotype with genotype 428 

overlaid. d) UMAPs of Pt G samples denoting relative expression of CD135 (FLT3) as patient 429 

underwent therapy. Color depicts relative expression (blue = low, red = high). e) Violin plots of 430 

selected immunophenotype markers (CD135/FLT3, top; CD16, center; CD117, bottom) that 431 

change significantly from diagnosis to relapse in Pt G samples. Color denotes disease state 432 

(diagnosis, yellow; CR, red; relapse, blue). f-h) Analysis of paired samples of representative 433 

patient I (Pt I) that underwent clonal change during treatment. f) Clonograph of diagnosis sample 434 

from patient I. Height of each bar represents the cell count of the clone identified below. Clone 435 

genotype is depicted by color with WT in light beige, heterozygous mutations in orange, and 436 

homozygous mutations in red. g) Changes in clone frequencies at each disease state as in Fig. 437 

4b. h) Uniform manifold approximation and projection (UMAP) plots of Pt I samples at diagnosis 438 

(left) and relapse (right) clustered by immunophenotype with relative expression of CD14 overlaid. 439 

Color denotes relative expression (blue = low, red = high).   440 
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Fig. 5. scDNA+Protein analysis of clonal sweep in Patient F. a) Changes in clone frequencies 441 

at each disease state. Only genotypes identified in 1% or higher of total cells from at least one 442 

sample are depicted for clarity. The color of line denotes specific genotype also used in Extended 443 

Data Fig. 5a. b) Uniform manifold approximation and projection (UMAP) plot of Pt F samples at 444 

diagnosis (left) and relapse (right) clustered by immunophenotype with genotype overlaid. c) 445 

UMAP from b with relative expression of CD14 overlaid. Color depicts relative expression (blue = 446 

low, red = high). d) Plot depicting expression of immunophenotypic markers CD117 (Y axis) and 447 

CD14 (X axis) by each identified clone found in Pt F samples. Normalized expression of each 448 

marker is depicted by dot location with size of dot denoting the fraction of the clone that expresses 449 

the marker. Genotype is denoted by same color as in Fig. 5a and 5b.   450 
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Fig. 6. Matched CITE-seq analysis correlates scDNA+Protein results and identifies 451 

differentially expressed pathways upon relapse. a) UMAPs derived from CITE-seq analysis 452 

and clustered based on similarities to reference cell clusters (Extended Data Fig. 6a) for Pt F 453 

diagnosis (top), Pt F relapse (center), and Pt B relapse (bottom). Cell cluster identities are denoted 454 

based on cell identity in reference atlas (Extended Data Fig. 6a). bcd) Scatter dot plots of single 455 

cell CD117 (b), CD14 (c) and CD11b (d) antibody tag reads from cells clustered as Multilin-GMP-456 

1 (b) or Intermediate Mono-1 (cd) cells from each sample (n=3). Bold dotted line denotes the 457 

mean. Kruskal-Wallis test was used to determine statistical significance amongst groups. 458 

***P<0.001, ****P<0.0001 denoted. e) Heatmap of genes found to be differentially expressed in 459 

Multilin-GMP-1 (left, blue bar), Intermediate Mono-1 (center, yellow bar), and Intermediate Mono-460 

3 (right, red bar) cell clusters between Pt F Diagnosis and both relapse samples (Pt F Relapse, 461 

Pt B Relapse). Heatmap scale denotes log fold gene expression from high (yellow) to low (blue). 462 

Select genes are denoted in red. Asterisks indicate whether column is a comparison between the 463 

paired samples (* denotes Pt F Diagnosis-Pt F Relapse) or unpaired samples (** denotes Pt F 464 

Diagnosis-Pt B Relapse). f) Waterfall plot of Z-scores (X) and adjusted P values (Y) for 465 

GO:Biological Processes found to be differentially expressed in Pt F diagnosis sample compared 466 

to Pt F and Pt B relapse samples by AltAnalyze. Color of dot denotes significance based on 467 

adjusted P values < 0.05 (dashed line) in red. g) Network connectivity map denoting the 468 

interactions of differentially expressed genes from Fig. 6e.  469 
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Extended Table 1. Single cell sequencing analytical metrics for each sample in the NPM1-mutant 470 

