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Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a wide

spectrum of clinical manifestations and degrees of severity. Few genomic biomarkers for

SLE have been validated and employed to inform clinical classifications and decisions. To

discover and assess the gene-expression based SLE predictors in published studies, we

performed a meta-analysis using our established signature database and a data similarity-

driven strategy. From 13 training data sets on SLE gene-expression studies, we identified a

SLE meta-signature (SLEmetaSig100) containing 100 concordant genes that are involved

in DNA sensors and the IFN signaling pathway. We rigorously examined SLEmetaSig100

with both retrospective and prospective validation in two independent data sets. Using unsu-

pervised clustering, we retrospectively elucidated that SLEmetaSig100 could classify clini-

cal samples into two groups that correlated with SLE disease status and disease activities.

More importantly, SLEmetaSig100 enabled personalized stratification demonstrating its

ability to prospectively predict SLE disease at the individual patient level. To evaluate the

performance of SLEmetaSig100 in predicting SLE, we predicted 1,171 testing samples to

be either non-SLE or SLE with positive predictive value (97–99%), specificity (85%-84%),

and sensitivity (60–84%). Our study suggests that SLEmetaSig100 has enhanced predictive

value to facilitate current SLE clinical classification and provides personalized disease activ-

ity monitoring.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease that predomi-

nantly affects young women. It is characterized by heterogeneous clinical manifestations with

varying degrees of severity punctuated by alternating phases of remission and flares [1].

Patients classically produce high autoantibody titers that form immune complexes that are

deposited in many different organs such as the skin, joints, and kidneys causing cumulative

damage over time [2].

Given its wide variety of relapsing-remitting symptoms, lupus is typically difficult to diag-

nose. To complicate matters, there is no laboratory test that can definitively identify the illness.

As a result, it can take years for a diagnosis to be made. Disease activity (DA) is also difficult to

measure. One method is using any of six validated composite scores, one of which is the SLE

Disease Activity Index (SLEDAI) [3]. Because SLE is heterogeneous, not all manifestations are

included in the SLEDAI, making reliable patient assessment challenging. Therefore, there is a

critical need for a biomarker to detect, monitor, and stratify individual patients with SLE.

The use of gene expression microarrays in clinical research has led to the establishment of

biomarker signatures. SLE patients display unique blood transcriptional signatures linked to

type I interferon (IFN) and granulocytes [4–7]. Preliminary work suggests that these signatures

correlate with SLE disease status and DA [6]. Most studies have focused on IFN-induced tran-

scripts or proteins as biomarkers [7–9].

The value of this approach to discover stable disease markers has been questioned [10]. One

common weakness is that the traditional approach employs single study-based signatures that

are derived from small sample-size and lack cross-validation making data interpretation and

application difficult. This limitation underscores the need to assess larger cohorts, to use unbi-

ased approaches that incorporate all elements of the signature, and to account for disease het-

erogeneity during data interpretation.

These limitations can be overcome by combining related but independent studies into a

meta-analysis forming a larger sample size with lower false discovery rates. We have developed

and utilized a robust meta-analysis approach called EXALT(EXpression AnaLysis Tool) for

gene expression profile studies from thousands of Gene Expression Omnibus (GEO) and pub-

lished breast cancer datasets [11–13]. A gene expression signature as defined by EXALT is a set

of significant genes with their corresponding statistical scores and gene expression direction

codes (up or down). We have previously used this approach to discover a novel and conserved

gene expression signature predictive of metastasis risk in multiple cancers [13].

The present work describes the implementation of our unique EXALT approach for the

meta-analysis of blood microarray transcriptional profiles on SLE. To this end, we aimed to

identify a meta-signature (SLEmetaSig100) that correlates SLE status and DA from thirteen

training data sets. We then validated the SLEmetaSig100 in two independent test data sets to

determine its correlation with SLE and DA and prospective predictive value of SLE disease at

the individual patient level. This enabled patient stratification based on a personalized tran-

scriptional immunomonitoring signature correlating with DA in each patient.

