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Abstract: In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced
complexity machine-assisted decision support tool. We summarize the approaches used for mobile
phone-based chemical/biological sensors, including general hardware and software requirements for
signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge
sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which
may lend itself to dynamic composability by enabling context-specific selection of relevant units,
resulting in case-based working modules. SNAPS is an element of this platform where data analytics,
statistical characterization and algorithms may be delivered to the data either via embedded systems
in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of
the physical systems with the cyber components paves the path for SNAPS to progress to higher levels
of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for
general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative
data and qualitative data, each operated using a mobile device (smartphone or tablet) for data
acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around
the value to users/stakeholders and the key performance indicators users may find helpful, for these
types of machine-assisted tools.

Keywords: sensor; smart systems; data analytics; cyber-physical systems; artificial reasoning
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1. Overview

A plethora of literature reviews describe the historical context [1], recent advances [2–4],
and futuristic ideas [5–7] related to development and application of chemosensors, biosensors,
physical sensors, and nanosensors [8,9]. These diagnostic tools have important applications across
the medical, agricultural, and environmental domains, and in some cases overlap multiple areas.
Chemosensors, physical sensors, biosensors and nanosensors (collectively referred to as sensors
herein) have enormous potential as point of care (POC) devices [10,11], also known as point of
need devices [12,13]. The majority of POC sensor applications are in the medical and public health
fields, although recently the library of tools for agricultural and environmental applications has been
expanding rapidly [14–16]. The expansion of data connectivity within POC devices [17] is a catalyst for
divergent application of sensors into otherwise restricted domains. In agricultural and environmental
applications, enhancing mobility through data connectivity is paramount, and many current efforts
are focused on wireless sensors connected to mobile devices. However, in most cases there are no
analytic tools directly embedded into the mobile device and post hoc analysis is required using a
laptop or computer. In this review, we discuss select POC systems and introduce sensor-analytics
point solutions (SNAPS) as a platform for aggregating sensor data for analytics. SNAPS illustrates a
confluence of ideas, including sensing, mobile devices, connectivity and cyber-physical systems, which
may be combined with artificial reasoning tools (ART) and data-informed decision support systems.
SNAPS serves as a proof of concept for ensuring the appropriate hardware/software tools are matched,
ensuring diverse stakeholder needs are matched with sensor data and analytics.

This review provides an overview of sensor engineering related to the
recognition-transduction-acquisition triad as it relates to basic design decisions for SNAPS,
followed by a discussion of hardware and software elements which may be necessary for SNAPS. We
then introduce elements of autonomy, provide specific examples of SNAPS, and we point out a few of
the challenges and opportunities. We conclude by discussing the importance of making sense of data
and how to deliver information on demand from data to users and stakeholders, before the quality of
service perishes, in the context of actionable information which possesses transactional value (see
Figure S1).

2. Sensor Engineering

Sensor engineering is rooted in material choice, and development of practical protocols that enhance
device accuracy without sacrificing temporal resolution. The fundamental sensor working mechanism
established by the International Union of Pure and Applied Chemistry in the 1990’s has consistently
served as the design backbone for research groups (see Figure S2). The coating on the sensor surface
selectively binds the target, a transduction event produces measurable signal, and the signal is acquired
using specialty equipment. This sensing process, based on the recognition-transduction-acquisition
(RTA) triad, has been enhanced through the use of nanomaterials that improve detection limit, speed
and/or reversibility [18,19]. In biosensors, biomaterials are commonly employed to improve selectivity,
bandwidth, or facilitate actuation [20–22]. Recent progress in engineering nanoscale materials has
paved the way for development of non-biological chemical and physical sensors that accomplish
some of these same improvements [23,24]. Whether the nature of the recognition event is chemical,
biological, or physical, these molecular scale interactions are the initial step in sensing, and the material
choice governs the efficacy of this RTA triad.

The affinity of the sensor coating for the target is the limiting factor for device function, and the
importance of this first step in the RTA triad cannot be over-emphasized. Given that binding
affinity and selectivity are the architects of the RTA triad, transduction is the platform for innovation.
Intuitively, material choice dictates classification of device as either a sensor (use of abiotic materials),
biosensor (biological or biomimetic materials), nanosensor (nanomaterials), or nanobiosensor (hybrid
nano/biomaterials). In addition to establishing these commonplace definitions, sensor material choice
dictates critical performance factors such as durability, cost and ultimately quality of service. In its
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most basic definition, transduction is defined as a change in energy state. There are two major classes
of transduction that lead to the evolution of quantitative data or qualitative data, namely inherent
transduction and engineered transduction, respectively (Figure 1).

Engineered transduction (Figure 1A,B) involves highly specific binding of the target by the receptor
but cannot be used for reversible, continuous measurement due to the need for an exogenous reagent
or engineered process for at least one of the following: (i) facilitation of the transduction step, or (ii)
promoting release of target from binding site. In either case, the sensor cannot autonomously produce
a measurable product without an engineered process or exogenous reagent. In this type of sensor
(often referred to as a dosimeter), the thermodynamics do not lead to favorable production of an active
compound which can be directly quantified using acquisition equipment. There are generally two
situations which require addition of exogenous reagents and/or engineered processes: compound(s)
which facilitate a change in activation energy that can be measured, or compound(s) which promote
desorption of the target from the receptor binding site for sensor reuse. Examples of exogenous
reagent(s) and engineered processes include: fluorescent labels [25], heating elements [26], supporting
material(s) in close proximity to the recognition structure such as a coloring enzyme [27], strong
acid/base to denature target-receptor bonds [28], among other examples. For example, sensors based on
binding between H2 (g) and Ag+ nanoparticles or Ag+ films are not reversible without external heating
of the sensor surface (Figure 1A). In a biotic example, biosensors based on covalent binding between
antibodies and antigens are commonly used in lateral flow assays (Figure 1B). In most cases the binding
between the target and receptor material is covalent and cannot be reversed without considerable
additional cost. In the case of lateral flow assays, the recognition structure is co-immobilized with a
secondary structure that, upon binding of the target, undergoes a specific reaction and leads to a visible
color change [29]. In this type of transduction, covalent bonds between the target and recognition
structure are typically intact after the signal is acquired, leading to a significant amount of hysteresis.
Due to the hysteric binding between target and receptor, devices based on engineered transduction
are typically not reusable as attempts to recover the native binding chemistry of the receptor are not
known, at this time. There are examples of reversible covalent bonds for sensing based on chiral
nematic liquid crystals [30], and other recent work has demonstrated re-usability using allosteric
triggers engineered within the recognition mechanism [31,32]. At present, semi-quantitative data can
be obtained using engineered transduction approaches, if a sensor array is developed but the hysteric
molecular interactions restrict the data from being truly quantitative.

Sensors which autonomously produce quantitative data are classified as inherent transduction
(Figure 1C,D). For example, an abiotic sensor based on non-covalent metal coordination between O2(g)
and platinum porphyrin is shown in Figure 1C. An example of a biosensor based on enzyme-ligand
interaction is shown in Figure 1D. In this type of transduction, binding of the target by the receptor
leads to the production of a measurable by-product with little or no hysteresis. No additional
engineering is needed to obtain useful signal correlated to the binding event, as the thermodynamics
of the system indicate that the presence of the target alone is the rate limiting step for energy
state change. The formation of the product can be directly correlated to the presence of a specific
concentration of target, with the product formation well described by stoichiometry. The most common
example of inherent transduction is the glucose biosensor for blood analysis, where glucose and
oxygen are both present in blood, and serve as activators of the enzyme-catalyzed oxidation due to
GOx, or glucose-1-oxidase (beta-D-glucose:oxygen-1-oxidoreductase, EC 1.1.3.4). In this reaction,
the oxidation of glucose on the sensor surface results in the production of electrons, which are measured
using oxidative amperometry [33]. There are many examples of non-contact sensors which are reusable,
such as pulse oximeters for blood O2 inference [34] which are critical for vital sign monitoring but lack
the specificity of quantitative tools such as the GOx sensor. Optimizing performance tradeoffs between
quantitative sensitivity, response time, selectivity, and range is a task which begins with the user in
mind [35], and requires a detailed understanding of the problem context prior to design considerations
which are based on material choice. One major advantage of inherent transduction over engineered
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transduction is that the bonds between the target and receptor are inherently destabilized during the
transduction process, leading to diffusion of reaction by-products away from the binding site after
by-product formation. Reducing sensor hysteresis facilitates development of reusable sensor chemistry,
allowing continuous or in line sensing.
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Figure 1. Development of chemical/biological/physical sensors is based on either engineered
transduction where an external process is engineered to control transduction and/or acquisition
for reversible sensing (panels A–B) or inherent transduction where (panels C-D) where activation
energy is supplied by target and ambient environment for reversible sensing. In both examples, abiotic
and biotic examples are demonstrated. (A) Abiotic sensing of H2 (g) with Ag+ particles. (B) Biotic
sensing in a lateral flow assay based on antigen-antibody interactions. (C) Abiotic O2 (g) sensing
based on the luminescent dye platinum porphyrin dyes. (D) Odorant sensing based on chemosensory
proteins. Structure of protein in panel D courtesy of Mosbah et al [36]. The examples shown here are for
demonstration purposes, and do not represent all chemical, biological, or physical RTA mechanisms.

