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The role that mechanistic mathematical modeling and systems biology will play in molecular medicine and clinical
development remains uncertain. In this study, mathematical modeling and sensitivity analysis were used to explore
the working hypothesis that mechanistic models of human cascades, despite model uncertainty, can be computa-
tionally screened for points of fragility, and that these sensitive mechanisms could serve as therapeutic targets. We
tested our working hypothesis by screening a model of the well-studied coagulation cascade, developed and validated
from literature. The predicted sensitive mechanisms were then compared with the treatment literature. The model,
composed of 92 proteins and 148 protein–protein interactions, was validated using 21 published datasets generated
from two different quiescent in vitro coagulation models. Simulated platelet activation and thrombin generation
profiles in the presence and absence of natural anticoagulants were consistent with measured values, with a mean
correlation of 0.87 across all trials. Overall state sensitivity coefficients, which measure the robustness or fragility of a
given mechanism, were calculated using a Monte Carlo strategy. In the absence of anticoagulants, fluid and surface
phase factor X/activated factor X (fX/FXa) activity and thrombin-mediated platelet activation were found to be fragile,
while fIX/FIXa and fVIII/FVIIIa activation and activity were robust. Both anti-fX/FXa and direct thrombin inhibitors are
important classes of anticoagulants; for example, anti-fX/FXa inhibitors have FDA approval for the prevention of
venous thromboembolism following surgical intervention and as an initial treatment for deep venous thrombosis and
pulmonary embolism. Both in vitro and in vivo experimental evidence is reviewed supporting the prediction that fIX/
FIXa activity is robust. When taken together, these results support our working hypothesis that computationally
derived points of fragility of human relevant cascades could be used as a rational basis for target selection despite
model uncertainty.
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Introduction

The role that mechanistic mathematical modeling and
systems biology will play in molecular medicine and clinical
development remains uncertain. Kitano suggested that
understanding of critical questions in biology required the
integration of experimental and computational research [1].
Assmus et al. and others maintained that analysis of the
dynamics of human relevant networks using predictive
computer models and high-throughput data generation
would play an increasingly important role in medical
research and the elucidation of disease mechanisms [2,3].
However, parametric and structural uncertainty remains an
open challenge to mechanistic modeling in medicine.

Strategies that integrate experimental and computational
techniques have had success at elucidating network struc-
tures. Arm and Arkin reviewed experimental and computa-
tional techniques to uncover molecular interaction networks
[4]. The central experimental advancements in the area of
protein–protein network identification have been the yeast
two-hybrid system [5,6] and quantitative mass spectrometry
proteomic techniques to determine protein complexes [7,8].
Young and coworkers explored protein–DNA interactions
using the chromatin immunoprecipitation technique [9]
where likely transcription factor binding sites were deter-
mined using a combination of chromatin immunoprecipita-

tion chips and DNA microarrays. Time-lagged correlation
matrices [10,11], genetic programming techniques [12], and
network decomposition strategies have also been used with
time-series concentration measurements to estimate reaction
network structures [13].

Sensitivity analysis has been used to integrate model
identification and discrimination with optimal experimental
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design and knowledge discovery. Cho et al. used sensitivity
analysis to study TNF-a–mediated NF–jB signalling where
parametric uncertainty was addressed using Monte Carlo
sensitivity analysis; using the best-guess parameter set, a
family of random parameter sets was generated where
sensitivity coefficients were calculated for each member of
the random family [14]. Cho et al. went on to develop a
unifying framework, building upon the earlier work of
Kholodenko et al. and Sontag et al. to unravel the functional
interactions in biomolecular networks using a stimulus–
response strategy and metabolic control analysis [15–17].
Kremling et al. investigated the benchmark problem of
growth of a microorganism in a continuous bioreactor
subject to feed shifts using sensitivity-based model identi-
fication and discrimination strategies; they determined
optimal experimental design and perturbation strategies to
identify and discriminate between rival model formulations
[18]. Gadkar et al. identified signal transduction models from
time-course measurements using a nonlinear scheme to
estimate missing protein measurements from measured
values [19]. They went further and proposed strategies to
calculate D-optimal experimental designs that maximized the
experimental information used to identify signal trans-
duction models as well as an iterative strategy to explore
model structure [19,20]. Sensitivity analysis has also been used
to explore the robustness and fragility of metabolic and
signaling networks. Robustness, the ability to maintain system
performance in the face of perturbation and uncertainty, is a
desirable feature in both biological as well as man-made
networks, machines, and systems [21]. Conversely, fragility,
i.e., extreme sensitivity to small perturbations, is a very
undesirable trait that could lead to catastrophic system
failure following seemingly innocuous perturbations, e.g., a
Boeing 777 crashing because of minor software failures or
microscopic alterations in a few integrated chips [22]. Stelling
et al. reviewed several examples of robustness in biological
networks [21], while Leibler first computationally predicted
and later experimentally verified robust features of chemo-
taxis control networks [23,24]. Bullinger and coworkers

explored the robustness of models of programmed cell death
or apoptosis [25], while Stelling et al. computationally
identified points of robustness and fragility, using Monte
Carlo sensitivity analysis and overall state sensitivity coef-
ficients, in models of circadian rhythm [26].
In this study, we use tools from systems biology, namely

mathematical modeling and sensitivity analysis, to explore
the working hypothesis that mechanistic models of human
relevant cascades, despite model uncertainty, can be compu-
tationally screened for points of fragility, i.e., sensitive
mechanisms, and that these mechanisms could serve as a
rational basis for therapeutic target selection. We test our
working hypothesis by computationally screening a mecha-
nistic model of the well-studied coagulation cascade devel-
oped and validated from literature sources. After model
validation, using 21 published datasets generated from two
different quiescent in vitro coagulation models, we use Monte
Carlo sensitivity analysis to computationally screen the model
for sensitive mechanisms in the presence and absence of
natural anticoagulants. We then contrast the predicted fragile
mechanisms with literature to determine if they are con-
sistent with experimental investigation, thereby proving or
disproving our working hypothesis. While the current
development is restricted to coagulation, the broader strategy
is general and could be applied to an arbitrary network.