Materials and method

Publicly available data sets and signatures

Subjects were recruited by the individual studies. Clinical diagnosis and demographic charac-

teristics of anonymized SLE patients were confirmed and summarized in the previously pub-

lished studies (S1 Table). EXALT is a database that holds original study descriptions, sample

phenotypes, curated gene expression datasets, as well as thousands of gene expression
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signatures extracted from the GEO and other published studies. These meta-data and gene-

expression profiles are encoded in a searchable format to form the basis of our data analysis

[13]. With EXALT database, we are able to search data sets based on similar sample pheno-

types and study design, subsequently identifying fifteen gene-expression microarray data sets

on various SLE phenotypes. These were then further divided into thirteen training sets and

two testing data sets. Two test data sets were selected for their large sample size and compre-

hensive clinical information.

Whole blood PBMC or T cell subset samples from the training data sets (n = 1,869) were

grouped by their clinical attributes and study designs. Based on the existing sample group descrip-

tion in the published studies, each data set had at least two groups of samples including normal

healthy controls and various SLE related phenotypes, and/or molecular markers such as a lupus

flare, low or high disease grade activities, TLR and IFN gene expression levels (S1 Table). Two or

more groups per dataset were needed to generate statistical comparisons. A total of 167 SLE gene

signatures from all possible pairwise group comparisons were generated accordingly [11].

One of the signatures (PMID: 16777955) in the training set (S1 Table) was derived from a

mouse model (Low vs Overexpression of TLR7). In order to define corresponding human

TLR7 signature for cross-species meta-analysis, we used NCBI Gene and NCBI HomoloGene

databases to translate mouse array probesets to human homolog gene symbols as we described

before[14, 15].

Identification of meta-signature

We used EXALT in an iterative manner (iterative EXALT) [13] to conduct a data similarity-

driven clustering analysis of the 167 SLE gene-expression signatures and to elucidate a com-

mon transcriptional signature in SLE studies. This iterative EXALT process started with all-

versus-all signature similarity searches, resulting in signature clusters. More specifically, each

of the 167 SLE signatures was searched against other 166 signatures to bring homologous sig-

natures together by their intrinsic similarities. This process ‘‘grouped” or ‘‘clustered” the thir-

teen signatures together based on their similarities (i.e. gene names, expression directions, and

confidence levels) to form the SLE signature cluster. We focused on this cluster because their

phenotypes were clearly related to known SLE disease status or pathogenesis such as SLE flare

activity, IFN production, or TLR7 expression.

In the cluster, each of the thirteen signatures comprised several hundred genes with various

overlapping signature genes. In order to identify a recurrent and concordant gene expression

pattern in the SLE signature cluster, all signature genes were assembled together to form a syn-

thetic signature (SLEmetaSig). The top 100 genes (SLEmetaSig100), as determined by ranking

their frequency of recurrence and gene expression profile concordance, were identified using

the method previously described [13].

Prospective prediction of SLE status

We constructed a centroid-based reference signature associated with known SLE status and

the SLEmetaSig100 signature values from the thirteen training datasets using the method

described before [16].

Two GEO datasets (GSE65391 and GSE11909) were used as validation data sets to test the

predictive ability of SLEmetaSig100. The 1,171 testing SLEmetaSig100 signatures were made

from 92 healthy subjects and 1,079 SLE samples (211 patients) [6, 17].

By performing a Spearman’s rank correlation between the reference signature and individ-

ual gene-expression profiles in test datasets, we were able to determine SLE status of individual

patients from the two test data sets.

Identification of a gene-expression predictor for diagnosis and personalized stratification of lupus patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0198325 July 5, 2018 3 / 16

https://doi.org/10.1371/journal.pone.0198325


For each testing sample, a Spearman rank correlation value between the reference SLEmeta-

Sig100 profile and the test sample profile was calculated. The sample is considered to be ‘SLE’

if the correlation value with the reference was equal to or above the predefined threshold value

(0.3)[18]. The sample was considered healthy otherwise.

Statistics

An EXALT built-in statistical approach was used to assess signature similarity of training data

sets. To evaluate of SLEmetaSig100 retrospective classification, we used Mann-Whitney U test
to examine the difference in mean numbers SLE subjects between two SLEmetaSig100 classi-

fied groups. We used Fisher’s Exact Test to compare prospective prediction rates of SLEmeta-

Sig100 in two test data sets.

