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In brief
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without neural-network-based virtual

cohort generators (e.g., GAN) where

generation processes are difficult follow

and understand. Starting from patient-

level cohort data summaries of grouped

variables, and using a modified random-

number-generation routine in R, synthetic

datasets can be generated possessing

quantitative characteristics similar to the

real cohort, allowing further analysis in an

easy flow scheme.
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THE BIGGER PICTURE Virtual cohorts built on synthetic data have received attention lately as they can
change thewayweworkwith clinical data. Generating synthetic data very close to "real-world" datawithout
having ethical restrictions can considerably help data analysts in several aspects such as didactic efforts,
statistical modeling, and assessments of interventions. We developed SASC, a tool that uses summary sta-
tistics of real clinical data to produce synthetic data having the same or a very close summary to the refer-
ence variables. SASC displays a performance comparable with, or superior to, that of other virtual cohort
tools like Synthea and allows users to optimize the synthetic dataset produced through a Shiny visualizer
application interactively.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
One of the impacts of the coronavirus disease 2019 (COVID-19) pandemic has been a push for researchers to
better exploit synthetic data and accelerate the design, analysis, and modeling of clinical trials. The unprec-
edented clinical efforts causedbyCOVID-19’s emergencewill certainly boost future robust and innovative ap-
proaches of statistical sciences applied to clinical fields. Here, we report the development of SASC, a simple
but efficient approach to generate COVID-19-related synthetic clinical data through a web application. SASC
takes basic summary statistics for each groupof patients and attempts to generate single variables according
to internal correlations. Toassess the ‘‘reliability’’ of the results, statistical comparisonswithSynthea, a known
synthetic patient generator tool, and, more importantly, with clinical data of real COVID-19 patients are pro-
vided. The source code and web application are available on GitHub, Zenodo, and Mendeley Data.
INTRODUCTION

In recent years, there has been growing interest in the re-use of

clinic data for analyzing patients’ disease phenotypes and their

relative treatment. The coronavirus disease 2019 (COVID-19)

pandemic has fueled this interest due to the need for accelerated

designandanalysisofclinical trials.Developments thatcanrapidly

analyze clinical data in a reproducible manner and in a secure

and privacy-preserving environment have become increasingly

necessary. A virtual patient (VP) could be an answer to these

needs. First described in 1971, VPswere able tomimic real clinical

scenarioswith the helpof a computer program.1Becauseof this, it
This is an open access article under the CC BY-N
then became possible to analyze physical exams, design diagno-

ses, and provide therapies based on a patient’s clinical history.2

A collection of VPs forms a virtual cohort (VC). In this regard,

VCs can support several professionals: a novice can aid in simu-

lating different clinical scenarios, a medical doctor could find

suggestions for therapies for special patients, and, in general,

clinical statisticians can use VPs and VCs as the stimuli for prob-

lem-based learning approaches.3 Indeed, the primary use of VCs

began mainly for educational purposes.4

To create synthetic data, there are at least two broadmethodo-

logical categories to choose from, each with its own benefits and

drawbacks. The first includes drawing numbers fromdistributions
Patterns 3, 100453, April 8, 2022 ª 2022 The Author(s). 1
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Figure 1. Different workflows for data generation

(A and B) Schema followed for the generation of data for (A) Synthea (fromGitHub: https://synthetichealth.github.io/module-builder/#covid19/symptoms) and (B)

SASC. Contrary to Synthea, SASC takes real clinical data at the patient level as the starting point, generates summary tables and relative grouped statistics

according to demographics and outcomes, and, for each desired n virtual patient, recreates relative demographics along with the number of visits. In the end, it

provides a survival analysis on the synthetically generated clinical parameters.
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based on certain statistical methods, while the other uses agent-

based or artificial intelligence (AI)-based modeling methods. The

latter of these approaches aims to explain an observed behavior

using a mathematical model for driving the data-creation step.5

Belonging to the latest approach, the AI-drivenmethodologies

are based on deep learning models, like variational autoen-
Table 1. Real cohort statistics – one

Parameter

Statistics

Mean SD Mea

Outcome survived survived surv

Gender M M F

Age 53.4 14.0 47.3

Hospitalization days 15.0 4.9 15.8

Albumin 35.6 4.5 36.8

Neutrophil, % 67.6 14.7 64.4

Prothrombin activity 94.3 11.6 95.7

Neutrophil count 4.6 2.7 3.9

Lymphocyte, % 22.3 11.1 26.3

D-D dimer 1.2 2.3 1.3

Lactate dehydrogenase 265.6 115.8 230.