A Review of the Coagulation Cascade
Coagulation, mediated by a family of serine proteases

(factors) and a key group of blood cells (platelets), both of
which are normally inactive in the circulation, is directly
relevant to human health and has been suggested by Somogyi
and Greller to be an ideal candidate for in silico drug
discovery [27]. Insufficient coagulation is manifested in
disorders such as haemophilia A (1 in 5,000 live births),
haemophilia B (1 in 30,000 live births), or von Willebrand
disease (1 in 1,000 live births) [28,29]. Conversely, unwanted
clotting can be a serious complication following surgical
intervention and is directly involved in coronary artery
diseases, which collectively account for 38% of all deaths in
North America [30].
The salient features of the coagulation cascade included in

our model, shown schematically in Figure 1 and presented in
detail in Table 1, are reviewed here. Several extensive reviews
of the underlying biochemistry and cell biology of coagu-
lation can be found elsewhere [31–34]. There are two
pathways that lead to activation of the master protease
thrombin and eventually to a clot—the intrinsic and extrinsic
cascades. It is generally believed that the extrinsic cascade is
the main mechanism of thrombinogenesis in the blood [33–
35]. Upstream coagulation factors are activated by materials
exposed because of vessel injury chief among these tissue
factors (TFs) [36]; TF and activated factor VIIa (FVIIa) present
in the blood form a complex that activates factor X (fX) and
fIX. FXa activates downstream factors, including fV, fVIII,
and fIX. FXa can also, along with FVa, form a complex on the
surface of activated platelets that converts prothrombin (fII)
to thrombin (FIIa). TF–FVIIa is not the only mechanism to
activate fX; FIXa and FVIIIa can complex on the surface of
activated platelets and catalyze the formation of FXa. Platelet
localization at the wound site occurs through specific
interactions between the platelet and the subendothelium,
primarily through recognition of exposed materials such as

PLoS Computational Biology | www.ploscompbiol.org July 2007 | Volume 3 | Issue 7 | e1421348

Author Summary

To date, mechanistic mathematical modeling, in general, has not
played a significant role in the development of new therapies for
cancer, cardiovascular diseases, or the treatment of acute events like
thrombosis during surgery. One critical issue often cited for the lack
of interest has been uncertainty; the conventional wisdom is that
the data requirement to fully determine and validate large
mechanistic models is just too high. We show, using tools from
systems biology and sensitivity analysis, that it may be possible to
extract qualitative information about the critical elements of human
relevant cascades despite model uncertainty. Using a mechanistic
model of the human coagulation cascade, we were able to identify
the critical mechanisms controlling the formation of thrombin, a key
protein active in the formation of blood clots. We were further able
to support the hypothesis that the critical mechanisms identified by
our analysis could serve as drug targets by comparing our findings
with the thrombosis treatment literature and with current clinical
trials. The results support the notion that mechanistic models could
be used, despite model uncertainty, to pinpoint key mechanisms in
complex networks, and that these mechanisms could potentially be
therapeutically exploited.

Fragility of the Coagulation Cascade



collagen, fibronectin, and von Willebrand factor. Localized
platelets are activated by external signals such as adenosine
diphosphate and thrombin. Thrombin irreversibly activates
platelets through a family of transmembrane receptors on the
platelet surface called protease-activated receptors [37,38].
Thrombin, in addition to playing a key role in platelet
activation, catalyzes the conversion of fibrinogen (secreted by
activated platelets from internal stores) to fibrin. Fibrin, with
the help of FVIIIa, forms a cross-linked mesh inside the
platelet plug that stops blood flow. Thrombin also activates
upstream coagulation factors, thereby forming a strong
positive feedback that ensures rapid activation. Three control
points that inhibit thrombin formation are considered in the
model. TF pathway inhibitor (TFPI) downregulates FXa
formation and activity by sequestering free FXa and TF–
FVIIa in an FXa-dependent manner. Antithrombin III (ATIII)
neutralizes all serine proteases generated during the coagu-
lation response, making it perhaps the most powerful control
element in the cascade. Thrombin itself plays an inadvertent
role in its own inhibition by binding the surface protein
thrombomodulin (TM), expressed on normal vasculature [39].
The FIIa–TM complex catalyzes the conversion of protein C
(PC) to activated PC (APC); APC attenuates the coagulation
response by the proteolytic cleavage of fV/FVa and fVIII/
FVIIIa [39].

Results

Simulations of TF–FVIIa initiated coagulation in the
presence and absence of anticoagulants were compared with
21 published datasets from two different in vitro coagulation
models [31,40,41]. The model parameters used in the
validation simulations (unless otherwise noted) were com-
piled from literature and are shown in Table 1. Initial
conditions for the validation simulations are given in the
Protocol S1. To gauge the robustness and fragility of each

interaction in the cascade, overall state sensitivity coefficients
(OSSCs) were calculated for each of the 148 model
parameters over a family of random parameter sets (see
Methods and Materials). Simulation results are shown in
Figure 2, and error quantification is reported in Table 2. With
the exception of PC and one TFPI case, the model explained
the time-resolved thrombin generation profile following TF–
FVIIa addition to quiescent synthetic plasma. Platelet
activation was assumed to be instantaneous for the synthetic
plasma simulations. To test the ability of the model to
simultaneously describe platelet activation and thrombin
formation, simulations of TF–FVIIa initiated coagulation
were compared with the in vitro cell-based assay of Roberts
and coworkers [40] (Figure 2F); both platelet activation and
thrombin generation profiles were consistent with the cell-
based assay after adjusting three parameters used in the
synthetic plasma simulations. Analysis of the sensitivity
results for the control (no inhibitors) revealed that thrombin
formation is controlled by both initiation and amplification
mechanisms; the 25 most fragile mechanisms for the control
are reported in Table 3, and the rank-ordered fragility results
for 100 random parameter sets for the control, TFPI, and
ATIII cases are shown in Figure 3A–3C. Mechanisms involving
fluid and surface phase fX/FXa and thrombin were found to
be the most sensitive, while mechanisms involving fIX/FIXa
and fVIII/FVIIIa were found to be robust. Binding inter-
actions were found to be the most sensitive group of
interactions. Analysis of the significant shifts in the overall
state sensitivity coefficients (see Methods and Materials)
revealed both additive and synergistic effects when compared
with the control (Figure 3).