Hierarchical clustering and Spearman’s rank correlation were performed and visualized

using the TIGR MeV [19]. Unsupervised hierarchical clustering based on average linkage was

conducted to group the patient samples. The group assignments were based on the first bifur-

cation of the clustering sample dendrogram [20]. The Spearman rank correlation was used to

measure the correlations between the reference signature and individual testing profiles in the

two test data sets.

Prospective SLE prediction in test data sets was compared with actual clinical diagnosis.

The primary predictive endpoint was SLE diagnosis or SLE disease activity (DA) for the valida-

tion cohort. The predictive performance was assessed using the derived positive predictive

value (PPV), the negative predictive value (NPV), sensitivity, and specificity.

Receiver operating characteristic (ROC) analysis was performed to determine the sensitivity

and specificity of SLEmetaSig100 predictions and the area under the ROC curve. ROC analyses

were performed using R, version 3.3.3.

Results

Identification of human SLE meta-signature

In the past two decades, a large number of gene-expression studies have been reported and

deposited in public domain including GEO, PubMed, and EXALT signature database [11].

EXALT manages signatures that are derived from all possible comparisons of each data sets

including all possible experimental and disease conditions.

To avoid the weaknesses of single study-derived signatures and to better utilize the available

gene expression data from independent studies, we have developed a meta-analysis strategy

called EXALT. EXALT is essentially a database containing thousands of gene expression signa-

tures extracted from published studies that enables signature comparisons [13]. We have

extracted signatures from over 1,500 data sets representing over 22,367 samples from various

diseases and experimental conditions collected from NCBI GEO and PubMed [11]. Searching

through signature similarity sample phenotypes, and design information, we identified fifteen

data sets on SLE gene expression profiling and then partitioned them into thirteen training

and two testing data sets with 1,869 and 1,171 samples, respectively (S1 Table). From the thir-

teen training data sets, we extracted 167 gene-expression signatures.

Some of these 167 gene signatures are biologically related to SLE disease status. There are

inherent limitations for any individual profiling study such as small sample size relative to

the large number of potential gene probes, limitations of technological platforms, sample

variation, and bioinformatics or statistical method bias. To overcome these problems, we

implemented a meta-analysis approach (iterative EXALT) that combines individual trans-

criptional profiling signatures to deduce a common transcriptional signature across studies

(SLEmetaSig100).
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This conserved profile (SLEmetaSig100) was derived from 1,869 patient samples from thir-

teen individual SLE studies (Fig 1, S1 Table). The expression directions (up or down-regula-

tion) and the function of the genes enriched in SLEmetaSig100 are displayed in Fig 1 and

summarized in S2 Table. These genes are mechanistically involved in the pathogenies of SLE

or other autoimmune diseases. Thus, SLEmetaSig100 likely represents genes involved in SLE

disease pathogenesis.

Pathways analysis of SLE signature genes

To determine pathways that SLEmetaSig100 may be involved in, we used KEGG Pathway data-

base (http://www.genome.jp/kegg) and its analysis tool[21].

The pathway analysis results suggested that SLEmetaSig100’s genes involved in numerous

pathways such as Toll-like receptor signaling pathway, NF-kappa B signaling pathway, and

cytokine-cytokine receptor interaction network.

We categorized these pathway genes into two major functional categories (DNA sensors

and cytokine genes) and constructed an innate immune DNA-sensor model of SLEmeta-

Sig100. A cartoon depicting genes and their relationship in this model is shown in Fig 2.

DNA sensor genes such as cyclic GMP-AMP Synthase (MB21D1 or cGAS), IFI16, and

Toll-like receptors (TLRs) are upstream stimulators in Toll-like receptor signaling pathway (S1

Fig), NF-kappa B signaling pathway (S2 Fig), and cytokine-cytokine receptor interaction net-

work (S3 Fig). These pathways work synergistically to mount an immune response to either a

pathogen or cellular or tissue damage. The role of TLRs in the onset of autoimmune patholo-

gies has been effectively addressed in murine models of SLE [22]. DNA sensors have been

demonstrated to be essential for inducing inflammatory genes, e.g. IFN-β expression [23]. IFN

gene over-expression patterns have been reported in SLE patients [24]. SLE can be distin-

guished by a remarkably homogeneous gene expression pattern with overexpression of granu-

lopoiesis-related and interferon (IFN)-induced genes [5]. Thus, it is possible that changes in

expression of DNA sensors, TLRs, NF-kappa B genes, and cytokines are indicators for SLE

pathogenesis.