Fibrin degradation products 8.3 18.1 4.6

High sensitivity C-reactive protein 30.6 41.7 19.4

Summary table of relevant statistical parameters from the real COVID-19 c
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coders (VAEs) and generative adversarial networks (GANs).

Another interesting approach based on agent-based6 simula-

tions has been published recently. All of these generation tech-

niques are mainly devoted to capturing and preserving internal

variable correlations. Even though these methods represent an

improvement of the overall capability of synthetic data to mirror
n SD Mean SD Mean SD

ived survived dead dead dead dead

F M M F F

15.1 68.5 11.4 72.5 10.2

6.9 10.7 7.8 10.4 7.6

4.0 27.7 4.8 27.6 4.8

13.3 90.1 8.4 90.0 5.9

12.7 64.6 20.7 69.0 15.5

2.7 11.7 6.6 11.4 5.4

11.1 5.6 5.7 6.0 4.0

3.2 12.9 9.0 13.5 9.5

6 67.8 718.8 416.3 673.3 346.9

1.8 93.8 66.2 80.2 56.7

33.5 138.6 79.8 109.8 73.4

ohort used in the SASC VC-generating script.

https://synthetichealth.github.io/module-builder/#covid19/symptoms


Table 2. Real cohort statistics – two

Category Characteristics

Female Male

p valueSurvived (N = 103) (%) Dead (N = 48) (%) Survived (N = 98) (%) Dead (N = 126) (%)

Age – 48 (15.4) 70 (11.8) 53 (14.3) 68 (11.8)

Gender F 103 (100) 48 (100) 0 (0) 0 (0) <0.001

Gender M 0 (0) 0 (0) 98 (100) 126 (100)

Outcome alive 103 (100) 0 (0) 98 (100) 0 (0) <0.001

Outcome dead 0 (0) 48 (100) 0 (0) 126 (100)

Age young 25 (24) 0 (0) 16 (16) 2 (1.6) <0.001

Age middle age 28 (27) 41 (85) 33 (34) 99 (79)

Age old 50 (49) 7 (15) 49 (50) 35 (20)

Group percentages extracted from COVID-19 real data. These values have been used in the generation step of independent values (demographic and

outcome). Characteristics for age:middle age, people agedbetween36and60 years; older, people aged>60 years; and younger, people aged<35 years.
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every aspect of the reality, their complexity sometimes makes

them obscure and non-transparent.7

When talking about mathematical models, they become more

accurate when they get closer to observations seen in real pop-

ulations. For this to happen, the variability of real patients must

be taken into account, thereby simulating diversity in VPs. In

principle, a trivial method to generate VP is adding, for instance,

random noise to existing, real data.8 However, this approach

does not have much success. The reason for this is the preser-

vation of inter- and intra-patients’ correlations, which are of vital

importance for a reliable VC generation.9

In addition to this, legal and ethical constraints are to be

evaluated, which complicate the sharing and re-use of real

patient-level data beyond summary statistics, even when ano-

nymization is accomplished in Europe according to the Gen-

eral Data Protection Regulation (GDPR) (https://gdpr-info.eu/

). This is true not only at the inter-organization level but also

at the intra-organization level.10 Therefore, clinical data ‘‘silos’’

exist. This is increasingly becoming an issue, as medicine as a

whole is driven by the availability of electronic health reports

(EHRs) where opportunities for digitalized storage, access,

retrieval, and analysis, including the emerging use AI, exist.11
Table 3. Virtual cohort statistics