Thrombin Activation in the Presence and Absence of
Natural Anticoagulants
The predicted thrombin concentration profiles following

the addition of TF–FVIIa to synthetic plasma were quantita-

Figure 1. Schematic of the Extrinsic Coagulation Cascade

(A) Upstream coagulation factors are activated by substances exposed by vessel injury; chief among these factors is TF. Activated upstream coagulation
factors initiate a cascade of events that culminate in the activation of platelets and the key protease FIIa. Thrombin forms an amplification loop by
activating itself and other coagulations factors as well as platelets.
(B) Activated platelets then aggregate to form platelet plugs, which serve as scaffolds for fibrin clots.
doi:10.1371/journal.pcbi.0030142.g001
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Table 1. Reactions and Parameter Values Used in the Extrinsic Coagulation Model

Reaction kþ (nM�1s�1) k� (s�1) kc (s�1) Source

VII þ TF N VII-TF 5 3 10�2 5 3 10�3 – [73]

VIIa þ TF N VIIa-TF 5 3 10�2 5 3 10�3 – [73]

Xa þ VII-TF N Xa-VII-TF 5 3 10�3 1 – [73]

Xa-VII-TF ! VIIa-TF þ Xa – – 5 3 10�3 [73]

IIa þ VII-TF N IIa-VII-TF 3.92 3 10�4 1 – [73]

IIa-VII-TF ! VIIa-TF þ IIa – – 3.92 3 10�4 [73]

X þ VII-TF N X-VIIa-TF 0.1 5.5 – [82]

X-VII-TF ! VIIa-TF þ Xa – – 1.4 [82]

IX þ VIIa-TF N IX-VIIa-TF 0.1 2.2 – [83]

IX-VII-TF ! VIIa-TF þ IXa – – 0.47 [82]

VII þ Xa N VII-Xa 0.1 1 – (73,78)

VII-Xa ! VIIa þ Xa – – 0.5 (73,78)

VII þ IIa N VII-IIa 0.1 10 – (73,78)

VII-IIa ! VIIa þ IIa – – 0.5 (73,78)

V þ IIa N V-IIa 0.1 7.2 1 – [82]

V-IIa ! V þ IIa – – 0.26 [82]

VIII þ IIa N VIII-IIa 0.1 15 2 – [82]

VIII-IIa ! VIIIa þ IIa – – 0.9 [82]

Xa þ IX N Xa-IX 0.1 1.5 – (83)

Xa-IX ! Xa þ IXa – – 2.3 3 10�2 (83)

Xa þ V N Xa-V 0.1 1 – (82,83)

Xa-V ! Xa þ Va – – 4.3 3 10�2 (82,83)

Xa þ VIII N Xa-VIII 0.1 2.1 – (82,83)

Xa-VIII ! Xa þ VIIIa – – 2.3 3 10�2 (82,83)

Xa þ II N Xa-II 7.5 3 10�6 1.0 3 10�9 – (78)

Xa-II N IIa þ Xa – – 7.5 3 10�6 (78)

IX þ P9s N IX-P9s 1.0 3 10�2 2.5 3 10�2 – [73]

IXa þ P9s N IXa-P9s 1.0 3 10�2 2.5 3 10�2 – [73]

IXa þ P9s* N IXa-P9s* 1.0 3 10�2 2.5 3 10�2 – [73]

X þ P10s N X-P10s 0.1 2.5 3 10�2 – [73]

Xa þ P10s N Xa-P10s 0.1 2.5 3 10�2 – [73]

V þ P5s N V-P5s 5.7 0.17 – [73]

Va þ P5s N Va-P5s 5.7 0.17 – [73]

VIII þ P8s N VIII-P8s 5.0 3 10�2 0.17 – [73]

VIIIa þ P8s N VIIIa-P8s 5.0 3 10�2 0.17 – [73]

II þ P2s N II-P2s 1.0 3 10�2 5.9 – [73]

IIa þ P2s N IIa-P2s 1.0 3 10�2 2.042 – [73]

PL þ Psub ! AP-Psub – – 0.9 [73]

PL þ Psub ! PL-Psub – – 20 [73]

AP þ Psub ! AP-Psub – – 0.2 [73]

PL þ AP N PL-AP 5 3 10�7 1 – [73]

PL-AP N 2AP – – 5 3 10�7 [73]

PL þ AP-Psub N PL-AP-Psub 5 3 10�7 1 – [73]

PL-AP-Psub ! AP þ AP-Psub – – 5 3 10�7 [73]

PL þ IIa N PL-IIa 3 3 10�7 1 – [73]

PL-IIa ! AP þ IIa – – 3 3 10�7 [73]

PL-Psub þ IIa N PL-Psub-IIa 3 3 10�2 1.0 3 10�2 – [73]

PL-Psub-IIa ! AP-Psub þ IIa – – 9 3 10�3 [73]

V-P5s þ Xa-P10s N V-P5s-Xa-P10s 0.1 1 – [73,82]

V-P5s-Xa-P10s ! Va-P5s þ Xa-P10s – – 4.6 [73,82]

V-P5s þ IIa-P2s N V-P5s-IIa-P2s 1.73 3 10�2 1 – [73,82]

V-P5s-IIa-P10s ! Va-P5s þ IIa-P10s – – 4.6 [73,82]

X-P10s þ VIIIa-P8s-IXa-P9s N X-P10s-VIIIa-P8s-IXa-P9s 0.1 1.0 3 10�2 – [73,82]

X-P10s-VIIIa-P8s-IXa-P9s ! Xa-P10s þ VIIIa-P8s-IXa-P9s – – 20 [73,82]

X-P10s þ VIIIa-P8s-IXa-P9s* N X-P10s-VIIIa-P8s-IXa-P9s* 0.1 0.01 – [73,82]

X-P10s-VIIIa-P8s-IXa-P9s ! Xa-P10s þ VIIIa-P8s-IXa-P9s – – 20 [73,82]

VIII-P8s þ Xa-P10s N VIII-P8s-Xa-P10s 0.1 2.1 – [73,82]

VIII-P8s-Xa-P10s ! VIIIa-P8s þ Xa-P10s – – 0.023 2 [73,82]

VIII-P8s þ IIa-P2s N VIII-P8s-IIa-P2s 0.1 15 2 – [73,82]

VIII-P8s-IIa-P10s ! VIIIa-P8s þ IIa-P10s – – 0.9 [73,82]

II-P2s þ Va-P5s-Xa-P10s N II-P2s-Va-P5s-Xa-P10s 0.1 0.05 1 – [73,82]

II-P2s-Va-P5s-Xa-P10s ! IIa-P2s þ Va-P5s-Xa-P10s – – 30 1 [73,82]

VIIIa-P8s þ IXa-P9s N VIIIa-P8s-IXa-P9s 0.1 0.4 – [73,82]

VIIIa-P8s þ IXa-P9s* N VIIIa-P8s-IXa-P9s* 0.1 0.4 – [73,82]

Va-P5s þ Xa-P10s N Va-P5s-Xa-P10s 1 1 – [73,82]

Xa-P10s þ IX-P9s N Xa-P10s-IX-P9s 1.0 3 10�3 1.5 – [83]

Xa-P10s-IX-P9s ! Xa-P10s þ IX-P9s – – 2.3 3 10�2 [83]

APC þ VIIIa-P8s N APC-VIIIa-P8s 0.12 1 – [73]

APC-VIIIa-P8s ! APC þ VIIIa-P8s-i – – 0.5 [73]
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tively consistent with in vitro observations (Figure 2E). The
fraction of variation explained by the model (Table 2) was
found to be inversely proportional to TF–FVIIa input
strength. In the absence of inhibitor, thrombin generation
was characterized by two regimes; at first, FXa generated
thrombin in the bulk fluid, and then subsequently, the
thrombin signal was amplified by activity of FVa–FXa surface
complex (prothrombinase). Decreasing the TF–FVIIa input
prolonged the initiation phase as it slowed the rate of
generation of FXa and thrombin in the bulk. However, TF–
FVIIa input strength did not influence the maximal rate of
thrombin formation because this is surface dominated; this
was observed by comparing the slope or total net rate of
thrombin generation across the TF–FVIIa cases.