To further study the characteristics of SLEmetaSig100, we compared SLEmetaSig100 with

some other known SLE signatures (Table 1). Unlike many other SLE signatures[5, 8, 9, 17],

SLEmetaSig100 was identified based on much larger training sets from a meta-analysis of thir-

teen training data sets and two independent test data sets for validation.

When signature genes were analyzed by an overlapping analysis, we found that there were

very few common genes between SLEmetaSig100 and others. For example, only one common

gene (1%) was found between SLEmetaSig100 and the other two signatures (IFN signature[5]

and IFNr signature[9]). There is no common gene between SLEmetaSig100 and other known

signatures such as plasmablast signature[17] and IFN-induced genes (IFIGs) signature[8].

Because of discrepant patient populations and signature extraction methods (Table 1), the

result suggests that the five previously reported SLE studies identified different blood tran-

scriptional signatures. Despite this small amount of overlap in gene composition, the major

functional component of these signature genes are all linked to interferon (IFN) and/or IFN-

induced genes (IFIGs) (Table 1).

Stratification of SLE patient by the SLE 100-gene signature

In order to validate the correlation between SLEmetaSig100 and SLE disease, we surveyed

gene expression profiles of SLEmetaSig100 from two independently published transcriptional

profiling studies [GSE65391and GSE11909] performed on normal versus SLE disease states

(Fig 3).
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Both genes and samples were clustered by their gene-expression profiles. The sample classi-

fications were determined based on the SLEmetaSig100 genes expression patterns (yellow bars

in Fig 3A and 3B). Meta-heat maps were used to illustrate SLEmetaSig100 gene expression pro-

files and its capability to classify 996 (Fig 3A) and 175 human samples (Fig 3B).

Based on the meta-heat maps, we were able to classify human samples into left and right

sample groups (yellow bar) in the dendrograms based on differential gene expression patterns.

The associated sample phenotypes, either healthy (white bar) or SLE (black bars), were also

grouped in each dataset. We observed that healthy samples were enriched in the left group of

both testing data sets (Fig 3A and 3B). The results demonstrated that SLEmetaSig100 could

stratify human samples into two groups: the normal healthy enriched sample groups (left) and

the SLE dominant sample group (right).

Fig 1. Co-expression analysis of the 100 meta-signature genes from the SLE training data sets. Using EXALT meta-

analysis, thirteen SLE signatures in columns with similar phenotypes indicated in S1 Table were displayed in a heat

map with 100 genes (SLEmetaSig100) displayed in rows. The colors in the meta-heat map represent the direction of

differential gene expression within a given transcriptional profile (red for up, green for down, and black for a missing

match). Color intensity reflects the confidence levels of differential expression in the signatures.

https://doi.org/10.1371/journal.pone.0198325.g001

Fig 2. Pathway analysis of SLEmetaSig100 genes. Pathway analyses of SLEmetaSig100 genes identified genes

involving DNA sensors and the cytokines constructing an innate immune DNA-sensor model. SLEmetaSig100 genes

are marked in white circles or rectangles. DNA sensors include MB21D1(cGAS), multiple TLR genes, TMEM173/

STING, and IF16 genes. In the Toll-like receptor signaling pathway, the stimulation of DNA sensor genes by microbe-

derived and/or host DNA are positively regulated by MYD88 and TMEM173/STING genes and negatively regulated

by TREX1 and TREX2 genes. The downstream cytokine-cytokine receptor interaction genes include NF-kappa B

signaling pathway mediated IFNs, inflammatory cytokines (e.g. IL1R1), and STATs mediated chemokines (CXCL and

CXCR genes).

https://doi.org/10.1371/journal.pone.0198325.g002

Identification of a gene-expression predictor for diagnosis and personalized stratification of lupus patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0198325 July 5, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0198325.g001
https://doi.org/10.1371/journal.pone.0198325.g002
https://doi.org/10.1371/journal.pone.0198325


More specifically, in the SLE dominant sample groups, there was only one (out of 72 total)

normal sample in GSE65391(Fig 3A) and none (out of 20 total) in GSE11909 (Fig 3B), while

remaining normal samples (71 in GSE6539 and 20 in GSE11909) were grouped in the normal

sample groups. Thus, there were significantly fewer normal samples in SLE dominant sample

groups than those in the normal sample groups of two test data sets (P = 0.0001 and 0.0264,

Fig 3C). These results suggest that with known clinical SLE information SLEmetaSig100 is

capable of stratifying testing samples into a normal health group and a SLE group.