Parameter

Statistics

Mean SD Mean

Outcome survived survived survived

Gender M M F

Age 54.9 16.7 51.4

Albumin 36.2 9.3 39.4

Neutrophil, % 39.2 10.1 34.9

Prothrombin activity 89.2 29.4 102.2

Neutrophil count 3.7 2.6 2.8

Lymphocyte, % 19.6 15.3 28.5

D-D dimer 4.6 3.6 3.5

Lactate dehydrogenase 278.8 160.5 196.8

Fibrin degradation products 38.2 25.9 29.7

High sensitivity

C-reactive protein

49.3 32.4 35.0

Summary table for relevant variables generated by values in SASC VC sho
A practical way to overcome these objectives and legal hin-

drances could be the generative approach to very ‘‘realistic’’

patient-level data (i.e., a VC) possessing the same statistical

features and properties as the source clinical data. The real

advantage of this approach is manifold: first, clinical data often

have missing data, which have to be imputed by the analyst

wherever possible, while VCs contain no missing data if not in-

serted intentionally. Secondly, patient-recruitment difficulties

are obvious to overcome: practical recruitment restrictions or

preferences, for example, gender, habit selection (e.g., only

smokers), and geo-localization can be easily implemented,

provided that suitable reference ‘‘real’’ demographic data are

available. Finally, ‘‘clinical-like’’ data can be inexpensive while

maintaining a high-quality level, and, thus, their modeling

could improve clinical trial planning or analysis.

Scope of the paper
In the present work, we describe SASC, a straightforward

approach to generate VCs starting either from real patient-level

data or from a summary table of a clinical trial. The VC-gener-

ating script is the result of a multilateral effort that included

the collection of literature data as well as finding real,
SD Mean SD Mean SD

survived dead dead dead dead

F M M F F

22.6 67.3 10.7 55.5 14.6

10.5 28.0 8.0 31.1 8.5

9.5 76.0 19.1 68.2 18.5

29.0 71.4 23.4 84.3 22.2

2.4 7.9 5.3 5.3 4.5

18.0 13.6 10.5 18.6 11.2

3.1 9.4 7.1 7.5 6.2

135.3 528.1 319.2 434.7 310.1

20.7 75.6 53.0 60.3 44.8

27.0 94.8 63.7 71.9 53.6

wing results comparable to Table 1.
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Figure 2. Boxplot of variables correlating with outcome

Nine representative pharmacological variables from a public longitudinal observational COVID-19 cohort dataset with highest positive and negative correlations

(absolute Pearson’s correlation coefficient >0.6) with regard to outcome (0 = survived, 1 = deceased). The selection of the above variable intends to highlight the

most outcome-correlated variables and, as such, themost relevant for downstreammodeling attempts using the synthetic data generated by SASC. All variables,

however, have been generated using the same methodology.
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anonymized, clinical patient-level data that is publicly available.

The acquisition of anonymized clinical data, with which we

compare the synthetic data, has been quite challenging work.

Even though the quest for re-purposed and effective therapies

against the COVID-19 pandemic has generated numerous clin-

ical trials, very few of them are easily accessible to researchers.

Following the approach of Tucker et al.12 and using the data

contained in their supplementary materials, we designed the

present study as a comparison between a real clinical dataset,

results from Synthea, and the synthetic datasets coming

from SASC.

Fundamentally, numerical random generation under con-

straints is the core of SASC. This is true for both observational

and interventional VCs, thereby assuring maintenance of intra-

patient and cross-patient correlations that are important in

achieving naturally ‘‘reliable’’ VC data, especially when there is

only a qualitative assessment available for comparison. For a

more quantitative assessment, several approaches have been

offered.13,14 For simplicity, we did not generate metrics to

compare cohorts similar to Tucker et al.,12 given the scope of

this work, but rather focused on the similarity of single-parameter

distributions and their relative correlations. Both VCs generated

by SASCandSynthea share a commonprinciple: the longitudinal
4 Patterns 3, 100453, April 8, 2022
component in termsofmedical visits (called ‘‘encounters’’ in Syn-

thea output) is generated patient-by-patient like a storybook in

development.15 The major difference between the two is that

Synthea generates a mixed population of sick versus healthy

VPs, while SASC generates only VPs with a predefined ratio of

outcomes (Figure 1).