TFPI and ATIII influenced both the initiation and
amplification of the FIIa signal (Figure 2A and 2B). Increased
TFPI concentration lead to a longer initiation delay and a
decreased rate of FIIa amplification (Figure 2A). TFPI delayed
initiation through interaction with free FXa and TF–FVIIa in
an FXa-dependent manner; sequestering FXa reduced flux
through the initial FXa-dependent route of FIIa generation.
Thrombin amplification was negatively impacted by TFPI by
reducing free FXa available for the formation of the FVa–FXa
surface complex. On average, the model explained 95% of
the TFPI dynamics; one exception was the 2.5 nM TFPI case
(Figure 2A), where the correlation between model and

experiment was 0.90. In contrast, ATIII reversibly binds FIXa,
FXa, and TF–FVIIa, and irreversibly inactivates FIIa. ATIII
produced a different thrombin generation profile when
compared with TFPI (Figure 2B). ATIII influenced FIIa
initiation by sequestering FXa (a mechanism similar to TFPI)
and inactivated FIXa, thereby decreasing the rate of
formation of the FVIIIa–FIXa surface complex. However,
unlike TFPI, ATIII directly inactivated FIIa, leading to the
decreasing FIIa concentration observed experimentally.
While the model captured the qualitative features of ATIII
(3.4 lM) activity, the correlation between the model and
experiment was 0.68, indicating that slightly more than half
of the FIIa dynamics were correctly described. The combina-
tion of TFPI (2.5 nM) and ATIII (3.4 lM), consistent with the
experiment, completely quenched FIIa formation following
TF–FVIIa addition.
Simulations of APC generation and inhibition of thrombin

formation in the presence and absence of TM were qual-
itatively consistent with in vitro data (Figure 2C and 2D). APC
was generated from PC via TM-dependent and -independent
routes; the TM-dependent route catalyzes the conversion of
PC to APC at a rate 400-fold greater than the thrombin route
alone [41]. Three different TM concentrations were simulated,
and the time course of APC and FIIa were compared with
published data [41]. The correlation between model and
experimental data for APC was approximately 96% for TM

Table 1. Continued.

Reaction kþ (nM�1s�1) k� (s�1) kc (s�1) Source

APC þ Va-P8s N APC-Va-P8s 0.12 1 – [73]

APC-Va-P8s ! APC þ Va-P8s-i – – 0.5 [73]

APC þ Va-P5s-Xa-P10s N APC-Va-P5s-Xa-P10s 0.12 1 – [73,77]

APC-Va-P5s-Xa-P10s ! APC þ Va-P5s-Xa-P10s-i – – 0.5 [73,77]

APC þ VIIIa-P8s-IXa-P9s N APC-VIIIa-P8s-IXa-P9s 0.12 1 – [73,77]

APC-VIIIa-P8s-IXa-P9s ! APC þ VIIIa-P8s-IXa-P9s-i – – 0.5 [73,77]

APC þ VIIIa-P8s-IXa-P9s* N APC-VIIIa-P8s-IXa-P9s* 0.12 1 – [73,77]

APC-VIIIa-P8s-IXa-P9s* ! APC þ VIIIa-P8s-IXa-P9s*-i – – 0.5 [73,77]

TFPI þ Xa N TFPI-Xa 1.6 3 10�3 3.3 3 10�4 – [73,82]

TFPI-Xa þ VIIa-TF N TFPI-Xa-VIIa-TF 1.0 3 10�3 1.1 3 10�3 – [73]

TFPI þ Xa-VIIa-TF N TFPI-Xa-VIIa-TF 0.32 1.1 3 10�4 – [78]

IIa ! IIa-i – – 1.35 3 10�4 [78]

ATIII þ IXa N ATIII-IXa 4.9 3 10�7 1.0 3 10�9 – [73,78]

ATIII-IXa ! ATIII þ IXa-i – – 4.9 3 10�7 [73,78]

ATIII þ Xa N ATIII-Xa 2 3 10�4 1.0 3 10�9 – [73,78]

ATIII-Xa ! ATIIIþXa-i – – 1.5 3 10�6 [73,78]

ATIII þ IIa N ATIII-IIa 1.5 3 10�5 1.0 3 10�9 – [73,78]

ATIII-IIa ! ATIII þ IIa-i – – 4.75 3 10�6 [73,78]

ATIII þ VIIa-TF N VIIIa-TF-ATIII 2.5 3 10�7 1.0 3 10�9 – [78]

PC þ IIa N PC-IIa 1.003 3 10�6 1.0 3 10�9 – [41,77]

PC-IIa ! APC þ IIa – – 1.67 3 10�4 [41,77]

IIa þ TM N IIa-TM 3.0 3 10�2 4.5 3 10�2 – [41]

IIa-TMþ PC N IIa-TM-PC 1.4 3 10�4 0.5 – [41]

IIa-TM-PC ! IIa-TM þ APC – – 40 [41]

The mode consists of 92 protein or protein complexes and 148 interactions. The kinetics of binding and reaction interactions are assumed to follow mass action rate laws where kþ
denotes the on rate constant, k� denotes the off rate constant, and kc denotes the catalytic rate constants. All binding interactions are assumed to be reversible. Values for the kinetic
parameters and network structure were taken from the literature, see [41,73,77,78,82,83]. Of the 148 parameters in the model, 138 were taken directly from literature or have a literature
basis. Only ten of 148 parameters have no direct literature source; of these, nine of ten parameters correspond to interactions of APC with the FVIIIa–FIXa and FVa–FXa surface complexes.
The parameter values governing the interaction of APC with FVIIIa–FIXa/FVa–FXa were approximated by literature values describing the interaction of APC with FVa and FVIIIa in plasma.
The remaining unknown parameter was the rate constant governing the nonspecific inactivation of FIIa (IIa ! IIa-i); we have assumed an arbitrary small value for this parameter. Last,
there were differences in in vitro assay temperatures from which parameters were taken; parameter values were adjusted to the assay temperature of Mann and coworkers (T1¼37 8C). (1)
Rate constant adjusted to T1¼ 37 8C from T2¼ 25 8C using the Arrhenius law, where Ea¼ 21kJ, R¼ 8.314 gmol/K; (2) rate constant adjusted to T1 ¼ 37 8C from T2¼ 22 8C using the
Arrhenius law.
doi:10.1371/journal.pcbi.0030142.t001
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values � 1 nM. However, the average correlation between the
predicted and measured FIIa profile for TM � 1 nM was 67%.
Simulations of the TM 10 nM case failed to quantitatively
capture both APC and FIIa formation; the correlation
between model and experiment for APC in the presence of
10 nM TM was 49%, while 57% of the FIIa dynamics were
correctly described.