Whether the recognition involves a biomaterial, abiotic, or nanophase material, in most cases
multiple chemical bonds occur between the target and the receptor material, and the strength of these
bonds governs the specificity, limit of detection, response time, and hysteresis of the sensor. Mismatch
between material choice and intended application (see Figure S3) results in loss of quality of service,
and in some cases a complete lack of technology acceptance. Assays and sophisticated post hoc analysis
techniques can resolve some of this mismatch, but there are limits. To preserve and elevate the quality
of the outcome, selection of appropriate material(s) should be paired with sensing protocols and
analytical techniques, discussed in the following section.

Point of Need Sensing and Smartphones

Point of need sensors are a critical tool for medical, agricultural, and environmental monitoring,
and the applications of these tools has been diversifying over the last few decades. The primary application
space for point of need sensors has been the analysis of unique targets using relatively low cost, rapid
detection platforms [37], including small molecules [38,39], viruses [40,41] and cells [42,43] (amongst other
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targets). Recent works have focused on enhancing the mobility of point of need sensors for rapid on site
applications [44] by limiting the requirement for equipment or post hoc methodologies that depend on a
formal laboratory. Most portable/handheld sensors are not designed to compete with standard analytical
laboratory diagnostics, but rather as a parallel tool to trigger new questions or provide additional sampling
to improve resolution. Attempting to use a handheld sensor to produce the accuracy and precision that
is commonplace in laboratory-based analytical techniques is in most cases not realistic, and often cost
prohibitive. What is realistic, on the other hand, is the development of low cost, light weight, rapid
diagnostic tools that can provide point solutions to match the specific context of urgent questions. These
urgent questions are posed by millions of people in remote rural communities every day, but from a
technology point of view may represent the “lower hanging fruit” from the tree of complex problems.
Mobility of customized/personalized sensors in an open-access format may prove to demystify the
complexity of certain intractable problems, increasing knowledge while providing service to communities
in need, and in turn enabling science to serve society. Mobile phone-based data acquisition systems are
primary catalysts for mobility of sensor data in this context [45].

Smart phone point of need sensors are available for optical transduction techniques such as
fluorescence [46] and surface plasmon resonance [47], in addition to electrochemical transduction
techniques such as voltammetry [48] and impedance spectroscopy [49]. While analytical capabilities
have grown exponentially in the last decade due to the rapid diffusion of tools such as machine
learning [50–52], there are only a few examples of mobile phone-based data analysis tools in the
literature [53] as most data analysis occurs on computers and not on mobile devices. To maintain the
integrity of user/stakeholder needs and ensure quality of service, mobile phone-based sensors may be
connected to remote analytics which most modern mobile devices are capable of supporting. SNAPS is
a platform approach for transforming sensor data into actionable information using the mobile phone
for data acquisition and performing near real-time, on-site, edge analytics on a mobile device such as a
smart phone or a tablet (Figure 2).
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Figure 2. Sensor-Analytics Point Solutions (SNAPS) optimize synergistic integration and connectivity
between chemical/biological/physical sensing with cyber-physical systems. (A) Classical “lock
and key” metaphor for sensor/biosensor/nanosensor design. (B) Sensor signal transduction
(physical/chemical/biological component) and transmission to a mobile device coupled with in-network
processing and on-site edge analytics (cyber component).

3. Sensor-Analytics Point Solutions (SNAPS)

SNAPS consist of a biological/chemical/physical sensor directly interfaced with an analytical tool
on a mobile device. The general concept of sensors using mobile devices is not new (for example see
review by Quesada- González and Merkoci [45], but to date this may be the first review that focuses on
convergence of sensing and analytics on mobile device platforms with an equal balance on the two
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domains. In this section we provide a roadmap for matching transduction type to analytics (Figure 3)
and then we review a select number of recent advances in hardware and software used for SNAPS
(Figure 4). The green box in Figure 3A summarizes the RTA triad and displays a choice between the two
types of transduction discussed in Section 2. Once a receptor material is selected and the appropriate
transduction scheme is engineered, the process is coupled with acquisition equipment to obtain signal
(data). The blue box in Figure 3B shows the post hoc data analysis phase of SNAPS, which aims to
extract actionable information from sensor data. Contrary to the standard used in sensor design, the
analysis phase is less standardized, primarily due to lack of platform(s) for data diagnostics, data quality,
context, problem space, and query semantics [54]. As an example of a common framework, Marr’s
framework is shown, which is a learning principle grounded in Bayesian inference. Marr’s analysis
process flow has three interconnected steps: (i) a computational stage, (ii) an algorithmic or heuristic
step, and (iii) an implementation step [55]. Analogous to the two types of transduction previously
discussed in Section 2, the choice of a heuristic or algorithmic approach should be directly linked to the
problem context in order to maintain quality of service (QoS). The implementation step deconvolutes
processed data using a relevance filter for producing actionable information. An important a priori
consideration for SNAPS is that the context of the problem should drive the design of both the sensor
performance and the type of analytics to extract information.
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Figure 3. SNAPS attempts to transform data into information based on convergence of two distinct
areas, namely sensing and analytics. The framework for these two areas is described by: (A) standard
sensor development guided by RTA logic, and (B) data analysis using the usual tools (computational,
algorithmic, statistical). Smart control can be achieved when data from the analysis step actively
controls (auto-actuates) at least one process within the RTA sensor triad.

In advanced SNAPS, the analysis phase may have an optional feedback control loop with the
sensor transduction step, which may be referred to as smart SNAPS. For example, the temperature,
pH, electrical potential, or light intensity can be modulated to influence the sensor transduction step
based on information obtained from the data analysis phase. Active control of any phase in the RTA
triad qualifies as a smart SNAPS but interfacing with the transduction step is the most logical route for
adding value. This concept is broadly referred to as sense-analyze-respond-actuate (SARA), which
offers tremendous opportunity for controls systems (a detailed discussion is beyond the scope of this
manuscript). In SNAPS, acquisition and analytical processing occurs at the edge by deploying a mobile
platform of tools using a smartphone or a tablet, or other similar devices as mobile hosts. The next
section demonstrates a few examples of these hardware and software tools in the current literature.

SNAPS Hardware and Software

Figure 4 shows an example of the hardware and materials that may be used for the development
of SNAPS. There are many other examples in the literature [46–49], but these two cases overview
engineered and inherent transduction as proof of principle. There are a myriad of other approaches for
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optical smartphone sensing [47,56,57] as well as electrochemical sensing [48,58], and each has value.
The examples in this review are by no means comprehensive (see Table S1 for summary).

An example of engineered transduction (top of Figure 4) demonstrates engineered transduction
for diagnosis of tuberculosis (TB) via detection of acid-fast bacilli in sputum samples. Biorecognition
is grounded in principles of glycobiology, where target cells are labeled by glycan-coated magnetic
nanoparticles (GMNP) [59,60]. In this example, a neodymium magnet is used to separate the
particle-cell aggregates to facilitate rapid determination of acid-fastness and cording properties of
captured mycobacteria. The TB test also employs Gram staining (an irreversible process) to provide
visual confirmation. Smartphone-based optical systems such as the device by Wei et al [61] or the
complex microfluidic system by Zheng et al [62] may be used for expanding on-site image analysis,
and image processing algorithms [63–66], may be used for improving accuracy and providing decision
support, among many other similar image acquisition algorithms.