AML cohort (n=43). Values provided by the Mission Bio Tapestri pipeline after initial processing. 471 

Longitudinal samples from the same patient are denoted with sample name with an underline and 472 

disease state annotation (diagnosis= d, complete response= cr, relapse= r). PBMC = peripheral 473 

blood mononuclear cells; BM = bone marrow 474 

 475 

Sample 
Name 

Cell 
count 

Panel 
Uniformity 

Mean 
read/cell/
amplicon 

%DNA read 
pairs assigned 

to cell 

Mean 
reads/cell/
antibody 

Sample 
Type 

A 11,402 93% 67 76% 193 PBMC 
AA 5,082 79% 91 22% 297 BM 
AB 40,663 93% 58 75% 160 PBMC 
AC 9,939 80% 13 13% 108 BM 
AD 9,429 93% 95 63% 166 BM 
AE 31,027 94% 55 75% 73 BM 
AF 45,758 94% 72 78% 147 PBMC 

B_cr 7,631 94% 87 78% 312 PBMC 
B_r 13,936 95% 38 69% 177 BM 
C_cr 12,865 95% 44 78% 321 BM 
C_d 9,669 94% 55 72% 468 BM 
C_r 4,248 94% 207 66% 421 BM 
D_cr 10,218 96% 35 58% 195 PBMC 
D_d 7,112 92% 62 48% 119 PBMC 
D_r 8,726 94% 60 51% 175 PBMC 
E_d 8,442 92% 69 52% 189 PBMC 
E_r 1,184 90% 541 54% 491 PBMC 
F_d 8,175 94% 205 74% 611 BM 
F_r 7,036 94% 100 71% 344 BM 

G_cr 15,545 95% 55 76% 162 BM 
G_d 6,414 95% 178 77% 379 BM 
G_r 9,427 95% 69 74% 250 BM 
H_d 7,522 94% 78 51% 188 BM 
H_r 10,404 92% 64 52% 98 BM 
I_d 2,562 93% 255 55% 546 PBMC 
I_r 10,911 92% 67 65% 151 PBMC 
J 9,556 92% 82 57% 139 PBMC 
K 3,800 92% 200 63% 248 PBMC 
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L 17,317 94% 75 68% 187 PBMC 
M 881 81% 301 48% 230 PBMC 
N 2,051 90% 283 58% 483 PBMC 
O 22,651 92% 72 66% 79 BM 
P 17,451 93% 109 67% 50 BM 
Q 27,726 93% 74 65% 73 BM 
R 26,340 93% 68 73% 167 BM 
S 31,160 93% 39 61% 183 BM 
T 25,512 93% 74 69% 184 PBMC 
U 6,315 94% 102 77% 468 BM 
V 10,602 93% 18 64% 177 BM 
W 35,124 94% 74 69% 184 PBMC 
X 13,452 93% 99 80% 420 BM 
Y 26,905 93% 61 70% 242 BM 
Z 17,144 93% 53 68% 275 BM 

Average 14,170 92% 104.74 64% 244.88  
Total 609,314 

    
 

  476 
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Extended Table 2. Clinical characteristics and treatment information of patients with 477 

longitudinal samples analyzed by scDNA+Protein. Ara-C and Daunorubicin treatment is also 478 

known as 7+3 therapy. 479 

 480 

Patient Induction 
Regimen 

Age 
(y) Sex Race 

Days from 
treatment 
start to CR 

Days from 
treatment 

start to 
Relapse 

Days 
from CR 

to 
Relapse 

B 
Ara-C, 

Daunorubicin, 
Etoposide 

54 Male White 27 3044 3017 

C 
Ara-C, 

Daunorubicin, 
Etoposide 

75 Male White 39 415 376 

D 
Ara-C, 

Daunorubicin, 
G3139 

74 Female White 41 606 565 

E Ara-C, 
Daunorubicin 60 Male White 31 1484 1453 

F 
Ara-C, 

Daunorubicin, 
Etoposide 

53 Male White 35 914 879 

G 
Ara-C, 

Daunorubicin, 
Etoposide 

29 Female White 28 1099 1071 

H 
Ara-C, 

Daunorubicin, 
Etoposide 

74 Male White 39 136 97 

I 
Ara-C, 

Daunorubicin, 
Etoposide 

60 Male  White 27 2175 2148 

  481 
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Extended Figure 1

Samples sequenced
Samples not sequenced
Induction trtmt with 7+3 plus etoposide
Induction trtmt with 7+3 plus G3139
Induction trtmt with 7+3 only
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Extended Data Fig. 1. Treatment response courses for patients (n=8) while on 7+3 therapy. 482 