In vivo, amplification of the thrombin signal requires the
surface of activated platelets. Preliminary simulations of
simultaneous platelet activation and thrombin formation
(Figure 2F) were found to be consistent with the results of the
cell-based coagulation assay of Roberts and coworkers [40].
The correlations between the measured and the simulated
fraction of activated platelets and thrombin were 0.94 and

0.89, respectively. In contrast with coagulation in synthetic
plasma, lag periods were observed for platelet activation and
thrombin generation. Following the initial lag, the activated
platelet concentration increases rapidly to a plateau of
;100% activation. The thrombin concentration reaches a
maximum of ;55 nM at 30 min and then decreases to ;0 nM
at 70 min because of ATIII activity. Three parameter values
were changed in the cell-based assay simulations compared
with synthetic plasma; the rate constant controlling the
activation of subendothelial bound platelets by thrombin was
changed from 9.0 3 10�3 s�1 to 4.5 s�1, the activation of
prothrombin by prothrombinase was changed from 30 s�1 to 6
s�1, and the binding of ATIII to thrombin was changed from
1.5 3 10�5 nM�1s�1 to 4.8 3 10�5 nM�1s�1.

Figure 2. Model Validation Using Published In Vitro Datasets

(A) Thrombin concentration versus time as a function of TFPI concentration following the addition of 1.25pMTF–FVIIa to synthetic plasma.
(B) Thrombin concentration versus time for different combinations of TFPI and ATIII following the addition of 1.25pM TF–FVIIa to synthetic plasma.
(C) APC concentration versus time as a function of TM concentration following the addition of 1.25pM TF–FVIIa to synthetic plasma.
(D) Thrombin concentration as a function of time as a function of TM concentration following the addition of 1.25pM TF–FVIIa to synthetic plasma.
(E) Thrombin concentration versus time as a function of TF–FVIIa initiation strength in synthetic plasma.
(F) Fraction of activated platelets and thrombin concentration as a function of time in the cell-based assay.
The synthetic plasma assay cases were reproduced from Mann and coworkers [31,41], while the platelet activation data in (F) were reproduced from
Roberts et al. [40]. The GraphClick software (Arizona Software, http://www.arizona-software.ch) was used for data extraction where a coefficient of
variation (CV) of 610% was added to the data to account for extraction and experimental error. Initial conditions for all simulations are given in
Protocol S1.
doi:10.1371/journal.pcbi.0030142.g002
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The Fragility and Robustness of the Coagulation
Architecture

Overall state sensitivity coefficients were calculated for
treatment cases A–D shown in Table 4. The top 25 fragile
mechanisms for the control (case A) are shown in Table 3;
four of the top five fragile mechanisms involve the binding or
activation of fX/FXa, with the fifth being platelet activation by
FIIa. Other sensitive mechanisms include the formation of
the FVa–FXa surface complex, the activation of thrombin by
the FVa–FXa complex, and the activation of surface or fluid
phase fIX and fV. Fragility is spread across initiation and
amplification mechanisms; 14 of 25 fragile mechanisms were
upstream of the FVa–FXa or FVIIIa–FIXa surface complexes,
while the remaining 11 involved platelet activation, FVa–FXa
activity, and FIIa inactivation. Binding interactions were
found to be the majority of fragile mechanisms; 21of 25 of the
top fragile points were binding interactions. Six paired
binding interactions were found to be sensitive, indicating
affinity was controlling in these cases; the exception was the
TF–FVIIa-X and Va-P5s-Xa-P10s complexes, where on rate,
catalytic turnover, and off rate were all found to be sensitive.
Of the predicted robust mechanisms, the most nonintuitive
were the formation and activity of the FVIIIa–FIXa surface
complex responsible for FXa amplification.

Statistically significant changes in overall sensitivity coef-
ficients relative to the control were used to gauge the
importance of mechanisms in each treatment case. For
example, if the sensitivity of a binding interaction increased
relative to the control (became more fragile), then that
interaction assumed increased importance in the treatment
case. Conversely, a decrease in sensitivity relative to the
control (mechanism became more robust) indicated a
decrease of the overall impact of the mechanism. The
anticoagulants TFPI and ATIII modulate thrombin formation

by different mechanisms and have distinct regions of
molecular influence. Although ATIII and TFPI share a
common target (FXa), only two of 15 significant OSSC shifts
were shared between the treatment cases (cases B and C)
relative to the control (case A). TFPI was found to influence
thrombin formation primarily through the FXa-specific
interaction with TF–FVIIa; there were 13 mechanisms whose
OSSC values changed significantly in response to TFPI (case A
versus case B), nine of which become more robust, while two
become more fragile (Figure 3B). TFPI reduced the fragility
of the affinity of fIX and fX for TF–FVIIa, the sensitivity of
TF–FVIIa-mediated formation of FXa, the affinity of FXa for
fluid phase fIX, the stability of the TF–FVIIa complex, and the
binding of fX and FXa with free-platelet binding sites.
Conversely, TFPI increased the fragility of the off rate
governing the disassociation of FXa from platelet binding
sites and the interaction of itself with FXa. While ATIII had a
more pronounced effect on FIIa generation than TFPI alone
(Figure 2B), only four mechanisms were significantly affected
by ATIII (case A versus case C). ATIII influenced thrombin
formation through direct interaction with FXa and FIIa;
ATIII reduced the sensitivity of the affinity of FXa for fIX in
the fluid phase, while the on rate governing the binding of
FXa and FIIa with ATIII was found to be of increased
importance.
The predicted mechanism of action of anticoagulant

combinations is not equivalent to the union of the individual
treatment cases. The combination of TFPI þ ATIII (case D)
resulted in 14 statistically significant shifts relative to the
control. Initiation mechanisms, e.g., the affinity of TF–FVIIa
for fX and the affinity of FXa for fIX in the bulk fluid, were
predicted to be less important. Conversely, the sensitivity of
the off rate governing FXa interaction with the platelet
surface was found to increase. Some amplification mecha-