An example of inherent transduction (bottom of Figure 4) is demonstrated for detection of biogenic
amines using a the graphene-diamine oxidase nanobiosensor developed by Vanegas et al [67]. In this
example, an enzymatic biosensor was developed based on diamine oxidase, which was tethered to a
laser scribed graphene electrode (LSG) decorated with nanocopper. Upon recognition of the target ligand
within the enzyme binding pocket, oxidation is carried out to produce hydrogen peroxide as a by-product.
The peroxide is then deprotonated under an operating potential of + 500 mV to produce electrons,
measured using oxidative amperometry. Signal acquisition is conducted using a handheld potentiostat
connected to a mobile phone such as the ABE-STAT tool developed by Jenkins et al [49]. Further, the
support vector machine learning (SVML) classification system developed by Rong et al [53] may be
applied using the same mobile phone via the Jupyter notebook open source machine learning tools.
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Figure 4. Examples of hardware and materials that may be used for SNAPS for engineered transduction
(top) and inherent transduction (bottom). These examples are by no means comprehensive but
instead demonstrate the convergence of chemical/biological sensors with cyber-physical systems for
delivering computational capabilities and algorithms to sensor data. (A) Bacteria-specific magnetic
nanoparticles provide dual functions of labeling and enhancing aggregation in detection of target cells.
(B) Cyber-physical tools for engineered transduction may include smartphone-based microscopes for
cell imaging, with the images processed by embedded algorithms for informing decision support.
(C) Oxidase-based biosensors enable inherent transduction, limiting hysteresis and enabling reusability.
(D) Handheld potentiostats may be used to acquire electrochemical sensor signals, and embedded or
cloud-based analytics such as SVML tools (Reproduced from [53] with permission from The Royal
Society of Chemistry.). may be used to provide analysis and decision support. Photograph of
glycan-functionalized magnetic nanoparticles courtesy of Bhusal et al [59]. Crystal structure of diamine
oxidase courtesy of McGrath et al [68]. Fluorescent smartphone sensor platform courtesy of Wei et
al [61]. Image of colorimetric E. coli test and machine learning knowledge graph from Gunda et al [66].
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Sensor data, and thus the hardware to collect the data, are core competencies required to
fuel SNAPS or any equivalent tool in the portfolio of machine-assisted tools (MAT). Without data,
subsequent progress from SNAPS to decision support tools is impossible. SNAPS require the point of
need (i.e., mobile) platform to have near real time access to data analytics, statistical characterization
and algorithms via embedded systems in mobile devices, or sourced, in near real-time, from mist, fog
or cloud computing resources. In the next section we review recent advances in software applicable
for SNAPS.

A wide range of commercial and custom software are available for cloud-based analytics [69–71],
and the list of tools is growing. SNAPS may deliver actionable information through contextually
relevant applications using combinations of machine-assisted tools (MAT) and machine-assisted
platforms (MAP), enabled by user friendly innovative tools such as drag and drop systems. Drag and
drop analytics [72–77] may be quite useful in this context. One example of drag and drop analytics is the
tool developed for quantifying uncertainty in data exploration (QUDE). QUDE automatically quantifies
different types of uncertainty/errors within data exploration pipelines [78]. The automation feature
in this tool is based on the following workflow: data extraction, data integration, data processing,
exploratory queries, machine learning, and finally interpretation. QUDE is not intended to represent a
global solution for all problems relate to SNAPS, but rather demonstrates one approach that may serve
as a starting point to connect sensors to analytics in real time based on the intuitive drag and drop
interface. While this basic concept is clear, evolution of data analysis from extraction to visualization,
even in a drag and drop modus operandi, is a process which requires a deep understanding of the
context and is highly problem specific. Visualization tools (such as the volcano plots in the right
side of Figure 5) are information-rich presentations of complex datasets which may facilitate use
of a tool in multiple application domains, but the information is typically not comprehensible to
users/stakeholders. Knowledge graph algorithms, in combination with statistical analysis and machine
learning (for example, feature engineering, extraction and selection) [79,80], are elements likely to
improve this aspect and facilitate evolution of the tool to enable data-informed decision support.
This gradual evolution of SNAPS towards a higher order tool supports advanced features such as
data-informed decision as a service (DIDA’S), as discussed in Sections 4 and 5.
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Figure 5. Example of software tools such as drag and drop analytics enable cloud-based analytics for
SNAPS. The tool shown here automatically quantifies the different types of uncertainty/errors within
data exploration pipelines (image from Chung et al [78] modified to match context of SNAPS). Diagram
shows workflow (top) and an example pipeline (bottom). DB = database, ML = machine learning.

The plethora of tools reviewed here and elsewhere may operate in harmony in specialized facilities
(such as academic research centers). However, the real value of the convergence is at the hands of
the end-user, who may lack specialized knowledge of software or systems. Without lucidity as a
guiding light in the design process, the applications of these tools may never be realized outside of
research projects. Adoption largely depends on creating user interfaces no more complicated than a
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menu of choices, for example, the type of variant configuration (i.e., dashboard) that enables a user to
customize a laptop. Thus, the paradigm of “plug and play” must be at the front and center of this
discussion in order to hide the complexity behind simple drag and drop features which will empower
the end users to efficiently interact with the tools [81,82]. Simplified drag and drop tools for SNAPS
will exponentially accelerate the global demand for these sensor tools. Democratization of access
through Lego-esque modular drag and drop interfaces [83], may pave the way for mobile decision
support systems and partial autonomy. Drag and drop analytics coupled with SNAPS has enormous
application potential, not only in the agro-ecosystem but in any domain, for example, healthcare,
manufacturing [84], finance, utilities, logistics, transportation and retail. In the next section we discuss
opportunities for partial automation of SNAPS.

4. Auto-Actuation and Partial Levels of Autonomy for Low-Risk Automation

In this section we introduce concepts of autonomy as they relate to SNAPS and discuss future
possibilities for partial levels of autonomy in SNAPS. Autonomy is a framework that emerged from
intelligent control and systems theory which dates back at least a half century [85]. The specific sensor
need and problem context, predicate the architecture of the autonomous system (including both hardware
and software). Not all sensors or sensor systems are required to be involved in higher levels of autonomy
and there are many problems which only require partial autonomy [86,87]. For example, the purpose,
architectural details, system functions, and characteristics for unmanned terrestrial vehicles are different
compared to unmanned space vehicles [88]. Although these differences amongst different sensor systems
are clear, one unifying attribute is the need to detect a target (sensors on the front end of the process)
and then analyze the data (analytics on the back end) in near real time. Lessons from automation in the
automobile or aerospace industry, among others, may serve as a knowledge base for engineering and
optimization of SNAPS to deliver value, albeit in a very different context and with different specifications.

In the context of SNAPS, the traditional six levels of autonomy (see Figure S4), may inform
design and serve as a guide. In the lowest level of autonomy (simple), human interaction is required
for direct control of the sensor system(s) and/or manual off-loading of data for post hoc analysis.
For example, deployed buoy systems are common in environmental studies of aquatic chemistry [89],
which represents the current state for most sensor data. In the second level of autonomy (assisted),
a high degree of human interaction is required, but at least one aspect of SNAPS (either sensing or
analytics) is capable of performing task(s) without de novo synthesis of a pathway map. These tasks
may achieve prescribed objective(s), adapt to environmental changes, or develop new objectives.
For example, Rong et al [53] recently developed an open source mobile-phone based analytics protocol
for analyzing impedance data acquired from a nanobiosensor without a priori knowledge of sensor type.
The primary objective of the tool is to perform the first layer of analysis in development of a SVML
classifier to analyze impedance data (in lieu of equivalent circuit analysis). The mobile phone-based
tool automates selection of classifier type using principal components analysis, and subsequently
automates selection of hyperplane parameters (optimizes the support vector classifier and support
vector regressor functions across the selected hyperplane). While this MAT does not perform decision
support or provide validation layer(s), it may qualify as machine-assisted automation, particularly if
the impedance data is acquired using the same hardware and the sensing/analysis processes are linked
for on-site edge analytics.

The classical third level of automation, partial autonomy, may be achieved through remote
control of SNAPS related features, including sensing, data download, and some form of data analytics
such as heuristic risk assessment. The outcome may trigger a low-risk set of logic tools to execute
a workflow which sets into motion an auto-actuation function. By embracing and accomplishing
auto-actuation, the concept of SNAPS marches forward to merge with the principle of SARA for
enabling auto-actuation. For example, SNAPS may auto-adjust the water flow rate in irrigation pumps
(by temporarily overriding a pre-set routine flow rate) based on updated moisture data from field
sensor(s) and refreshed external weather data. Hence, smart control systems like SNAPS and SARA are
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derived from principles of bio-mimicry because feedback control (activation/inhibition) is the bed-rock
of biological systems in maintaining homeostasis and cellular equilibrium [90].

Higher levels of automation may exceed the scope of SNAPS. If the desired outcome of a
sensor involves some element of auto-actuation or partial automation, the principle of auto-actuation
suggests that we must integrate elementary logic layers, relevant to the context of the event, to enable
SNAPS to execute the action using/combining a set of contextually relevant output from SNAPS.
For partial automation, SNAPS shall increasingly rely on integration of logic structures, for example,
integrating output from SNAPS in decision support for auto-actuation. Integration of logic in the
SNAPS architecture indicates a departure from simple point solutions and an upstream move toward
higher levels of autonomy, a layer of convergence beyond this review.