Each patient is labeled on Y axis with months since treatment start denoted on X axis. Diagnosis 483 

(yellow), complete response (red), and relapse (blue) samples that were available for sequencing 484 

denoted by colored circles with timepoints with unavailable samples depicted by triangles at time 485 

point based on location of dot. Therapy is denoted by line style (complete = 7+3 plus etoposide; 486 

large dash = 7+3 plus G3139; small dash = 7+3 alone). Patient outcomes are not provided or 487 

denoted on graph.  488 
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Extended Data Figure 2
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Extended Data Fig. 2. Analysis of clonal architecture by disease state and by gene 489 

mutation. a-b) Clonal architecture metrics for entire cohort (n=43 samples) by disease state, 490 

including (a) number of mutations per sample, and (b) number of mutations in the dominant clone. 491 

c-e) Bar graphs depicting clonal architecture metrics of samples (n=30) with different epigenetic 492 

gene mutations in TET2 (red), IDH1/2 (blue), or DNMT3A (purple) at diagnosis and relapse states, 493 

including (c) number of mutations per sample, (d) number of clones per sample, and (e) dominant 494 

clone size. f-h) Number of mutations per sample (f), number of clones per sample (g) and 495 

dominant clone size (h) for samples with RAS/MAPK (n=13; orange) or FLT3 (n=11; green) 496 

mutations vs. no signaling gene mutations (n=16; None, black), at diagnosis and relapse states 497 

combined. i) Number of mutations per sample (as in Extended Data Fig 2f) stratified by diagnosis 498 

(left panel) or relapse (right panel). j) Clonal diversity, as calculated by Shannon diversity index, 499 

for samples with RAS/MAPK (n=13) or FLT3 (n=11) mutations vs. no signaling gene mutations 500 

(n=16) at diagnosis and at relapse. j) Fraction of sample in single- and double-mutant clones in 501 

FLT3-NPM1 (n = 11; left panel) and RAS-NPM1 (n = 10; right panel) mutant samples. Individual 502 

samples denoted by connecting lines. a-d, f, i-j) Mean value for each cohort shown by height of 503 

bar with standard deviation depicted with error bars. e, g-h) Center line - median value for each 504 

cohort. Kruskal-Wallis test was used to determine statistical significance amongst groups for all 505 

panels except k where a two-way ANOVA was used. *P<0.05, **P<0.01, ***P<0.001 denoted for 506 

all panels.  507 
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Extended Data Figure 3
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Extended Data Fig. 3. Immunophenotype analysis of all single-cell DNA+Protein samples. 508 

a) Uniform manifold approximation and projection (UMAP) plot of all patient samples (n=43) 509 

clustered by immunophenotype. Cells from the same patient sample are shown in the same color. 510 

b) Single cell immunophenotype metrics for each community denoted by total number of 511 

sequencing reads for each community (nCount Protein; top panel) and violin plot denoting number 512 

of unique proteins expressed in each community (nFeature Protein; bottom panel. Colors of each 513 

community in bottom panel match colors from Extended Data Fig. 3b. c) Dot plot depicting relative 514 

expression of each immunophenotypic marker within each community. Normalized expression of 515 

each marker depicted by color (blue = low, red = high) with size of dot denoting the fraction of 516 

cells within each community that expresses the marker.  d) Uniform manifold approximation and 517 

projection (UMAP) plots of entire patient cohort (n=43) with cells clustered by immunophenotype. 518 

Top left, disease stage overlaid onto the UMAP (Diagnosis, yellow; Complete response, CR, Red; 519 