Due to potential ethical issues relating to the use of the

algorithm, we focus on possible methodological concerns

following the classification of Mittelstadt et al.16 For example,

concerns implying causality can be directly excluded for

SASC, as it does not generate therapeutic suggestions or

causal dependencies between conditions and clinical parame-

ters. Moreover, epistemic concerns (e.g., inconclusive or

inscrutable evidence) should not affect SASC, as its code is

transparent and public, and the risk of inconclusive or opaque

decisions made on downstream machine-learning tasks (using

the SASC results) is not within SASC’s responsibility, in our

view. Biases in the generation of variable values are likewise

rare, as they are strictly dependent on the reference clinical

data summary values (Tables 1 and 2). SASC, therefore, has

the ability to recreate the same features of the reference co-

horts (Table 3), and we tried to demonstrate this using a refer-

ence COVID-19 dataset.



Figure 3. Comparison correlation plots

(A and B) Here, correlation between the SASC-generated VC against the real COVID-19 cohort toward gender (A) and hospitalization days (B) are shown. Due to

density, only some points are labeled to show their provenance. Each point coordinate represents the correlation obtained toward a third variable taken as

reference (in this case, gender and hospitalization days) for the two cohorts (x axis = real cohort; y axis = VC).
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Figure 4. Survival analysis for real cohort

(A and B) Survival analysis (with Kaplan-Meier plot)

of the public longitudinal observational COVID-19

cohort for (A) gender and (B) age groups. The age

group has been defined as ‘‘young’’ with ages <35,

‘‘old’’ with ages >60, and ‘‘middle aged’’ for all

remaining ages.
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RESULTS AND DISCUSSION

Our study started with a public longitudinal observational

COVID-19 cohort of 375 participants with limited demographic

parameters and pharmacological variables. The participants’

outcomes were either deceased or survived, and, thus, the first

analysis was concerned with the identification and characteriza-

tion of these pharmacological variables that showed the highest

positive and negative correlation with the outcome (Figure 2).

To demonstrate the validity of the process beyond the dis-

tribution shown above, we generated a correlation plot (Fig-

ure 3) between the correlations of variables from the real

COVID-19 cohort and the SASC-generated synthetic cohort

to gender and hospitalization time. This was an exemplary

choice as it was not practical to generate extended heatmaps

or correlation plots for all variables measured. Even though

the distribution limits are maintained during the SASC vari-

able-generation process, it is not certain that the correlation
6 Patterns 3, 100453, April 8, 2022
is strictly maintained, as the correlation

also depends on the number of visits

per patient and can differ after multiple

SASC runs due to the random gener-

ator. To simplify the complexity of the

quantitative comparison needed, we

decide to track comparisons between

real and generated synthetic variables

by sampling their correlations to a com-

mon reference.

We also performed survival analysis

on both the gender and age groups

of participants. We noted well-known

trends (Figure 4), including women

showing higher hospitalization days

with median survival probability and

older patients showing less than half

the hospitalization days at median

survival probability than the other

age groups. Kaplan-Meier analysis17

and single-parameter distribution com-

parison constitutes the minimal number

of comparisons that our VC generation

approach should satisfy in order to be

assessed as a ‘‘realistic’’ VC and, thus,

acceptable as an output (Figure 5).

Comparison of SASC cohort with
real data
In order to further assess the reliability of

the VC data generated, we conducted a

comparison of the most relevant param-
eter distributions (absolute correlation with outcome >0.6) using

the variables selected in Figure 2 (Figure 6).

The SASC Shiny app (Figure 7), with its built-in survival anal-

ysis, can provide a similar display. When using specific parame-

ters, users have dynamical visual evidence on how far the gener-

ated VC lays from the survival analysis of the real clinical data.

Upon identification of discrepancies, users can improve the

method to generate a novel VC.

Comparison of SASC cohort with Synthea COVID-19
cohort
We have demonstrated that VCs generated using classical sta-

tistical parameters like mean and standard deviation can satisfy

conditions for reliability. In Figure 6, the three sources of data

(i.e., real, SASC, and Synthea cohorts) are compared in a box-

plot for a selection of variables. Due to initial limitations of

its novel COVID-19 module, Synthea did not generate two of

the parameters, ‘‘Prothrombin activity’’ and ‘‘Fibrin degradation



Figure 5. Survival analysis for virtual cohort

(A and B) Kaplan-Meier survival plots related to a

SASC VC generated for (A) gender and (B) age

groups. The parameters were restricted to a

maximum of seven visits to a medical doctor within

a time interval of 10 days for all virtual patients.