In the next section, we focus on two major categories of SNAPS: (i) sensors with engineered
transduction coupled with heuristic analysis of qualitative data, and (ii) sensors with inherent
transduction coupled with algorithmic analysis of quantitative data. This organization into two
categories is designed to meet user needs while maintaining an appreciable quality of service.

5. Coupling Sensor Transduction with Data Analytics for Decision Support

In this section we present two generic cases of SNAPS, each case is intended to match sensor
transduction type with the appropriate class of analytics based on the logic in Sections 2 and 3.
In the first case, qualitative or semi-quantitative sensors (engineered transduction) are matched with
qualitative (i.e., heuristic) analytics. In the second case, quantitative sensors (inherent transduction)
are matched with quantitative (i.e., algorithmic) analytics. While these two cases are not intended to
cover all possibilities, we discuss the importance of ensuring that sensor data and analytic tools are
appropriately coupled. In Section 6 we provide a tangible example of each type of SNAPS.

The first category of tool (Figure 6A) utilizes qualitative sensors based on engineered transduction
coupled together with heuristic analysis to produce artificial reasoning tools (ART). This category,
deemed SNAPS-ART, is designed to provide near real time management suggestions, such as the use of a
single sensor to determine whether a particular sample is above or below a threshold set by a regulatory
agency. The assumption of high fault tolerance and low risk are pivotal to development/deployment
of SNAPS-ART. To maintain quality of service while optimizing development costs, acquisition of
qualitative data for SNAPS-ART uses engineered transduction techniques and heuristic classification
to satisfy user expectations with a binary output (for a rapid YES/NO test). In terms of active control
features, the SNAPS-ART platform may be quite rudimentary, with only a few discrete and distinct
actions (turn on/off a subsystem) determined by simple non-overlapping binary outputs based on
input from SNAPS. SNAPS-ART is not intended to be a comprehensive diagnostic tool, but rather
designed for triage or rapid screening, where additional testing is often required to confirm/validate
results. It is possible to use ART for semi-quantitative purposes that depends on other combinatorial
factors (e.g., flowrate control), but within reason. The layer of ART may be conceptually viewed as
a holding platform for machine-assisted tools, which apply basic pseudocode with simple logic to
provide an output sufficient to execute a low risk action which is highly fault tolerant.

The second category of tool (Figure 6B) utilizes quantitative sensors based on inherent transduction
coupled with algorithmic analysis for providing data-informed decision as a service (DIDA’S). The tools
are collectively referred to as SNAPS-DIDA’S. Contrary to SNAPS-ART, this category is designed
for decision support under the assumption of low fault tolerance and moderate risk where real
time, continuous monitoring is required. Rather than instantaneous results that are classified by
heuristic data analysis techniques, a defining feature of SNAPS-DIDA’S is the dynamic/reiterative
analysis of streaming data from sensors as well as feedback logic that interfaces with processed
data. For example, active control features using a case-specific subset of tools from a super-set of
MATs and MAPS (machine-assisted tools and machine-assisted platforms, respectively). Optimization
based on menus of choices and ranges of values, for each variable, require computational rigor to
extract context-specific variant configurations rather than workflow middleware as the control layer.
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Sophisticated decision support software with decision trees executing embedded logic is one option
that may be user-directed [91,92]. The latter may be enabled by a drag and drop assembly from the
portfolio of modular tools under the umbrella of MAT and MAP. Another option is to present these
choices to a human-in-the-loop who may exercise some form of exclusion/reduction to narrow the
search space (number of choices) from the MAT/MAP menu based on experience and knowledge [93,94].
The third and the preferred long-term option is the development of a parallel agent-based system
(ABS) which may be part of a multi-agent system (MAS) [95,96]. The agent is expected to be highly
specific for certain pre-determined functions and endowed with the capability to replicate (reason) a
few of the elementary choices and selection functions as if resembling the human-in-the-loop. ABS
cannot benefit directly from human experience and/or human ability to handle exception management,
which restricts the range of options to the arsenal of information and logic rules that are embedded
into the ABS. One of the major limiting factors is the inability to train a software agent and invoke
actual learning, especially regarding decisions such as how and when to use a particular tool. Due to
the cognitive boundaries of deterministic design, it is not possible to for a training tool or machine
learning routine to educate an agent to deliver support in non-deterministic scenarios. The latter makes
it mandatory to recognize the boundaries of “artificial” systems and consider maintaining provisions
for humans-in-the-loop, by design, for non-deterministic cases (exception management).
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Figure 6. Classification of two major types of SNAPS based on user/stakeholder expectations.
(A) SNAPS-ART produces qualitative, or semi-quantitative sensor data based on engineered
transduction for analysis using heuristic analysis tools to provide management suggestions.
(B) SNAPS-DIDA’S produces quantitative, streaming data for algorithmic analysis to be implemented
in a variety of decision support paradigms, which may include human-in-the loop and/or agent-based
systems. The diagram provides a basic map for avoiding mismatch (i.e., loss of quality of service)
between sensor chemistry and application needs but are not intended to be dogmatic.
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The theoretical boundary between ART and DIDA’S is blurry, at best. The classification of the
two systems into discrete boxes in Figure 6 is by no means intended to be reductionist, rather this
strategy is merely an attempt to introduce SNAPS and suggest future improvements and innovations.
The distinction between ART and DIDA’S may be made in terms of the data that must converge or
the degree to which data fusion may be necessary when rendering the decision or recommendation.
ART is expected to be a rapid-response system which aims to solve low risk problems with only a
few data sources and data dependencies using either qualitative or quantitative sensors matched
with heuristic analysis. To contrast the two, qualitative SNAPS-ART may provide the instruction
to turn off the irrigation water pump if [a] the rate of change of 80% of the soil moisture sensor
readings fall above/below a given range of values or [b] if the data from the sensor(s) indicates that
the rainfall rate is above a certain value. For quantitative SNAPS-ART, the instruction may be to
monitor and turn up/down the rate of irrigation water flow, by grids/zones, depending on the soil
moisture sensor readings, if the sensor data falls above/below a range of values. The tool may refer
to the logic instructions in a look-up table which recommends water flow rates versus soil moisture.
DIDA’S may be viewed as a mutiny of multiple ART units, each vying to contribute data. At each
gateway or node in the DIDA’S platform, there are agents which are queueing, to be triggered by a
specific data strand/stream, to initiate a search and discovery process for identifying what tools must
be used. This represents dynamic composability of tools triggered by data in a manner similar to
application-dependent-networking, which connects two mobile phone users in diverse environments.
In addition, agents are triggered to discover which databases or data resources must be accessed,
to satisfy the context of dependencies, and when/how to feed the results from the search and discovery
to a higher-level agent.

In the context of SNAPS-DIDAS, agent-based systems begin to function upon receiving input
from SNAPS. Using logic capabilities (learned, trained, reinforced), agent(s) determine which tool,
or sets of tools, may be necessary to execute the action or automation that the SNAPS output expects
to trigger. Agents are limited by the tools contained within MAT and MAP, unless embedded logic
provides the option to place a remote function call (RESTful API) to a cloud repository to source
other tools or algorithms. If this feature is included, agent(s) can “discover” which are contextually
relevant for the use case, providing higher levels of automation. Search and knowledge discovery
functions of machine-assisted systems are key performance indicators (KPI) which are inextricably
linked with quality of service (QoS). Synergistic integration with external tools and modules is subject to
interoperability among platforms, which are influenced by standards and architecture. As is apparent
from this brief discussion, automation of SNAPS-DIDA’S is far from trivial, and we are only beginning
to scratch the surface in terms of the confluence of ideas necessary to transform this vision into reality.
In the following section we provide tangible examples of SNAPS, with a specific focus on SNAPS-ART
(tangible examples of SNAPS-DIDA’S is beyond the scope of this review).

6. Proof of Concept SNAPS

In this section we show two proof of concept SNAPS-ART tools to demonstrate the application
of the concept to environmental and agricultural problems related to safe drinking water and food.
These two examples were selected based on the global significance of the problem, as well as the
transdisciplinary nature of the question at hand for ensuring planetary health (i.e., the health of the
planet and the humans that inhabit the space) [97–99]. In each case the analytics are embedded into
the mobile device and the tool supports manual data entry as well as auto-upload of sensor data.