Personalized SLE prediction in individual patients using SLEmetaSig100

SLE is a heterogeneous disease that cannot be diagnosed by a single symptom or lab test. Per-

sonalized prediction of SLE status by comparing a test sample profile to a reference SLEmeta-

Sig100 signature may provide a new method to facilitate clinical diagnosis.

We leveraged SLEmetaSig100 to determine whether it can distinguish individual SLE

patients from normal healthy subjects and to uncover associated disease activity (SLEDAI)

when clinical SLE information is masked in test data sets.

Table 1. SLE signature comparison.

Signature SLEmetaSig100 Plasmablast IFN IFIGs IFNr

Gene Number 100 9 10 3 3

Overlapping Genes 100 0 1 0 1

Training Set Size 1869 649 39 NA NA

Test Set Size 1171 12 0 127 93

Method meta-analysis modular Hochberg scores scores

SLE Association DA DA DA renal No

Retrospective Stratification Yes Yes Yes Yes No

Prospective Prediction Yes ND ND ND ND

NOTE: ND, not done.

https://doi.org/10.1371/journal.pone.0198325.t001

Fig 3. Stratification of human samples by clustering the SLEmetaSig100 meta-profiles. Meta-heat maps from unsupervised hierarchical clustering depict meta-

profiles in two test data sets, (A) GSE65391 and (B) GSE11909. In each panel, the gene expression patterns from one given test data set are represented in rows and

samples are clustered in columns. The colors in the heat map represent the direction of differential gene expression within a given transcriptional profile (red for

up, green for down, and black for a missing match). Color intensity reflects the confidence levels of differential expression. Sample groups in columns are

determined by the top hierarchy nodes of dendrograms (yellow bar) into left and right sample groups. The sample phenotype patterns underneath each sample

dendrogram panel are indicated by black (SLE) and white (healthy) bars. The classification of healthy samples from total samples (healthy/total) by SLEmetaSig100

profiles between two sample groups (left and right) and statistic tests (Mann-Whitney U test) results are listed in a table (C).

https://doi.org/10.1371/journal.pone.0198325.g003
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To evaluate the ability of SLEmetaSig100 to predict SLE, we divided 1,171 testing samples

to be either predicted healthy or predicted SLE. Those results were then compared to their

actual clinic diagnoses. The derived positive predictive value (PPV), the negative predictive

value (NPV), sensitivity, and specificity were then calculated and compared accordingly.

While assessing the SLEmetaSig100 prospective prediction results with the actual clinic

diagnoses, we found that SLEmetaSig100 could significantly correctly predict SLE in two

independent cohorts (sub-Table in Fig 4, P = 1.48E-36). The prospective predictions using the

SLEmetaSig100 centroid model showed comparable results to those obtained using the unsu-

pervised clustering-based retrospective prediction at group level (Fig 3). However, the centroid

model can further prospectively apply to individual patients with high PPV (97%-99%), speci-

ficity (85%-84%), and sensitivity (60–84%) (sub-Table in Fig 4).

Fig 4. Receiver operating characteristic (ROC) curves for SLEmetaSig100. Area under receiver operating characteristic curve (AUC) for

performance of SLEmetaSig100 were calculated in two testing cohorts, GSE65391(solid line) and GSE11909(dash line), and SLEmetaSig100

significantly outperforms the random prediction of SLE disease (AUC, 0.89 in GSE65391 and 0.85 in GSE11909). The sub-table shows

SLEmetaSig100 prediction performance in two test datasets. �Note: SLE prediction by SLEmetaSig100 in two test data sets was examined by

Fisher Exact test (P value = 1.48E-36).

https://doi.org/10.1371/journal.pone.0198325.g004
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SLEmetaSig100’s ability to discriminate between normal healthy subjects and SLE patients

was also evaluated by ROC analysis in two test data sets (GSE65391 and GSE11909). The ROC

results are comparable displaying areas under the curve (AUC) of 0.89 (GSE65391) and 0.85

(GSE11909), respectively, indicating that SLEmetaSig100 has reliable performance in heteroge-

neous patient populations. When SLEmetaSig100 prediction was implemented with centroid

model, the GSE65391 test resulted in a specificity of 85% and a sensitivity of 84%. The

GSE11909 test displayed a specificity of 84% and a sensitivity of 60% (sub-Table in Fig 4).