Relapse, blue). Top right panel (NPM1) and middle panels (TET2, right; FLT3, left), select mutant 520 

genes overlaid onto the UMAP (wildtype, grey; mutant, purple). Bottom panel, select 521 

immunophenotypic markers (CD3, left panel; CD33, right panel) overlaid onto the UMAP with 522 

expression from low (grey) to high (red) expression depicted. e) Box and whisker plot of 523 

community diversity within each disease stage (diagnosis, yellow; CR, red; relapse, blue) 524 

calculated by Shannon diversity index.  525 
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Extended Data Figure 4
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Extended Data Fig. 4. Alterations in clonality and immunophenotype during 7+3 therapy. 526 

a) Changes in number of mutations for NPM1-mutant patients (n=8) where samples were 527 

analyzed longitudinally while undergoing therapy. Individual patients indicated by connecting line 528 

with point at each disease state for which sample available. Blue = IDH2 co-mutation at diagnosis 529 

by bulk sequencing (n=4 patients); Red = TET2 co-mutation at diagnosis by bulk sequencing (n=4 530 

patients). b) Clonograph of diagnosis sample from Pt G. Height of each bar represents the cell 531 

count of the corresponding identified clone noted below. Clone genotype is depicted by color with 532 

WT (light beige), heterozygous (orange), and homozygous (red) mutations denoted. c) Violin plot 533 

of CD33 in Pt G samples. Color denotes disease state (diagnosis, yellow; CR, red; relapse, blue). 534 

Bold dotted line denotes the mean with quartiles shown by thin dotted lines. d) UMAPs of Pt G 535 

samples denoting relative expression of CD33 as patient underwent therapy. Color depicts 536 

relative expression (blow = low, red = high). e-f) UMAP plots of Pt G samples at diagnosis (left), 537 

CR (center), and relapse (right) clustered by immunophenotype with genotype (e) or relative 538 

expression of CD117 (f) overlaid. Colors in e denote genotype colors in Fig. 4g. Colors in f denote 539 

relative expression of CD117 (blue = low, red = high).  540 
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Extended Data Figure 5

PTPN11 T507K

TET2 R1465*

NPM1 W287fs
0

400

800

1200

1600

M
ut

at
io

n

Ce
ll C

ou
nt

a

d

FcER1a

Diagnosis Relapseb

c

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.623033doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.623033
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Fig. 5. Clonal sweep during 7+3 therapy. a) Clonograph of diagnosis sample 541 

from patient F. Height of each bar represents the cell count of the corresponding identified clone 542 

noted below. Clone genotype is depicted by color with WT (light beige), heterozygous (orange), 543 

and homozygous (red) mutations denoted. b) UMAPs from Fig. 5b with relative expression of 544 

CD11b (top) and CD117 (bottom) overlaid. Color depicts relative expression (blue = low, red = 545 

high). c) Violin plot of CD33 (right panel) and CD14 in Pt F samples. Color denotes disease state 546 

(diagnosis, yellow; relapse, blue). Bold dotted line denotes the mean with quartiles shown by thin 547 

dotted lines.  d) Dot plot depicting expression of immunophenotypic markers by genotype-specific 548 

clones identified in Pt F samples. Normalized expression of each marker depicted by color (blue 549 

= low, red = high) with size of dot denoting the fraction of cells within each genotyped clone that 550 

expresses the marker. Immunophenotype markers grouped by corresponding lineage 551 

associations. Full genotype for each row denoted at left of the dotplot.  552 
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Extended Data Figure 6
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Extended Data Fig. 6. CITE-seq analysis of clonal evolution. a) UMAP cell cluster atlas25 of 553 

human hematopoiesis derived from CITE-seq analysis and used as reference map for Pt F and 554 

Pt B samples in Fig. 6. Cell cluster identities denoted. b) Bar plot of cell counts for selected cell 555 

clusters identified from CITE-seq analysis for samples analyzed (n=3). Color of bar denotes the 556 

sample identity with legend. c) Heatmap of cell surface marker ADT read counts for antibodies 557 

used in the CITE-seq panel across Multilin-GMP-1 (left, blue column), Intermediate Mono-1 558 

(center, yellow column), and Intermediate Mono-3 (right, red column) cell clusters. Heatmap scale 559 

denotes log fold differences in read counts from high (red to low (blue).  d) Heatmap of cell surface 560 

marker gene expression for antibodies used in either CITE-seq and/or scDNA+Protein panel 561 

across Multilin-GMP-1 (left, blue column), Intermediate Mono-1 (center, yellow column), and 562 

Intermediate Mono-3 (right, red column) cell clusters. Only differentially expressed genes are 563 

included. Heatmap scale denotes log fold gene expression from high (yellow) to low (blue).   564 
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Methods 565 