Figure 7 demonstrates an example of SNAPS-ART for heavy metal analysis coupled with hazard
analysis risk assessment. In this design, a sensor with engineered transduction (qualitative data) is
coupled with a heuristic risk analysis tool (hazard quotient indicator) for monitoring and assessing
risk of mercury exposure in drinking water applied to locations lacking adequate water management
infrastructure. The tool was designed for use in rural settlements located near artisanal and small-scale
gold mines [100]. In this example, a nanosensor was developed based on LSG electrodes decorated
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with anchored nanocopper for measuring ionic mercury (Hg2+) via stripping voltammetry [101]
(Figure 7A). Rapid screening of water samples for mercury contamination is highly useful, but the
value of sensor data is inconsequential without information on how compounded factors, such as
body weight, ingestion rate, and length of exposure contribute to overall public health risk for an
individual. A mobile app was developed in R language (see supplemental section for code) using the
heuristic hazard quotient (HQ) methodology used by regulatory agencies across the globe [102]. MIT
App Inventor was used to create the smartphone app, which is rooted in drag and drop techniques
using the Blockly modular tool for functionality. Figure 7B displays the graphic user interface and
an example output for the SNAPS-ART tool, where users input drinking water ingestion rate, body
weight, length of exposure, and age. The app captures Hg2+ levels (ppm) obtained from the sensor,
and uses the framework established by the US Environmental Protection Agency (EPA) and the World
Bank to calculate a HQ score [103–105]. Using the standard HQ threshold set by the EPA [106], HQ
scores greater than 1.0 indicates higher risk of potential adverse health effects increases, while a score
less than 1.0 indicates low risk. SNAPS-ART provides a real time management suggestion to the user
based on international standards for mercury contamination of drinking water. In addition, ART
provides a suggestion to seek additional screening at a verified laboratory if the sample is positive,
which is a critical feature for secondary validation. The HQ output significantly increases the end-user
value of the sensor by combining the raw sensor data in the context of human-specific factors and
micro-environment, to provide actionable information relevant to precision public health.
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Figure 7. Proof of concept demonstration for SNAPS-ART in heavy metal analysis (drinking water).
(A) Hg2+-selective nanosensor based on LSG and nanocopper developed by Abdelbasir et al [101].
(B) Screenshot and photograph of heuristic analysis tool for calculating risk of mercury exposure
(hazard quotient calculator).

Figure 8 shows another application of the SNAPS-ART platform applied to impedimetric sensors
for detection of pathogenic bacteria in food samples. The Listeria monocytogenes biosensor developed by
Hills et al [107] is used as a demonstration (Figure 8A), and an ART tool was developed using machine
learning (code written in R programming language, see supplemental section for code). The ART tool
for L. monocytogenes detection is grounded in binary classification using bagged random forest, and the
smartphone app was created using MIT App Inventor. The program reads a raw impedance data
file from the biosensor, converts the data to the necessary form for machine learning classification,
optimizes hyperparameter values, and then uses machine learning techniques to compare the sample
to a training library; other methods are feasible as described by Rong et al [53]. The tool is used
for predicting whether the food sample may be contaminated or is safe according to thresholds set
by guidelines established in the Food Safety Modernization Act (FSMA), and how the user may
seek secondary validation if the sample is positive (Figure 8B). The major benefit of this tool is the
avoidance of computationally expensive (and time intensive) analytical methods such as equivalent
circuit analysis. While some equivalent circuit models, such as the Randles-Ershler circuit, provide
some description of the physical meaning for each circuit element related to an impedimetric biosensor,
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in most cases more complex models are used and parameters are tuned with Chi2 fitting. If not used
with expert guidance, equivalent circuit analysis leads to significant errors in both interpretation and
accuracy and may be cost prohibitive for many labs. In field analyses, equivalent circuit analysis
is computationally and energy intensive, limiting the practicality for monitoring rural regions or
dense urban areas where network connectivity and power are limited. For pathogens such as L.
monocytogenes, the threshold for contamination is one live cell in a food sample, and thus speed and
accuracy of the tool are paramount, particularly for rapid screening. Delays in data analysis lead to
food waste, increased risk of contamination, and a significant reduction in quality of service [108].
Use of machine learning tools and other similar algorithms to rapidly perform screening on site with
SNAPS significantly increases the value of the sensor and provides actionable information in the hands
of the user, regardless of location or access to a formal laboratory.
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(A) Listeria monocytogenes biosensor developed with stimulus-response polymers and DNA aptamers
by Hills et al [69]. (B) Screenshot and photograph of machine learning analysis tool for determining
whether sample is contaminated based on an index score derived from machine learning analysis.

The benefits of the approach in Figures 7 and 8 may be vastly extended by adapting the sensor
RTA scheme to allow the tool to detect and alert users about other targets. For example, development
of a sensor array to simultaneously target other heavy metal contaminants including lead, cadmium,
and arsenic or other biomolecule targets such as viruses. SNAPS-ART may be used for detection
and diagnostics for a plethora of contaminating agents not only in liquid or food (as shown here),
but in any other medium as long as the analyte is presented in a form that binds with the sensor
material. The immense value of this approach when combined with mobility (smartphones) is the
ability to source sensor data for a myriad of analytes in different environments where humans or
drones may reach to interact with the sample. In our approach, we have eschewed the use of high
cost sensors, to highlight the potential for diffusion of low-cost tools to enable democratization of data
and distributed decisions to serve community-specific needs. To acquire, curate, analyze and extract
useful information from sensor and other data, we advocate synergistic integration with MAT and
MAP. SNAPS is a preliminary step in that direction, and there are a many challenges and opportunities
as discussed in the following section.

7. Challenges and Opportunities

From SNAPS to PEAS

There are many challenges and opportunities for SNAPS (see Table 1). As SNAPS evolves, sensor
engineering for controlling or modulating hysteresis is an absolute requirement if the user expectation
is rooted in real time, in situ, sensor data connected to data analytics (see Figure S5). Rudimentary
control over system performance through the use of SARA-driven smart SNAPS to auto-actuate select
system components is applicable to the agro-ecosystem, environmental health, as well as public health.
While no specific example is shown here, SNAPS is the first step toward DIDA’S, which may rely on
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tools such as drag and drop analytics and models using agent based systems. DIDA’S is a tangible
goal on the horizon, but current progress is rather slow. In agricultural and environmental systems,
connectivity is often assumed, but rarely functional at the level required for a complex system [109–111]
such as SNAPS-DIDA’S. As SNAPS and similar tools mature, the true value may be realized through
the interaction of agents which embrace the collective optimization of performance in the context of the
environment. This futuristic concept is captured by the convergence of performance metrics (precepts,
environment, actuators, sensors) or PEAS, a mnemonic borrowed from the literature on agent-based
systems (ABS) to address “whole” system performance [112].

Table 1. Challenges and Opportunities for SNAPS.

Challenge Opportunities

Extraction of information from sensor data for real
time decision support

• Development of SNAPS-ART tools using
established regulatory standards as a guide

Controlling or modulating sensor hysteresis in situ

• Integration of smart materials on sensor surface
(e.g., stimulus-response polymers)

• Rudimentary control over system performance
through the use of
sense-analyze-respond-actuate (SARA) systems

Mobility and connectivity in agricultural and
environmental systems

• Deploy high bandwith, low latency, systems
• Develop low power sensor data management

Integrating SNAPS into a standardized platform

• Establishment of data management systems
based on lessons learned from other systems
such as integrated clinical environment (ICE)

• Establishment of standard architectures for real
time sensing (interoperable with
other standards)

Development of data informed decision as a service
(DIDA’S)

• Establishment of SNAPS-ART as a common tool
• Integration of drag and drop analytics (DADA)

and agent based systems (ABS)
• Dynamic/reiterative analysis of streaming data

from sensors (captured in time series databases)
• Demonstration of feedback logic that interfaces

with processed data
• Dynamic composability of tools triggered by

data (application-dependent-networking)
• Database discovery or data resource discovery

by agents using embedded logic (e.g., remote
function call, RESTful APIs)

• Use of logic capabilities (learned, trained,
reinforced) and agent(s) to determine which tool,
or sets of tools, are required for the
given problem

There is an enormous opportunity to develop decision support systems using the PEAS as a
platform. PEAS are pillars on which we may build “machines that work for us” versus “cogs” in
the wheel as envisioned by Ellul a half century ago [113]. SNAPS, ART, and DIDA’S are examples
of tools with which we are working and represent short-term opportunities for Pareto-like solutions.
Beyond SNAPS, PEAS represent goal-dependent strategic perspectives for systems-level synergy. Each
platform contains an array of dynamic push-pull elements and user-directed levers, which may be
used in any combination, to accomplish short term tasks (SNAPS) for establishing the foundation
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of long-term attempts to orchestrate systems performance (PEAS). This interrelationship may be
analogous to components of the engine (SNAPS, ART, DIDA’S) which are essential and dependent for
the function and performance of the “whole” vehicle (PEAS).