To determine the association between SLE DA and SLEmetaSig100 prediction, we used the

SLE samples from the training set with a known SLE disease activity index (SLEDAI). These

samples were classified into three DA group scores: S1 (SLEDAI: 0–2), S2 (SLEDAI:3–7), or S3

(SLEDAI > 7). From this, we constructed three DA reference signatures (DA1, DA2, and

DA3). Using the same SLE prediction process, we computed three correlation scores between

each test sample and three reference DA signatures. The predicted SLE DA group for each

sample was determined by the highest correlation score of the three correlations calculated.

We then compared the average actual DA group scores (1.49, 2.01, 2.21 in Table 2) with each

predicted GA group (S1, S2, and S3, respectively). We found that there were significant differ-

ences among these three average DA group scores (S1 vs S2, S1 vs S3, and S2 vs S3). Results

suggested that metaSLEsig100 predicted DA groups correlated with the actual clinical SLEDAI

group scores. Those groups with higher predicted SLE DA showed statistically significantly

higher actual SLE DA group scores than those predicted to be lower SLE DA group (P�

0.002). Thus, the SLEmetaSig100 centroid model can serve as a SLE biomarker that can

improve SLE patient diagnosis and disease activity prediction.

Discussion

SLE is a heterogeneous disease characterized by a wide spectrum of clinical manifestations and

degrees of severity. A single gene-expression profiling study on SLE cannot capture the full

molecular heterogeneity of SLE. Few studies on SLE gene expression signatures have pro-

gressed beyond the discovery phase because the retrospective validation of these signatures

often focused on the association of DA at the group level within the same study [5, 8, 17].

We analyzed fifteen source datasets in this study from microarray platforms. In a typical

transcriptional study of a disease model, a differential gene list is usually generated from a

training set and is then validated in a test set. With both training and test sets from the same

patient cohorts, a microarray study is often underpowered. Other common negative factors of

microarray platform such as low data quality and high background noise interference can be

introduced at different experimental and analysis stages.

In response to these challenges, we developed the EXALT method by combining related but

independent studies into a meta-analysis to create a larger sample size and to produce a lower

false discovery rate. EXALT is essentially a database containing thousands of gene expression

signatures extracted from public gene expression database (e.g. GEO) and published studies

that enable signature comparisons. We previously used this robust meta-analysis of gene

Table 2. Association between SLE group prediction and actual SLE disease activities.

Predicated GSE65391 Group S1 S2 S3

SLEDAI 0–2 3–7 >7

Group DA scores 1 2 3

Actual Average Group DA Score 1.49 2.01 2.21

SD 0.67 0.63 0.75

P values �0.002 �0.002 �0.002

https://doi.org/10.1371/journal.pone.0198325.t002
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expression profiles from hundreds of breast cancer datasets [11–13]. By using this approach,

we discovered a novel and conserved gene expression signature that predicts metastasis risk in

multiple cancers (breast, lung, and prostate cancer) [13]. Furthermore, we identified a new

cancer metastasis-suppressor gene [25].

In this study, we applied our established high-throughput in silico method (EXALT) to iden-

tify and validate the meta-signature (SLEmetaSig100) based on fifteen available published stud-

ies. We demonstrated that heterogeneous signatures from thirteen training datasets containing

1,869 samples from heterogeneous whole blood PBMC or T cells could be systematically orga-

nized by their common data elements (i.e., intrinsic similarities and disease phenotypes) and

assembled into a new signature data type called a meta-signature (S1 Table and Fig 1). We iden-

tified a meta-signature representing a common SLE gene expression profile consisting of 100

genes (SLEmetaSig100) that is capable of identifying SLE in 1,171 testing human samples from

two independent datasets (Figs 3 and 4 and Table 2). These findings illustrate that there is a fun-

damental gene expression pattern conserved across immune cell types in SLE patients.