Characteristics for age: middle age, people aged

between 36 and 60 years; older, people aged >60

years; younger, people aged <35 years.
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products’’, and hence their corresponding blue boxes are not

present in the boxplot analysis. Moreover, some clinical mea-

surements play different roles whether they are generated in Eu-

rope or the US.

The Synthea module for COVID-19 is still in a beta version ac-

cording to the authors; therefore, it is possible that it has not yet

been optimized. Despite this, Synthea has been widely used in

several other experiments, allowing users to design modules

and add or modify parameters in case the cohort requires spe-

cific clinical design.18 Moreover, it also provides FHIR-formatted

multi-output, which we did not use in this case.19

In our comparison reported herein, we have focused on clini-

cally relevant parameters that provided a clear correlation

with a real COVID-19 cohort outcome. All nine relevant parame-

ters showed a positive or negative Pearson correlation >0.6. Be-

sides this, comparison between the limited demographic vari-
ables was performed as shown in Tables

1 and 3. Synthea is US-centric and

therefore uses US resident population

data including demographic annotations,

ethnicity, race, geo-localization within

the US, marital status, smoking habits,

etc. These parameters were absent in

the real reference dataset and were thus

excluded from the comparison. All nu-

merical and ordinal data summarized in

tabular format are derived from Figure 1A.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources

and reagents should be directed to and will be ful-

filled by the lead contact, Andrea Zaliani (andrea.

zaliani@itmp.fraunhofer.de).

Materials availability

The reference COVID-19 dataset was obtained

from the Clinical Practice Research Datalink

(CPRD).20 This synthetic dataset was based on

real, anonymized, primary care patient data

extracted from the CPRD Aurum database

(https://www.cprd.com/primary-care).21 Patients

were typically in primary care with symptoms of

COVID-19 (confirmed/suspected) and control par-

ticipants with a negative COVID-19 test result. For

the purpose of this paper, we made use of the

CRPD COVID-19 symptoms and risk factors

synthetic dataset (v.2021.04.001). The dataset

contains information on sociodemographic and

clinical risk factors from December 3, 2019, to
March 13, 2021. The dataset has also been made public here: Mendeley

Data: https://doi.org/10.17632/ptz6zhknyp.1.

Data and code availability

For generating VCs fromSynthea, we used the newly addedCOVID-19module

(Figure 1A).18We generated a 375-population cohort, whose data are available

in the supplemental information (GitHub: https://github.com/synthetichealth/

synthea). From those data, some comparison variable values have been

used to generate a boxplot figure (Figure 6).

The original dataset, the code for the Shiny app, and the dockerized form of it

are also publicly deposited on Zenodo at Zenodo: https://zenodo.org/record/

5896935#.Ye6cpnrMJgC and at Mendeley Data: https://doi.org/10.17632/

ptz6zhknyp.1. The SASC viewer (Figure 7) is accessible on GitHub at GitHub:

https://github.com/Fraunhofer-ITMP/SASC/tree/v1.0. The Shiny was built

with RStudio v.1.2.1335 (https://www.rstudio.com).

Generation of VC

Analogous to real cohort analysis, we generated a summary table from the

public longitudinal observational COVID-19 cohort with the most important
Patterns 3, 100453, April 8, 2022 7
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Figure 6. Summary boxplot comparison

Boxplot comparisons for each generated numerical parameter. Synthea parameter (blue) values seem to be, in general, more compressed than the ones of the

real (orange) and SASC (green) datasets.
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demographic and medical parameters. Although there are several methods to

generate VCs from such a table, we chose to extract a set of probabilities for

grouped demographics (e.g., age and gender) from real data and used these

probabilities to drive the generation of independent, normally distributed

random values. Using this strategy, we generated participant outcomes (i.e.,

death and survival) too.

Taking advantage of a table of grouped probabilities (Table 1), we generated

random variables normally distributed for each group of VPs for what concerns

their outcome, age, gender, and visit numbers (see outcome, gender, and age

in Table 2). All other numerical variables were generated on the basis of their

grouped averages and standard deviations (as depicted in Table 1)

under the given constraint of their correlations with outcome and/or gender,

following a general principle described in the following link (https://stats.

stackexchange.com/questions/15011/generate-a-random-variable-with-a-

defined-correlation-to-an-existing-variables/15035#15035). However, this

generative step is only meaningfully applied for existing correlations with Pear-

son’s index higher than 0.6 in absolute value and is not warranted for all. This is

an aspect clearly visible in Figure 4.