Reagents 566 

Tapestri related reagents were included as part of the Myeloid Clonal Evolution DNA+Protein 567 

sequencing kit purchased from Mission Bio with the following exceptions: TotalSeqD Antibody 568 

Cocktail v2, Cell Staining Buffer, TotalSeqD CD135 antibody were purchased from Biolegend. The 569 

Myeloid Clonal Evolution amplicon panel has been described previously8.  570 

 571 

Patient samples 572 

Patient consent was obtained according to protocols approved by the Institutional Review Boards 573 

in accordance with the Declaration of Helsinki. This study was approved by CCHMC IRB (protocol 574 

2022-0806), MSKCC IRB (protocol #15-017), and OSU IRB (#2023C0062). WHO classification 575 

criteria were used for diagnosis and disease status assignment4. Patient samples were collected 576 

and processed by institutional biorepositories. Peripheral blood or whole bone marrow 577 

mononuclear cells were isolated by centrifugation on Ficoll and viably frozen. High-throughput 578 

genetic sequencing was utilized to profile each sample. MSKCC samples were profiled using 579 

HemePACT, a targeted deep sequencing of 685 genes or ThunderBolt Myeloid Panel (RainDance 580 

Technologies), a NGS panel covering 49 genes frequently mutated in myeloid disorders, as 581 

described previously42. CALGB/Alliance samples were sequenced using a NGS panel covering 582 

80 cancer and/or leukemia associated genes as described previously43. Patient samples were 583 

selected based on the presence of NPM1 mutations with additional co-occurring mutations of 584 

DNMT3A, TET2, IDH1/2, NRAS, and/or FLT3 due to their high frequencies in AML patients. For 585 

longitudinal samples, only diagnosis samples were molecularly profiled. Patients for longitudinal 586 

analysis were prioritized if they had TET2 or IDH2 co-occurring mutations at diagnosis. Treatment 587 

information for patients with longitudinal samples is summarized in Extended Table 2 and 588 

displayed in Extended Data Figure 1.  589 

 590 
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Single-cell DNA and protein (scDNA+Protein) library preparation and sequencing 591 

Patient samples were thawed, washed with FACS buffer, filtered into single cell suspensions, and 592 

quantified using a CellDrop (Denovix). Cells (1x106 viable cells) were then incubated with 593 

TruStainFcX and Tapestri blocking buffer for 15min on ice followed by a 30min incubation with the 594 

TotalSeqD Antibody Cocktail on ice. A select number of samples were also supplemented with 595 

2µL of TotalSeqD CD135 during this step. Stained cells were then washed three times with Cell 596 

Staining Buffer. Cells were filtered through a Flowmi cell strainer (vendor), centrifuged, 597 

resuspended with Tapestri cell buffer, quantified and loaded into the Tapestri microfluidics 598 

cartridge. Single cells were encapsulated, lysed, and barcoded as described previously8. DNA 599 

PCR products and Protein products were isolated and purified using AMpure XP beads and 600 

Streptavidin C1 beads, respectively. DNA PCR products and C1-bead immobilized Protein 601 

products were each used as PCR templates for DNA and Protein-derived DNA library generations, 602 

respectively followed by a final purification using AMpure XP beads. DNA and Protein derived 603 

libraries were quantified using an Agilent Bioanalyzer and Qubit (Invitrogen) and pooled for 604 

sequencing on an Illumina NovaSeq6000. Sequencing of pooled libraries were performed by the 605 

MSKCC Integrated Genomics Core and the DNA Genomic Sequencing shared facility at CCHMC. 606 

scDNA+Protein sequencing metrics for all samples are provided in Extended Table 1.  607 

 608 

CITE-seq 609 

Patient samples were thawed, washed, and quantified as above. Cells were then stained with 7-610 

AAD (Biolegend) and viable cells (200,000 per sample) sorted using a Sony MA900 cell sorter. A 611 

previously used44 custom Total-seq A oligo-conjugated antibody panel from Biolegend was used 612 

to stain live sorted AML cells. Sorted cells (200,000/sample) were stained for 60 minutes on ice, 613 

washed using laminar flow (Curiox), and resuspended prior to counting. Cells (16,000 per well) 614 

were loaded using 10X Chromium Gene Expression 3’ version 3.1 kit (1000268, 10X Genomics). 615 