Besides SLEmetaSig100, several studies have shown that gene-expression signatures related

to SLE DA [5, 8, 17]. We compared SLEmetaSig100 with a few representative signatures on

SLE (Table 1). The main difference is that SLEmetaSig100 was identified based on much larger

training sets from a unique meta-analysis (EXALT) and could stratify SLE at the individual

patient level. The meta-signature represents heterogeneous cell populations that might result

in weak overlap with any known SLE signatures (Table 1). Although the overlap in gene com-

position between SLEmetaSig100 and other published SLE signatures is small, they all contain

a major functional component of the signature genes related to interferon (IFN) and/or IFN-

induced genes that are included in the network of cytokine-cytokine receptor interaction. The

gene functional groups and pathways of the meta-signature (SLEmetaSig100) are commonly

known for their roles as seen in other SLE signatures or SLE studies (S2 Table).

The network of cytokine-cytokine receptor Interaction contains 18 SLEmetaSig100 genes

(CCR7, CXCL10, CXCR4, CXCR5, CD40LG, TNFRSF1B, TNFRSF4, FLT3LG, IFNA1, IFNA17,

IFNAR1, IFNB1, IL10, IL12A, IL12B, IL18, TNFSF13, TNFSF4) (S3 Fig, S2 Table). These cyto-

kine genes often play direct effective roles in SLE pathogenesis through the regulation of systemic

inflammation, local tissue damage, and immune modulation[26]. We confirmed a set of preva-

lent IFN-regulated transcripts in SLEmetaSig100 that are highly correlated with inflammation

and IFN signaling pathways such as IFI16 IFIH1, IFNA1, IFNA17, IFNAR1, IFNB1, IFNG, IL10,

IL12A, IL12B, IL18, IL-1R1, and IL-21. The dysregulation of IFN family genes (IFNA1, IFNA17,

IFNAR1, IFNB1) is dominantly pervasive, and their protein and gene expression profiles may

serve as markers of disease activity and severity [26–29].

Besides the overexpressed IFN-inducible genes, SLEmetaSig100 also contains DNA sensor

genes as described in the innate immunity DNA-sensing model (Fig 2) such as cyclic

GMP-AMP Synthase (MB21D1 or cGAS), IFI16, and Toll-like receptors (TLR)s that are

required for cell proliferation and for mounting an appropriate immune response to either a

pathogen or cellular/tissue damage[22]. TLR3, TLR5 and TLR7/8/9 have been reported as

facilitating SLE pathogenesis [30] (S1 Fig, S2 Table). These different TLRs provide distinct or

synergistic contributions. For example, the expression levels of TLR2 and TLR4 mRNAs in

SLE patients’ PBMCs are much higher than those in healthy subjects [31], and the expression

of TLR3 mRNA increases with the progression of lupus nephritis [32, 33] while downregula-

tion of TLR2 or TLR4 can decrease the production of autoantibodies and attenuates the devel-

opment of renal injury in lpr mutation-induced murine lupus[34].

Other DNA sensor genes in the SLEmetaSig100 signature are key enzymes involved in

breakdown of DNA including nucleases such as DNASE1, DNASE1lL3, TREX1, and TREX2.

Importantly, a loss-of-function variant of DNASE1L3 causes a familial form of SLE. Mutations
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in TREX1 are associated with familial chilblain lupus and are also associated with the inflam-

matory disorder Aicardi-Goutieres syndrome. The SLEmetasig100 emphasizes the importance

of including DNA processing pathways, which may capture the contributions of proteostasis

and ER stress to SLE pathogenesis.

Lupus nephritis is a frequently seen complication in patients with SLE and is known to sig-

nificantly reduce the survival of SLE patients. A hallmark of lupus nephritis is the renal inflam-

mation caused by deposition of autoimmune complexes to kidney glomeruli. There are four

SLEmetaSig100 genes (NFAIP3, IRAK4, MYD88, TLR4) in NF-kappa B signaling pathway (S2

Fig, S2 Table) that have been implicated in the pathogenesis of lupus nephritis[35] coupled

with upregulation of inflammatory cytokines [36, 37].