Aggregating data and information for systems performance using the PEAS concept is the Holy
Grail and, in some instances, the “whole” picture is the only relevant picture. This concept may seem
far reaching, but related attempts in biomedical engineering have already proven viable, such as
the integrated clinical environment (ICE) effort [114]. ICE drives data interoperability between all
sub-systems to focus on the “whole patient” rather than isolated parts. These two concepts (PEAS, ICE)
may serve as a guiding light for innovations applicable to agriculture, environment, or other verticals
areas, where a tapestry of solutions may be more valuable than point solutions. Regardless of the
application domain, convergence of solutions to create systems level performance is the key challenge
going forward (i.e., avoidance of isolated solutions). Isolated solutions in the medical systems lead to
errors in medical device interoperability. The latter is often fatal, claiming as many as 250,000 lives per
year, in the US alone, and is the third leading cause of death in the US [115]. In the coming decade(s),
there is a major opportunity to develop platforms such as PEAS based on the lessons learned from ICE.
Integrating such platforms will both improve knowledge gain, as well as contribute to transformational
convergent thinking such as the planetary health concept [98,116]. One of the underlying themes in all
use cases is the use of mobility and low latency signal transmission (for example, future potential for
use of 5G) as key enablers for facilitating various levels of partial autonomy within system of systems,
which responds to remote instructions and other relevant secure signals. However, often, very small
amounts of data and/or information, at the right time, can be far more critical and helpful, rather than
a deluge of data (erroneously referred to as big data).

The excruciating struggle to extract information from sensor data (if there is information in
the data) is an indication that unleashing knowledge from information is an enormous challenge,
at present. The much-anticipated evolution of data-science to knowledge-science is the central thrust
of knowledge-informed decision as a service (KIDS), an aspirational idea which may not be addressed
by current tools and contemporary thinking. The broad spectrum of “data-informed” approaches will
vary by use cases, from simpler instances where SNAPS-ART may be the first step, to more complex
expectations where DIDA’S will be necessary as a foundation. The first step in resolving this immense
challenge is to identify which tool is needed, when it is pertinent, and where to apply the tool.

8. Concluding Remarks

The pivotal role of sensors, data, and information in decision support and partial automation or
auto-actuation is of critical importance in any field. SNAPS represent a confluence of ideas and is the
foundation for making sense of data and adding value to sensor data. Basic sensor design choices,
described in this review, dictate the value and quality of service for SNAPS, and this fundamental
concept cannot be overlooked without inducing a fatal flaw that limits the usefulness of downstream
cyber-physical systems. At the most basic level, matching the type of sensor transduction (engineered
or inherent) together with the appropriate analytical approach (heuristic or algorithmic) to meet the
needs of the end user ensures a baseline quality of service. SNAPS and ART offer a glimpse of a few
elements of the machine-assisted tools and machine-assisted programs in terms of the quest to deliver
value from data analytics. Drawing on these trends, we suggest how SNAPS may evolve to inform
knowledge gain as the system complexity increases.

Knowledge discovery cannot be treated as a separate topic when discussing sensors and sensor
data. Without discovering the context and relevance of data to the bigger picture, the outcome will
remain narrow. Sensors will be impotent without tools to extract value from sensor data. This discussion,
therefore, is not peripheral to sensors, it is central to all sensors. The growing ubiquity of sensors
which are increasingly woven into almost every facet of our daily lives makes it imperative that sensor
scientists and sensor engineers consider the data science impact of their work. Data scientists must
take a closer look at sensor data and sensor engineering, to ask the correct questions. Each group must
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ensure that the tools are designed with the end user in mind for ensuring quality of service. Tools for
knowledge discovery are not in short supply, but the rate limiting factor preventing the diffusion of
these tools are rooted in their complexity, lack of standards and common open platforms that users
can easily access. When and if these “open platforms” emerge, the race to adapt and adopt will not
be determined by its success due to technological strength or computational excellence. Rather the
economics of technology may be the single most important criteria which will influence and determine
feasibility of mass adoption, the latter, in turn, will reduce cost of adoption due to economies of scale.

We are on the brink of change, albeit slowly, with the advances in search and discovery of
data and information, using tools based on graph theoretic approach, to establish relationships and
dependencies between data, objects, and subjects. New research at the nexus of natural language
processing, linguistics, and semantics may be the trans-disciplinary convergence necessary to advance
knowledge discovery from sensor data. Broad spectrum dissemination of this knowledge using simple
and tangible user interfaces (TUI) will be crucial. Knowledge discovery is at the heart of sensor research
and sensor engineering, if we wish to extract value from sensors and aspire to deploy sensors as global
public goods.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/22/4935/s1,
Figure S1: Overview of Review, Figure S2: Recognition-Transduction-Acquisition (RTA) triad, Figure S3: Design of
SNAPS must use a retrosynthetic approach, beginning with the intended application in mind. This allows proper
selection of materials, transduction techniques, and analytics for ensuring quality of service. (A) Correct matching
of engineered transduction with heuristic analytics. (B) Incorrect matching of engineered transduction with
algorithmic analytics leads to overdesign of the tool, consuming unnecessary energy and computational power.
(C) Incorrect matching of inherent transduction with heuristic analytics leads to excessive data collection, which
causes systematic negative effects unless the data. This approach is valid for long term monitoring programs,
but is not relevant for rapid, point of need SNAPS. (D) Correct matching of engineered transduction with
algorithmic analytics, Figure S4: Traditional autonomy may not be the dogma for development of SNAPS, Figure
S5: (A) Information hierarchy depicting the evolution of sensor data towards knowledge. Higher levels (wisdom,
understanding) may be beyond the scope of sensor data, but here we describe a platform for evolution of sensor
data to information (SNAPS-ART and SNAPS-DIDA’S) and suggest a path forward for evolution to knowledge
via the KIDS platform. (B) When KIDS is applied to the agro-ecosystem, the convergence of performance metrics,
environment, actuators, and sensors (PEAS) encompass the platform through agent-based systems, Table S1:
Recognition-Transduction-Acquisition (RTA) triad.
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Comput. Inf. Technol. 2010, 18, 341. [CrossRef]

51. Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452–459.
[CrossRef]

52. Saeb, S.; Lonini, L.; Jayaraman, A.; Mohr, D.C.; Kording, K.P. Voodoo Machine Learning for Clinical
Predictions. Biorxiv 2016, 059774.

53. Rong, Y.; Padron, A.V.; Hagerty, K.J.; Nelson, N.; Chi, S.; Keyhani, N.O.; Katz, J.; Datta, S.P.A.; Gomes, C.;
McLamore, E.S. Post hoc support vector machine learning for impedimetric biosensors based on weak
protein–ligand interactions. Analyst 2018, 143, 2066–2075. [CrossRef] [PubMed]

54. Vamos, T. Judea pearl: Probabilistic reasoning in intelligent systems. Decis. Support Syst. 1992, 8, 73–75.
[CrossRef]

55. Marr, D.; Poggio, T. A computational theory of human stereo vision. Proc. R. Soc. Lond. Ser. B Boil. Sci. 1979,
204, 301–328.

56. Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol.
2015, 34, 7–25. [CrossRef]

57. Liu, L.; Zhang, D.; Zhang, Q.; Chen, X.; Xu, G.; Lu, Y.; Liu, Q. Smartphone-based sensing system using ZnO
and graphene modified electrodes for VOCs detection. Biosens. Bioelectron. 2017, 93, 94–101. [CrossRef]

58. Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. Adhoc And Sensor Networks: A
Survey of Mobile Phone Sensing. IEEE Commun. Mag. 2010, 48, 140–150. [CrossRef]

http://dx.doi.org/10.1177/1932296814522799
http://www.ncbi.nlm.nih.gov/pubmed/24876594
http://dx.doi.org/10.3390/s101210837
http://www.ncbi.nlm.nih.gov/pubmed/22163501
http://dx.doi.org/10.1042/bj20021217
http://www.ncbi.nlm.nih.gov/pubmed/12217077
http://dx.doi.org/10.1039/c3cs35528d
http://dx.doi.org/10.3390/s100807323
http://dx.doi.org/10.1002/smll.201000972
http://dx.doi.org/10.1007/s00216-005-0247-7
http://dx.doi.org/10.1016/j.aca.2010.09.038
http://dx.doi.org/10.1109/MP.2006.1649009
http://dx.doi.org/10.1016/j.bios.2015.10.027
http://www.ncbi.nlm.nih.gov/pubmed/26513290
http://dx.doi.org/10.1016/S2212-5671(14)00223-8
http://dx.doi.org/10.1016/j.bios.2016.10.062
http://dx.doi.org/10.1021/nn505821y
http://dx.doi.org/10.1016/j.snb.2016.08.061
http://dx.doi.org/10.1371/journal.pone.0023783
http://dx.doi.org/10.1149/2.0061909jes
http://dx.doi.org/10.2498/cit.1001913
http://dx.doi.org/10.1038/nature14541
http://dx.doi.org/10.1039/C8AN00065D
http://www.ncbi.nlm.nih.gov/pubmed/29629449
http://dx.doi.org/10.1016/0167-9236(92)90038-Q
http://dx.doi.org/10.1016/j.tibtech.2015.09.012
http://dx.doi.org/10.1016/j.bios.2016.09.084
http://dx.doi.org/10.1109/MCOM.2010.5560598