Table 2. Quantification of Model Error

Simulation Normalized Standard Error Correlation r2

FVIIa–TF simulations 5 nM 0.12 0.80

500 pM 0.08 0.93

50 pM 0.08 0.96

10 pM 0.07 0.97

5 pM 0.06 0.98

TFPI simulations 0 nM 0.07 0.96

1.0 nM 0.06 0.98

2.5 nM 0.13 0.90

5.0 nM 0.06 0.96

ATIII and TFPI simulations No TFPI þ no ATIII 0.03 0.99

2.5 nM TFPI þ no ATIII 0.03 0.99

3.4 lM ATIII 0.21 0.68

2.5 nM TFPI þ 3.4 lM ATIII ND ND

APC þ TM simulations 0 nM TM (APC) 0.07 0.95

1 nM TM (APC) 0.06 0.97

10 nM TM (APC) 0.29 0.49

0 nM TM (FIIa) 0.45 0.51

1 nM TM (FIIa) 0.19 0.82

10 nM TM (FIIa) 0.69 0.57

Platelet activation and thrombin simulations Platelet activation 0.12 0.94

Thrombin 0.15 0.89

The normalized standard error and the correlation (defined in the text) were calculated for each of the validation simulations. The majority of error metrics indicate the model is able to
describe the formation of FIIa in response to coagulation initiation by TF–FVIIa with the exception of simulations involving ATIII and APC.
doi:10.1371/journal.pcbi.0030142.t002
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nisms became more robust, while others became fragile. The
activation of platelets by FIIa via the protease-activated
receptor family of surface receptors became less important,
but the retention of FXa and the affinity of the surface FVa–
FXa complex increased in importance. Last, trivial inter-
actions resulting from the addition of TFPI and ATIII (the
direct interactions of TFPI and TF–FVIIa in an FXa-depend-
ent manner and ATIII with FXa) were predicted to become
fragile relative to the control. Shifts in sensitivity coefficients
were not additive across treatment cases; e.g., the compilation
of significant shifts resulting from TFPI and ATIII addition
was found not to be equivalent to the combination treatment.
Of the 14 significant shifts observed in the TFPIþATIII case
(relative to the control), four mechanisms found to be
sensitive in the individual cases were missing in the
combination, while three novel shifts were observed. Inter-
action of fX/FXa with surface binding sites and the
disassociation of the TF–FVIIa complex were found not to
be significantly different than the control. The novel shifts in
the TFPI þ ATIII combination were all amplification
mechanisms; the catalytic rate of IIa formation by FVa–FXa
and the rate of platelet activation by IIa were found to be less
important in the ATIIIþTFPI combination, while interaction
of surface-bound fV and FXa was found to increase in
importance.

Discussion

The predicted fragile mechanisms in the control are
molecular targets in current anticoagulation preclinical
development, clinical therapies, and clinical trials. Four of

the top five fragile mechanisms involved fX/FXa or the
activation of platelets by FIIa. Anti-fX/FXa and direct
thrombin inhibitors (DTIs) are two important classes of
anticoagulants (see Table 5 for a sampling of current clinical
trials involving anti-fX/FXa strategies and DTIs). Fondapar-
inux, a 1.7 kDa pentasaccharide which selectively binds ATIII,
is approved for the prevention of venous thromboembolism
following hip fracture surgery, total hip replacement, total
knee replacement, and major abdominal surgery in addition
to the initial treatment of patients with deep venous
thrombosis and pulmonary embolism [42–47]. Fondaparinux
increases the natural inhibitory effect of ATIII against FXa
approximately 300-fold [48,49]; selective inhibition of FXa by
fondaparinux interrupts thrombin generation and clot
formation without inactivating thrombin itself [50,51].
Elalamy and coworkers showed in a whole-blood in vitro
assay that fondaparinux prolonged the lag time of prothrom-
bin activation for all concentrations explored, and for
physiologically relevant concentrations (0.11–0.28 anti-FXa
IU/ml), reduced the maximal rate of thrombin formation to
approximately 47%–55% of its nominal value [52]. Herbert
and colleagues explored fondaparinux and the sulfated
analog SANORG 32701 in in vivo mouse, rat, and rabbit
coagulation models [53,54]; SANORG 32701 has a high
affinity for ATIII (Kd¼ 3.7 6 0.7 nM) and shows more potent
anti-FXa activity (1,100 6 31 versus 850 6 21 U/mg for
fondaparinux). DTIs have also been explored as anticoagu-
lants [55]. Thrombin activity is mediated by three protein
domains: an active site catalyzing protease activity and two
exosites controlling substrate binding [56]. Our sensitivity

Table 3. The 25 Most Fragile Coagulation Mechanisms in the Absence of Inhibitors

l 6 r Reaction Description

0.85 6 0.12 TF–FVIIa-Xa ! TF–FVIIaþXa X activation by TF–FVIIa (catalytic)

0.85 6 0.21 XþP10s N X-P10s X binding with platelet active sites (on)

0.85 6 0.21 X-P10s N XþP10s X binding with platelet active sites (off)

0.83 6 0.22 XaþP10s N Xa-P10s Xa binding with platelet active sites (on)

0.77 6 0.17 PL-IIa ! APþIIa Platelet activation by thrombin (catalytic)

0.62 6 0.18 XþTF-FVIIa N X-TF-FVIIa X binding with TF–FVIIa (on)

0.57 6 0.28 II-P2s-Va-P5s-Xa-P10s ! IIa-P2sþVa-P5s-Xa-P10s IIa activation by prothrombinase (catalytic)

0.53 6 0.20 XaþIX N Xa-IX Binding of IX by Xa (on)

0.52 6 0.25 II-P2s þ Va-P5s-Xa-P10s N II-P2s-Va-P5s-Xa-P10s IIa interaction with prothrombinase (on)

0.50 6 0.18 Xa-IX N Xa þ IX Binding of IX by Xa (off)

0.48 6 0.19 X þ TF-FVIIa N X-TF-FVIIa X binding with TF–FVIIa (off)

0.38 6 0.17 IX þ TF-FVIIa N IX-TF-FVIIa Binding of IX by TF–FVIIa (on)

0.38 6 0.17 Va-P5s þ Xa-P10s N Va-P5s-Xa-P10s Formation of prothrombinase (on)

0.35 6 0.17 Va-P5s þ Xa-P10s N Va-P5s-Xa-P10s Formation of prothrombinase (off)

0.31 6 0.18 IIa þ P2s N IIa-P2s IIa binding with platelet active sites (off)