Previous SLE signatures have been essentially equivalent in correlation to SLE DA except

for the INFγ signature (Table 1). However, SLEmetaSig100 not only correlates with SLE DA

but also provides a prospective prediction method that can improve SLE patient diagnosis, a

capability that has not been demonstrated in any other SLE signature (Table 1, Table 2). Our

result suggests that SLEmetaSig100 is capable of prospectively applying to individual patients

with high PPV (97%-99%), specificity (85%-84%), and sensitivity (60–84%) (Fig 4). In the

meantime, we also observed that SLEmetaSig100 has a low NPV rate (20%, Fig 4) which is the

percentage of patients with a true negative test result who do not have the disease (SLE), sug-

gesting that SLEmetaSig100 may not be suitable to predict healthy status.

Our approach may provide a new SLE biomarker for clinical diagnosis, classification and

monitoring. Previous signatures have correlated with DA at the cohort level (retrospective

stratification), such as IFN or plasmablast signatures (Table 1); however, they did not demon-

strate the capability to predict SLE status and DA association in individual SLE patients.

A limitation of the current study is that we only tested SLEmetSig100 in samples of healthy

and SLE subjects. Heterogeneous cell types with limited clinical attributes and follow-up infor-

mation could hamper the training process and interpretation of our meta-analyses. There is

no test data set available showing the correlation between the SLEmetaSig100 profile and a

manifestation of SLE or another autoimmune disease. Treatment status was not accessible in

the meta-data of the training and testing sets. Therefore, it may be possible that the SLE

patients with signatures that were most similar to healthy controls were responding well to

therapy. The capacity for SLEmetasig100 to predict early treatment response will be an impor-

tant future application as well as its ability to distinguish SLE from other autoimmune disor-

ders that may overlap in clinical presentation.

Future studies on SLEmetaSig100 with consecutive blood sampling from the same patient

would allow us to better measure SLEmetSig100’s performance by tracking disease activity and

response to treatment over time. More importantly, a more controlled training set would

allow us to improve our meta-signature’s predictive ability to distinguish SLE profiles from

those of other autoimmune disorders.

In summary, our finding supports the potential application of SLEmetSig100 as a promising

biomarkers in clinical practice with an acceptable specificity and sensitivity. Biomarkers that can

prospectively predict occurrence and frequency of flares will be of great clinical value in clinical

practice [38]. The data mining nature of this study provides a foundation to further identify and

validate more flare predictors. Additionally, the SLEmetaSig100 may also inform future study

design to identify novel genes in SLE pathogenesis, classifiers, and early predictors of DA scores.

Supporting information

S1 Fig. Toll-like receptor signaling pathway. SLEmetaSig100 includes eight Toll-like recep-

tors (TLR) genes (TLR1, TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, and TLR9). Most of TLRs

Identification of a gene-expression predictor for diagnosis and personalized stratification of lupus patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0198325 July 5, 2018 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198325.s001
https://doi.org/10.1371/journal.pone.0198325


are up-regulated (TLR1, TLR2, TLR4, TLR5, TLR7, and TLR8) while two TLRs (TLR3 and

TLR9) are down-regulated in SLE disease conditions.

(TIF)

S2 Fig. NF-kappa B signaling pathway. NF-kappa B signaling pathway. There are four up-

regulated SLEmetaSig100 genes (NFAIP3, NFIRAK4, MYD88, TLR4) and one down-regulated

gene (NFKB1) in the NF-kappa B signaling pathway that are also present in the TLR signaling

pathway as expected. As a negative regulator protein, NFKB1 is controlled by various mecha-

nisms of post-translational modification and subcellular compartmentalization as well as by

interactions with other cofactors or co-repressors.

(TIF)

S3 Fig. Cytokine-cytokine receptor interaction. The network of cytokine-cytokine receptor

Interaction contains 18 SLEmetaSig100 genes (CCR7, CXCL10, CXCR4, CXCR5, CD40LG,

TNFRSF1B, TNFRSF4, FLT3LG, IFNA1, IFNA17, IFNAR1, IFNB1, IL10, IL12A, IL12B, IL18,

TNFSF13, TNFSF4). Most cytokine genes are up-regulated (S1 Table) like IFN, IFN responsive

genes, or chemokines except four down-regulated genes (CCR7, CXCR5, FLT3LG, and

IL12A).

(TIF)

S1 Table. Overview of SLE data sets on gene-expression profiles.

(XLSX)

S2 Table. Gene annotation for the SLE signature.

(XLSX)
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