Sensors 2019, 19, 4935 20 of 22

59. Bhusal, N.; Shrestha, S.; Pote, N.; Alocilja, E.C. Nanoparticle-based biosensing of tuberculosis, an affordable
and practical alternative to current methods. Biosensors 2019, 9, 1. [CrossRef]

60. Gordillo-Marroquín, C.; Gómez-Velasco, A.; Sánchez-Pérez, H.J.; Pryg, K.; Shinners, J.; Murray, N.;
Muñoz-Jiménez, S.G.; Bencomo-Alerm, A.; Gómez-Bustamante, A.; Jonapá-Gómez, L.; et al. Magnetic
Nanoparticle-Based Biosensing Assay Quantitatively Enhances Acid-Fast Bacilli Count in Paucibacillary
Pulmonary Tuberculosis. Biosensors 2018, 8, 128. [CrossRef]

61. Wei, Q.; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Göröcs, Z.; Bentolila, L.A.; Wu, T.-T.; Sun, R.; et al.
Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7, 9147–9155.
[CrossRef]

62. Zheng, L.; Cai, G.; Wang, S.; Liao, M.; Li, Y.; Lin, J. A microfluidic colorimetric biosensor for rapid detection of
Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron.
2019, 143–149. [CrossRef]

63. Yetisen, A.K.; Martinez-Hurtado, J.; Garcia-Melendrez, A.; Vasconcellos, F.D.C.; Lowe, C.R. A smartphone
algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens. Actuators B Chem. 2014,
196, 156–160. [CrossRef]

64. López-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F.
Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices.
Anal. Chem. 2014, 86, 9554–9562. [CrossRef] [PubMed]

65. Thompson, R.E.; Larson, D.R.; Webb, W.W. Precise nanometer localization analysis for individual fluorescent
probes. Biophys. J. 2002, 82, 2775–2783. [CrossRef]

66. Gunda, N.S.K.; Gautam, S.H.; Mitra, S.K. Artificial Intelligence Based Mobile Application for Water Quality
Monitoring. J. Electrochem. Soc. 2019, 166, B3031–B3035. [CrossRef]

67. Vanegas, D.C.; Patiño, L.; Mendez, C.; De Oliveira, D.A.; Torres, A.M.; Gomes, C.L.; McLamore, E.S. Laser
Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced
Materials. Biosensors 2018, 8, 42. [CrossRef]

68. McGrath, A.P.; Hilmer, K.M.; Collyer, C.A.; Shepard, E.M.; Elmore, B.O.; Brown, D.E.; Dooley, D.M.; Guss, J.M.
Structure and Inhibition of Human Diamine Oxidase. Biochemistry 2009, 48, 9810–9822. [CrossRef]

69. Babiceanu, R.F.; Seker, R. Big Data and virtualization for manufacturing cyber-physical systems: A survey of
the current status and future outlook. Comput. Ind. 2016, 81, 128–137. [CrossRef]

70. Wu, C.; Buyya, R.; Ramamohanarao, K. Big Data Analytics = Machine Learning + Cloud Computing. in Big
Data: Principles and Paradigms. arXiv 2016, arXiv:1601.03115.

71. Ravi, K.; Khandelwal, Y.; Krishna, B.S.; Ravi, V. Analytics in/for cloud-an interdependence: A review. J. Netw.
Comput. Appl. 2018, 102, 17–37. [CrossRef]

72. Heer, J.; Perer, A. Orion: A system for modeling, transformation and visualization of multidimensional
heterogeneous networks. Inf. Vis. 2014, 13, 111–133. [CrossRef]

73. Kim, J.; Levy, E.; Ferbrache, A.; Stepanowsky, P.; Farcas, C.; Wang, S.; Brunner, S.; Bath, T.; Wu, Y.;
Ohno-Machado, L. MAGI: A Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure.
Bioinformatics 2014, 30, 2826–2827. [CrossRef] [PubMed]

74. Nolte, H.; MacVicar, T.D.; Tellkamp, F.; Krüger, M. Instant Clue: A Software Suite for Interactive Data
Visualization and Analysis. Sci. Rep. 2018, 8, 12648. [CrossRef] [PubMed]

75. Ko, G.; Kim, P.-G.; Yoon, J.; Han, G.; Park, S.-J.; Song, W.; Lee, B. Closha: Bioinformatics workflow system for
the analysis of massive sequencing data. BMC Bioinform. 2018, 19, 43. [CrossRef]

76. Shang, Z.; Zgraggen, E.; Buratti, B.; Kossmann, F.; Eichmann, P.; Chung, Y.; Binnig, C.; Upfal, E.; Kraska, T.
Democratizing Data Science through Interactive Curation of ML Pipelines. In Proceedings of the 2019
International Conference on Management of Data—SIGMOD ’19, Amsterdam, The Netherlands, 30 June–5
July 2019.

77. Binnig, C.; Buratti, B.; Chung, Y.; Cousins, C.; Kraska, T.; Shang, Z.; Upfal, E.; Zeleznik, R.; Zgraggen, E.
Towards Interactive Curation & Automatic Tuning of ML Pipelines. In Proceedings of the Second Workshop
on Computing within Limits—LIMITS ’16, Toronto, ON, Canada, 14–16 May 2018.

78. Chung, Y.; Servan-Schreiber, S.; Zgraggen, E.; Kraska, T. Towards Quantifying Uncertainty in Data Analysis
& Exploration. IEEE Data Eng. Bull. 2018, 41, 15–28.

79. Tou, J.T.; Gonzalez, R.C. Automatic recognition of handwritten characters via feature extraction and
multi-level decision. Int. J. Parallel Program. 1972, 1, 43–65. [CrossRef]

http://dx.doi.org/10.3390/bios9010001
http://dx.doi.org/10.3390/bios8040128
http://dx.doi.org/10.1021/nn4037706
http://dx.doi.org/10.1016/j.bios.2018.10.006
http://dx.doi.org/10.1016/j.snb.2014.01.077
http://dx.doi.org/10.1021/ac5019205
http://www.ncbi.nlm.nih.gov/pubmed/25158126
http://dx.doi.org/10.1016/S0006-3495(02)75618-X
http://dx.doi.org/10.1149/2.0081909jes
http://dx.doi.org/10.3390/bios8020042
http://dx.doi.org/10.1021/bi9014192
http://dx.doi.org/10.1016/j.compind.2016.02.004
http://dx.doi.org/10.1016/j.jnca.2017.11.006
http://dx.doi.org/10.1177/1473871612462152
http://dx.doi.org/10.1093/bioinformatics/btu377
http://www.ncbi.nlm.nih.gov/pubmed/24907367
http://dx.doi.org/10.1038/s41598-018-31154-6
http://www.ncbi.nlm.nih.gov/pubmed/30140043
http://dx.doi.org/10.1186/s12859-018-2019-3
http://dx.doi.org/10.1007/BF01108518


Sensors 2019, 19, 4935 21 of 22

80. Zeng, W.; Meng, X.; Yang, C.; Huang, L. Feature extraction for online handwritten characters using Delaunay
triangulation. Comput. Graph. 2006, 30, 779–786. [CrossRef]

81. COMSOL. Introduction to COMSOL Multiphysics 5.3; Keisoku Engineering System Co., Ltd.: Tokyo, Japan,
2014.

82. Pryor, P.R.W. Multiphysics Modeling Using COMSOL®: A First Principles Approach; Jones & Bartlett Learning:
Burlington, MA, USA, 2009.

83. Hamada, M.; Sato, S. Lego NXT as a learning tool. 2010. Available online: https://dl.acm.org/citation.cfm?
id=1822198&preflayout=flat (accessed on 29 October 2019).

84. Datta, S.P.A. Emergence of Digital Twins—Is this the march of reason? J. Innov. Manag. 2017, 5, 14–33.
[CrossRef]

85. Meystel, A. Intelligent control: A sketch of the theory. J. Intell. Robot. Syst. 1989, 2, 97–107. [CrossRef]
86. Stephanopoulos, G.; Han, C. Intelligent systems in process engineering: A review. Comput. Chem. Eng. 1996,

20, 743–791. [CrossRef]
87. Meystel, A. Architectures for intelligent control systems: The science of autonomous intelligence. In

Proceedings of the 8th IEEE International Symposium on Intelligent Control, Chicago, IL, USA, 25–27 August
2002.

88. Antsaklis, P.; Passino, K.; Wang, S. An introduction to autonomous control systems. IEEE Control Syst. 1991,
11, 5–13.