0.31 6 0.17 IX þ TF–FVIIa N IX-TF–FVIIa Binding of IX by TF–FVIIa (off)

0.23 6 0.19 V-P5s þ IIa-P2s N V-P5s-IIa-P2s Activation of V by IIa (on)

0.23 6 0.10 PL þ IIa N PL-IIa Activation of platelets by IIa (on)

0.22 6 0.10 TF–FVIIa N TF þ FVIIa Interaction of FVIIa with TF (off)

0.20 6 0.08 IX þ P9s N IX-P9s IX binding with platelet active sites (on)

0.20 6 0.08 IX þ P9s N IX-P9s IX binding with platelet active sites (off)

0.19 6 0.08 X þ II N X-II X binding with II (on)

0.19 6 0.13 II þ P2s N II-P2s II binding with platelet active sites (on)

0.18 6 0.10 IIa ! IIa-i IIa inactivation (catalytic)

0.18 6 0.15 IX-P9s þ Xa-P10s N IX-P9s-Xa-P10s IX binding with Xa on platelet surface (on)

A family of random parameter sets (N¼ 100) was generated by perturbing the nominal parameters by up to 650%. OSSCs were calculated for each random family member where the
resulting OSSC values for each parameter were scaled by the maximum OSSC. Statistics of the population of scaled OSSC values were computed, and the mean OSSC value (l) 6 1
standard deviation (r) is reported.
doi:10.1371/journal.pcbi.0030142.t003
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analysis predicts thrombin activation of platelets is a key
mechanism; Sarich et al. have explored the DTI ximelagatran
in healthy male volunteers [57]. Thrombin generation,
platelet activation, and the thrombin–antithrombin complex
were monitored in shed blood collected from skin incisions in
120 healthy male volunteers following oral administration of
ximelagatran. Oral ximelagatran showed a rapid and statisti-
cally significant decrease in all endpoints relative to control.
When taken together, the fondaparinux, SANORG 32701, and
ximelagatran results present a clinical basis in both in vitro
and in vivo coagulation studies for the prediction that fX/FXa
and IIa are fragile components of the coagulation architec-
ture.

Mechanisms involving fIX/FIXa, consistent with multiple
lines of experimental evidence, were predicted to be

moderately robust. Feuerstein et al. explored inhibition of
fIX/FIXa using a murine anti-fIX/FIXa antibody (BC2) in a
male Sprague-Dawley rat model [58]. The fIX/FIXa activity
and the activated partial thromboplastin time (aPTT)
endpoints were monitored ex vivo following intravenous
infusion of the BC2 antibody. Feuerstein et al. found that fIX/
FIXa activity could be reduced by as much as 2.5-fold before
any significant change in the aPTT was observed; only after
.90% of the fIX/FIXa activity was eliminated was there a 3.5-
to 4-fold increase in aPTT. Benedict et al. explored the
contribution of fIX/FIXa to intravascular thrombosis in a
canine coronary thrombosis model [59]. Animals received an
intravenous bolus of saline (vehicle), bovine glutamyl-glycyl-
arginyl-FIXa (FIXai; a competitive inhibitor which prevents
the assembly of the FVIIIa–FIXa complex [60–62]), bovine fIX,

Figure 3. Sensitivity Analysis of the Coagulation Cascade

OSSC values were calculated using randomly generated parameter sets constructed by perturbing the nominal parameter set by up to 650% for each
parameter (N ¼ 100).
(A–C) The x-axis denotes the trial index (index of the random parameter set), while the y-axis denotes the fragility index. The fragility index is calculated
by determining the parameter index of the rank-ordered the OSSC values (the parameter index corresponding to the most fragile parameter has
fragility index of 1; the next fragile is 2, while the most robust parameter has a fragility index of 148). The fragility index shows the robustness of a
parameter; the smaller the fragility index, the more fragile the parameter. The parameter types are color-coded (shown in the color bar) and organized
by biological function: 1–16, subendothelium interactions; 17–40, plasma interactions; 41–62, platelet surface binding; 63–77, platelet activation; 78–
107, reactions on platelet surface; and 108–148, inhibitory reactions.
(D–F) The OSSC values from the TFPI, ATIII, and TFPI þ ATIII cases versus the control.
doi:10.1371/journal.pcbi.0030142.g003
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or heparin. Animals that received saline or bovine fIX
developed a coronary occlusion due to a fibrin/platelet
thrombus in approximately 1 h; conversely, FIXai decreased
coronary thrombus occlusion in a dose-dependent manner.
However, FIXai administration was not accompanied by
increased bleeding at abdominal and chest-wall incision sites,
leading Benedict et al. to conclude, consistent with the earlier
work of Weiss and Lages [63], that direct TF-FVIIa–mediated
activation of fX may be the primary mechanism of fX
activation in blood obtained from bleeding wounds. While
our prediction that FVIIIa–FIXa-mediated fX activation is
robust is consistent with Benedict et al., the robustness of fIX
mechanisms should be further explored using in vivo animal
models or cell-based assays to control for artifacts introduced
by the synthetic plasma model.

Overall state sensitivity coefficients and shifts in sensitivity
provide insight into the potential method of action of
coagulation inhibitors, including synergistic effects, but are
not predictors of clinical performance. The naive perspective
that a specific inhibitor influences only its target and nothing
else is not consistent with our sensitivity analysis. Consider
the sensitivity results for TFPI; 13 different mechanisms were
predicted to change significantly relative to the control.
These shifts included not only the direct interactions of TFPI
with FXa and TF–FVIIa, but also secondary effects like FXa
interaction with fluid phase fIX. Moreover, the direction of
shift, i.e., toward sensitivity or robustness, gives insight into
the mechanism of action and the response of the network to

the anticoagulant. In the case of TFPI, parameters associated
with fluid phase FXa activity became more robust relative to
the control, indicating these mechanisms were of decreased
importance. Conversely, the off rate governing the disasso-
ciation of surface-bound FXa became more fragile relative to
the control; keeping FXa bound became important as only
fluid phase FXa binds TFPI in our model. However, while
shifts in sensitivity coefficients might be a useful predictor of
the network response, they are not predictors of clinical
performance. No information about practical issues in
patients, e.g., bioavailability, therapeutic window, unexpected
toxicities, etc., was gained from sensitivity analysis of the
network in isolation. Perhaps embedding the network into a
pharmacokinetic or physiologically based pharmacokinetic
(PBPK) model and then exploring the sensitivity profile of the
augmented system could give insight into factors such as
bioavailability and therapeutic window.
Despite parametric and structural uncertainty, the model