Emulsion, GEM collection, clean-up and cDNA amplification were performed according to 10X 616 
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Genomic protocol. Library preparation was performed according to the manufacturer’s protocols. 617 

Final transcriptome libraries were quantified and analyzed using a Qubit dsDNA HS assay kit 618 

(Q32854, Invitrogen), a High-Sensitivity DNA kit (5067-4626, Agilent Technologies) on a 2100 619 

Bioanalyzer (G2939BA, Agilent Technologies) and a KAPA HiFi library quantification kit (KK4824, 620 

Roche). Dual-indexed transcriptome libraries were pooled and sequenced on two X plus lanes 621 

with the PE100 settings (Illumina). BCL files were demultiplexed into fastq files for CellRanger 622 

V7.1.2 input. The transcriptome was mapped to hg38 reference genomes for downstream 623 

analysis and visualization. 624 

 625 

CITE-seq analysis 626 

All Cell Ranger-produced count matrices underwent ambient RNA exclusion using the software 627 

SoupX45 with a contamination fraction of 15% and quality control filtering by HTO and Seurat V446. 628 

Ambient corrected transcriptome counts and associated ADT counts were supplied as input to the 629 

software TotalVI to obtain normalized and denoised ADT counts. To derive clusters from our 630 

previously published human bone marrow progenitor atlas25, the software cellHarmony47 was 631 

used to transfer labels from CPTT normalized expression centroids from synapse. Cell 632 

annotations from our previously generated human bone marrow CITE-seq atlas were projected 633 

onto the merged dataset using cellHarmony. Cells with a poor mapping score to the final clusters 634 

(linear support vector classification coefficient > 0) were excluded from the analysis (for example, 635 

doublets). Differential gene expression analysis was performed between these three samples with 636 

cellHarmony at a threshold of log2 fold change >1.2 and P value <0.05.  637 

 638 

Single cell DNA sequencing analysis 639 

Sequencing reads were trimmed, aligned to the human genome (hg19), assigned barcodes, and 640 

genotyped were called with GATK by the cloud-based Mission Bio Tapestri v2 pipeline. Processed 641 

H5 files were further analyzed using the scDNA package (https://github.com/bowmanr/scDNA, 642 
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v1.01) in R v4.3. In the scDNA package, H5 files from the Mission Bio Tapestri pipeline were used 643 

as input and variants of interest were identified in the following genes DNMT3A, TET2, IDH1, 644 

IDH2, NPM1, FLT3, PTPN11, NRAS, and KRAS. All variants included in this study were manually 645 

investigated in IGV. We selected exonic, non-synonymous variants that were genotyped in >50% 646 

of cells assayed and had a computed VAF >1%. For samples acquired at remission we decreased 647 

the VAF cutoff to 0.1%. We further refined the variant list to exclude those that were either 1) 648 

confirmed SNPs, 2) were recurrently mutated at a fixed VAF broadly across the cohort, 3) only 649 

represented in low quality reads or clipped reads visual inspection in IGV. Excluded variants 650 

included:  TET2.I1762V, TET2.961*, TET2.Y1579*, TET2.A1283T, TET2.L1721W, 651 

DNMT3A.F772C, NRAS.L56P, NRAS.T58A, NRAS.L56Q, NRAS.D57N, DNMT3A.I310S, 652 

NRAS.T58I, DNMT3A.I292S, DNMT3A.L888Q, DNMT3A.L888P, PTPN11.L525R, 653 

DNMT3A.N489T, DNMT3A.K429T, DNMT3A.N757T, NRAS.T58P, NRAS.D57Y, NRAS.Q61P, 654 

TET2.Q618H, TET2.L1819F, DNMT3A.Y481S, FLT3.N847T, TET2.A584T, TET2.A584P, 655 

DNMT3A.F290L. In the case of paired samples, we included variants that were below the 1% VAF 656 

threshold if they were present in another sample in the pair so as to identify rare subclonal events. 657 