89. Albaladejo, C.; Soto, F.; Torres, R.; Sánchez, P.; Lopez, J.A. A Low-Cost Sensor Buoy System for Monitoring
Shallow Marine Environments. Sensors 2012, 12, 9613–9634. [CrossRef] [PubMed]

90. Pardee, A.B.; Jacob, F.; Monod, J. The genetic control and cytoplasmic expression of “Inducibility” in the
synthesis of β-galactosidase by E. coli. J. Mol. Boil. 1959, 1, 165–178. [CrossRef]

91. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
92. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2014.
93. Forstmann, B.U.; Dutilh, G.; Brown, S.; Neumann, J.; Von Cramon, D.Y.; Ridderinkhof, K.R.; Wagenmakers, E.-J.

Striatum and pre-SMA facilitate decision-making under time pressure. Proc. Natl. Acad. Sci. USA 2008, 105,
17538–17542. [CrossRef] [PubMed]

94. Gold, C.; Damböck, D.; Lorenz, L.; Bengler, K. Take over! How long does it take to get the driver back into
the loop? Proc. Hum. Factors Ergon. Soc. 2013, 57, 1938–1942. [CrossRef]

95. Cabri, G.; Zambonelli, F.; Leonardi, L. MARS: A programmable coordination architecture for mobile agents.
IEEE Internet Comput. 2000, 4, 26–35. [CrossRef]

96. Jean, E. Sensor Network Interoperability and Reconfiguration Through Mobile Agents. Ph.D. Thesis, The
Pennsylvania State University, University Park, PA, USA, 2011.

97. DeMaio, A.R.; Rockstrom, J. Human and planetary health: Towards a common language. Lancet 2015, 386,
e36–e37. [CrossRef]

98. Horton, R.; Lo, S. Planetary health: A new science for exceptional action. Lancet 2015, 386, 1921–1922.
[CrossRef]

99. Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; Dias, B.F.D.S.; Ezeh, A.; Frumkin, H.; Gong, P.;
Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller
Foundation–Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [CrossRef]

100. Vélez-Torres, I.; Vanegas, D.C.; McLamore, E.S.; Hurtado, D. Mercury Pollution and Artisanal Gold Mining
in Alto Cauca, Colombia: Woman’s Perception of Health and Environmental Impacts. J. Environ. Dev. 2018,
27, 415–444. [CrossRef]

101. Abdelbasir, S.M.; El-Sheikh, S.M.; Morgan, V.L.; Schmidt, H.; Casso-Hartmann, L.M.; Vanegas, D.C.;
Velez-Torres, I.; McLamore, E.S.; Abdelbasir, S.; Morgan, V.M. Graphene-Anchored Cuprous Oxide
Nanoparticles from Waste Electric Cables for Electrochemical Sensing. ACS Sustain. Chem. Eng. 2018, 6,
12176–12186. [CrossRef]

102. Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Cyio, B.; Elvince, R. Human
health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central
Sulawesi, Indonesia. Ecotoxicol. Environ. Saf. 2016, 124, 155–162. [CrossRef] [PubMed]

103. Saleem, M.; Iqbal, J.; Shah, M.H. Dissolved Concentrations, Sources, and Risk Evaluation of Selected Metals
in Surface Water from Mangla Lake, Pakistan. Sci. World J. 2014, 2014, 1–12. [CrossRef]

http://dx.doi.org/10.1016/j.cag.2006.07.007
https://dl.acm.org/citation.cfm?id=1822198&preflayout=flat
https://dl.acm.org/citation.cfm?id=1822198&preflayout=flat
http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.1007/BF00238683
http://dx.doi.org/10.1016/0098-1354(95)00194-8
http://dx.doi.org/10.3390/s120709613
http://www.ncbi.nlm.nih.gov/pubmed/23012562
http://dx.doi.org/10.1016/S0022-2836(59)80045-0
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1073/pnas.0805903105
http://www.ncbi.nlm.nih.gov/pubmed/18981414
http://dx.doi.org/10.1177/1541931213571433
http://dx.doi.org/10.1109/4236.865084
http://dx.doi.org/10.1016/S0140-6736(15)61044-3
http://dx.doi.org/10.1016/S0140-6736(15)61038-8
http://dx.doi.org/10.1016/S0140-6736(15)60901-1
http://dx.doi.org/10.1177/1070496518794796
http://dx.doi.org/10.1021/acssuschemeng.8b02510
http://dx.doi.org/10.1016/j.ecoenv.2015.09.042
http://www.ncbi.nlm.nih.gov/pubmed/26513531
http://dx.doi.org/10.1155/2014/948396


Sensors 2019, 19, 4935 22 of 22

104. Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace
elements in river water and well water in the Chinese Loess Plateau. Sci. Total. Environ. 2019, 650, 2004–2012.
[CrossRef]

105. Takabe, Y.; Tsuno, H.; Nishimura, F.; Tanii, N.; Maruno, H.; Tsurukawa, M.; Suzuki, M.; Matsumura, C.
Bioaccumulation and primary risk assessment of persistent organic pollutants with various bivalves. Water
Sci. Technol. 2012, 66, 2620–2629. [CrossRef]

106. U. S. E. P. a Oppt. Quantitative Risk Assessment Calculations. EPA Sustain. Futur. Framew. Man. 2012,
EPA-748-B12-001, 2012. Available online: https://www.epa.gov/sites/production/files/2015-05/documents/13.
pdf (accessed on 29 October 2019).

107. Hills, K.D.; Oliveira, D.A.; Cavallaro, N.D.; Gomes, C.L.; McLamore, E.S. Actuation of chitosan-aptamer
nanobrush borders for pathogen sensing. Analyst 2018, 143, 1650–1661. [CrossRef]

108. Castell-Perez, E.; Gomes, C.; Tahtouh, J.; Moreira, R.; McLamore, E.S.; Knowles, H.S. Food Processing and
Waste Within the Nexus Framework. Curr. Sustain. Energy Rep. 2017, 4, 99–108. [CrossRef]

109. Pierce, F.; Elliott, T. Regional and on-farm wireless sensor networks for agricultural systems in Eastern
Washington. Comput. Electron. Agric. 2008, 61, 32–43. [CrossRef]

110. Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in
practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [CrossRef]

111. Rajasekaran, T.; Anandamurugan, S. Challenges and Applications of Wireless Sensor Networks in Smart
Farming—A Survey. In Advances in Big Data and Cloud Computing; Springer: Singapore, 2018; pp. 353–361.

112. Shirude, S.B.; Kolhe, S.R. Agent-based architecture for developing recommender system in libraries.
In Knowledge Computing and its Applications: Knowledge Computing in Specific Domains; Springer:
Berlin/Heidelberg, Germany, 2018.

113. Vance, R.B. THE TECHNOLOGICAL SOCIETY. By Jacques Ellul. Translated from the French by John
Wilkinson. With an Introduction by Robert K. Merton. New York: Alfred A. Knopf, 1964. 449 pp. $10.95.
Soc. Forces 1968, 46, 416. [CrossRef]

114. ASTM. ASTM F2761-09(2013) Medical Devices and Medical Systems—Essential Safety Requirements for Equipment
Comprising the Patient-Centric Integrated Clinical Environment (ICE); Subcommittee: F29.21 (ASTM); ASTM:
Montgomery County, PA, USA, 2013.

115. Makary, M.A.; Daniel, M. Medical error-the third leading cause of death in the US. BMJ 2016, 353, i2139.
[CrossRef] [PubMed]

116. Haines, A.; Hanson, C.; Ranganathan, J. Planetary Health Watch: Integrated monitoring in the Anthropocene
epoch. Lancet Planet. Heal. 2018, 2, e141–e143. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scitotenv.2018.09.322
http://dx.doi.org/10.2166/wst.2012.491
https://www.epa.gov/sites/production/files/2015-05/documents/13.pdf
https://www.epa.gov/sites/production/files/2015-05/documents/13.pdf
http://dx.doi.org/10.1039/C7AN02039B
http://dx.doi.org/10.1007/s40518-017-0079-z
http://dx.doi.org/10.1016/j.compag.2007.05.007
http://dx.doi.org/10.1016/j.compag.2015.08.011
http://dx.doi.org/10.2307/2574900
http://dx.doi.org/10.1136/bmj.i2139
http://www.ncbi.nlm.nih.gov/pubmed/27143499
http://dx.doi.org/10.1016/S2542-5196(18)30047-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Overview 
	Sensor Engineering 
	Sensor-Analytics Point Solutions (SNAPS) 
	Auto-Actuation and Partial Levels of Autonomy for Low-Risk Automation 
	Coupling Sensor Transduction with Data Analytics for Decision Support 
	Proof of Concept SNAPS 
	Challenges and Opportunities 
	Concluding Remarks 
	References