As the ‘‘hospitalization day’’ variable was used to analyze the events (death

or survival) in the real clinical cohort, the optimal manner to mimic this variable

was the number of visits performedwithin the same overall time span as that of

the reference cohort. As this time-range variable seemed to be important in the

real cohort analysis, we decided to implement its variation within the SASC

Shiny app, where two control sliders were provided to users.

The overall workflow is depicted in Figure 1B.

For what concerns the generation of visiting time for all patients, we used the

hospitalization days reference as a driving variable. From the hospitalization

days distribution plot (Figure 7; Table 1), it is clear that patientswho did not sur-

vive had shorter hospitalization times, so we used a maximal number of visits
8 Patterns 3, 100453, April 8, 2022
capped at seven and a time span of 10 days, and we defined the longitudinal

variable hospitalization days as the difference in time between the start of the

study (fixed for all) and the last medical doctor’s visit performed. This analysis

generated the Kaplan-Meier plots reported in Figure 4, where it is evident that

the age, class, and gender survival patterns are retained qualitatively and

quantitatively, both in terms of ranking and significance compared with the

real cohort.

As illustrated in Table 3, the variable summary of the VC is close to that of the

reference cohort shown in Table 1. The main difference between the SASC-

generated and reference-grouped summary tables is the reduction in differ-

ence between genders based on mortality. The lowest difference is evident

between the older and middle-aged individuals. To display these results, we

programmed a so-called Shiny app where we generated different VCs dynam-

ically by modifying the two main parameters used (i.e., number of visits and

time span of visits). Thus, this Shiny app supports users by generating diverse

VCs according to the parameter chosen and provides an impression of the

relative ‘‘reliability’’ of the VC synthetized.

Advantages and limitations of SASC approach

SASC, differently from Synthea, does not need any local installation and runs

on theweb, allowing users to directly download the results. Although the SASC

Shiny app has been dockerized and can run on cloud environments (such as

Binderhub), in principle, any non-public cloud environment could be able to

host this application. Synthetic data generated by SASC require pre-existing,

ethically compliant clinical datasets. In this sense, SASC-synthetized data are

aimed toward educational purposes or for the validation of imputation tech-

niques. Moreover, the COVID-19 observational reference studies for this anal-

ysis are typically of a few months’ duration, and correlations of parameters

with gender or age can differ on longer timescales. SASC also implies normal

https://stats.stackexchange.com/questions/15011/generate-a-random-variable-with-a-defined-correlation-to-an-existing-variables/15035#15035
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Figure 7. Shiny app display

Shiny app display page: the left cursors generates the right panels of visualization for a novel VC. The central fixed plots report the real cohort with the hospi-

talization day distributions for surviving and deceased patients in the upper central quadrant.
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distributions for the variables it generates, which may not always be the case,

and this is a limitation of the method. An initial survey, however, elucidated that

the variables were predominant in either normal or lognormal distributions. In

this first version of SASC, we focused on the basic structure of the data gener-

ativemodel. Comparisons provided here are limited, and we are actively work-

ing on defining novel but simple ways to compare real cohorts and VCs along

the line of the work of Tucker et al.12 The different longitudinal dimension of the

cohorts implies, in our eyes, the need to use robust and convenient summaries

of clinical variables per patient as comparative parameters. Comparisons

among internal correlations, though, is a tough task and needs a study of

its own.

Conclusions

When legal and ethical constraints influence sharing and re-use of health data,

the generation of synthetic reliable participant data can be a viable solution if

ethically compliant algorithms have generated them. As SASC only uses clas-

sical statistical distribution, the use of synthetic data is not only ‘‘safer’’ for

participant data privacy but also represents a valuable source for exploratory

data analysis (EDA), clustering approaches, testing of novel modeling imputa-

tion technologies, and development of analytical workflows. We report herein

a simple and efficient R script tool aimed at generating VCs starting from a

reference clinical dataset. The comparisonwith a real COVID-19 clinical cohort

resulted in similar conclusions from Kaplan-Meier plots, which validates our

approach.
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