Following variant selection, the ‘tapestri_h5_to_sce’ function from the scDNA package was used 658 

to generate a SingleCellExperiment class object using the default cutoffs of depth (DP) >10, 659 

genotype quality (GQ) >30, and allele frequency (AF) variance >25. The AF variance refers to the 660 

maximum deviation from 50% by which a heterozygous call from GATK should be masked as 661 

inaccurate. Finally, we retained variants that passed all three of these filters in over 80% of cells. 662 

Only cells that passed all three filters were included in the final analysis and were termed 663 

“Complete” cells, indicating they received a reliable genotype for all genes of interest. Following 664 

variant identification, clones were identified and statistically summarized using the 665 

‘enumerate_clones’ and ‘compute_clone_statistics’ functions respectively. 666 

 667 

 668 
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Single cell DNA+Protein (scDNA+Protein) sequencing analysis 669 

Following genotyping and clone enumeration above, protein matrices were extracted from H5 files 670 

from the tapestry pipeline using the scDNA package. The SingleCellExperiment object was 671 

converted to a Seurat object (v5.1) and genotype information was stored as metadata.  For global 672 

protein analyses across all samples, all complete cells identified above were bound to a single 673 

protein matrix, and each sample was downsampled to 7,000 cells. For samples with <7,000 cells, 674 

all cells were included. Protein data was normalized across cells using CLR (margin=2), scaled 675 

across all samples, and analyzed by PCA. Samples were integrated with Harmony, then clustered 676 

(SLM) and visualized by UMAP48.  Clusters with high protein counts, high protein feature 677 

abundance (e.g. possessed every antibody) and high abundance of IgG antibodies were 678 

considered ‘dead’ and removed from the analysis. Following dead cells removal, we reran the 679 

steps above from Normalization through to UMAPs. A similar process was undertaken for patient 680 

sample pairs, starting from a raw read count matrix that only contained the patient sample of 681 

interest.  Cell type calls were performed by manual interpretation of protein expression. Data was 682 

visualized using Seurat, ggplot2 and scCustomize packages (https://samuel-683 

marsh.github.io/scCustomize/). 684 

 685 

Statistical analysis 686 

Comparisons of clonal architecture metrics were analyzed by Kruskal-Wallis tests. Two-way 687 

ANOVA tests were used to analyze clonal synergies between co-mutations. A Wilcoxon Rank Test 688 

was used to assess significant differences in protein expression in the scDNA+Protein data. 689 

 690 

Plotting and graphical representations 691 

Clonal architecture metric plots (Fig. 2, Extended Data Fig. 2), clonal frequency plots (Fig. 3-4, 692 

Extended Data Fig. 3-4), and treatment response courses (Extended Data Fig. 1) were generated 693 

using GraphPad Prism. Error bars depict standard error of the mean. The oncoprint in Fig. 1a was 694 
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generated in R using oncoPrint package. For patients who had more than one sample in the 695 

cohort (n=8), we only included one sample prioritizing the diagnosis sample, if possible. No 696 

complete response (CR) samples were included in the oncoprint. UMAP data was plotted using 697 

the ggplot2 package in R. Other data processing was performed in R utilizing packages including: 698 

tidyr, dplyr, RColorbrewer, pals, and cowplot. Differentially expressed genes and ADT counts (Fig. 699 

6) were plotted in heatmaps by Alt Analyze49 and used to identify common perturbed biological 700 

processes. GO Biological Processes were plotted based on Z-score and adjusted P values (Fig. 701 

6e). The values in each row were normalized to the median of the row and used to derive the 702 

heatmaps. Network graph in Figure 6f was plotted using Cytoscape50 with log fold gene 703 

expression denoted by color of circles (high = red, low = blue).  704 

 705 

Data availability 706 

All scripts and processed data files are available for DNA+Protein analyses at 707 

https://github.com/bowmanr/scDNA. Raw data files are available upon request from the authors 708 

and are being uploaded to dbGAP prior to final publication.  709 

 710 

Code availability 711 

Once processed through the Tapestri pipeline, samples were initially filtered and analyzed using 712 

a custom code scripted in R (github.com/bowmanr/scDNA). Scripts for CITE-seq processing 713 

through Seurat can be found at https://github.com/satijalab/seurat. The AltAnalyze v.2.1.4 714 

graphical user interface was utilized for the cellHarmony and differential expression analyses as 715 

described. GraphPad Prism v.10 was used for sample and cell frequency plotting.  716 

 717 

 718 

 719 
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