captured the bulk of the thrombin generation dynamics
resulting from TF–FVIIa-initiated coagulation in the pres-
ence and absence of natural anticoagulants. However, several
challenges remain before the model is relevant to in vivo
phenomena. First, pro- and anti-platelet activation mecha-
nisms operating on the endothelium should be refined and/or
included in the model. Predicted thrombin and APC
concentrations in the presence of TM were not consistent
with in vitro synthetic plasma measurements for TM
concentrations .10 nM. The discrepancy between IIa and
APC values remained despite changes in parameters indicat-
ing a potential structural issue with the model. Also not
considered was the active role played by the endothelium;
endothelial cells secrete anticoagulants (e.g., nitric oxide [NO]
and prostacyclin) and express surface proteins (e.g., CD39).
CD39 inhibits platelet activation by converting adenosine
diphosphate, a potent inducer of platelet activation, into
adenosine monophosphate [64]; however, CD39 may play a
dual role, as Eniyoji et al. showed DCD39 mice had prolonged
bleeding times and decreased platelet activation [65]. Second,
the predicted fraction of activated platelets and the concen-
tration of key complexes on the platelet surface need to be
quantified under a variety of conditions. Initial simulations of
simultaneous thrombin formation and platelet activation
were consistent with the cell-based assay of Roberts and

Table 4. Treatment Cases Considered in the Sensitivity Analysis

Case FVIIa–TF (pM) TFPI (nM) ATIII (lM) PC (nM) TM (nM)

A 1.25 — — — —

B 1.25 2.5 — — —

C 1.25 — 3.4 — —

D 1.25 2.5 3.4 — —

Case A denotes the control. With the exception of case E, model simulations of each of
the treatment cases have been validated against experimental data taken from Mann and
coworkers [73–78].
doi:10.1371/journal.pcbi.0030142.t004

Table 5. Ten Example Clinical Trials for FXa and Direct Thrombin Inhibitors

Trial Identifier Treatment Purpose Target Mechanisms

NCT00412464 Fondaparinux Dose/PK study in thrombotic children ATIII-dependent FXa inhibitor

NCT00413374 Enoxaparin Outpatient treatment for DVT and/or PE ATIII-dependent FXa inhibitor

NCT00423683 Arixtra Clot prevention in cancer patients ATIII-dependent FXa inhibitor

NCT00245856 Fragmin Treatment of upper extremity DVT ATIII-dependent FXa/FIIa inhibitor

NCT00353678 YM150 Prevention of clot formation following HRS Direct FXa inhibitor

NCT00371683 Apixaban Prevention thrombosis following KRS Direct FXa inhibitor

NCT00180674 Ximelagatran Anticoagulation in liver fibrosis Direct II/IIa inhibitor

NCT00334464 Warfarin Establish pharmacogenetic warfarin dosing FVII, IX, X, and II inhibitor

NCT00206089 Melagatran/ximelagatran Safety and efficacy of combination treatment Direct II/IIa inhibitor

NCT00206063 Ximelagatran Long-term tolerability of ximelagatran treatment Direct II/IIa inhibitor

Clinical trial information was assembled on May 15, 2007, from http://ClinicalTrials.gov using the search terms thrombosis and thromboembolism, where both open and closed trials were
accepted; the search generated 215 clinical trials for thrombosis and 51 studies for thromboembolism. DVT, deep venous thrombosis; HRS, hip replacement surgery; KRS, knee replacement
surgery; PE, pulmonary embolism.
doi:10.1371/journal.pcbi.0030142.t005
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coworkers [40] (after changing three parameter values).
However, these simulations and the cell-based assay were
conducted assuming no flow and no regulatory input from
the endothelium. Moreover, given the role that activated
platelets play in the amplification of the thrombin signal, the
predicted concentration of key complexes on the platelet
surface, e.g., the FVIIIa–FIXa and FVa–FXa complexes, need
to be validated. Third, the cell biology of coagulation and clot
formation must be embedded in a description of physics
occurring in clot formation. Several researchers have ex-
plored the role that blood flow plays upon the formation of
clots. Antaki and coworkers developed a 2-D model of
platelet deposition and activation in flowing blood [66]. The
Antaki model was able to describe the axial platelet
deposition on collagen under parallel-plate Poiseuille flow
for a range of wall shear rates [67]. Diamond and coworkers
have produced a rich body of work exploring the reaction
complexity of human blood, cell aggregation, and adhesion
under flow as well as the formation of key complexes on the
surface of activated platelets under flow conditions, and
established high-throughput techniques for real-time mon-
itoring of coagulation dynamics. They have done stochastic
modeling of the initiation of coagulation [68–72]. These
literature sources (and others) will form the basis of our
future development.

Materials and Methods

Formulation of the model equations. The reactions considered in
the coagulation model were compiled from literature and are given
in Table 1. Mass balance equations were written around each protein
or protein complex yielding the set of differential equations (vector
form):

dx
dt
¼ f ¼ Srðx; kÞ xðtoÞ ¼ xo ð1Þ

The symbol S denotes the stoichiometric matrix (92 3 148), while x
denotes the concentration vector of proteins or protein complexes
(923 1) and r(x,k) denotes the vector of reaction rates (1483 1). Each
row in S describes a particular protein or protein complex, while
each column describes the stoichiometry associated with a specific
interaction in the network. Thus, the (i,j) element of S, denoted by rij,
describes how protein i is connected to rate process j. If rij , 0, then
protein i is consumed in rj; conversely, if rij . 0, protein i is produced
by rj, and if rij¼ 0, there is no connection between protein i and rate
j. We have assumed mass action kinetics for each interaction in Table
1; under the mass action assumption, the rate expression for the
general reaction q: X

j2fRqg
rjqxj !

X
k2fPqg

rkqxk ð2Þ

is given by:

rqðx; kqÞ ¼ kq
Y

j2fRqg
x�rjq

j ð3Þ

where fRqg denotes the set of reactants for reaction q, fPqg denotes
the product set for reaction q, kq denotes the rate constant governing
the qth reaction, and rjq, rkq denote stoichiometric coefficients
(elements of the matrix S). We have treated every rate as nonnegative;
all reversible reactions in Table 1 were split into two irreversible
reaction steps. Thus, every element of the reaction rate vector r(x,k)
takes the form shown in Equation 3.

The model equations were solved using the LSODE routine of the
OCTAVE programming environment (http://www.octave.org; version
2.1.71) on an Apple Computer MacOSX (http://www.apple.com;
v10.4.8) workstation. Model parameters and structure were compiled
from literature; see Table 1 and [73–78]. Initial conditions were taken
from each experiment and roughly correspond to in vivo physio-
logical conditions (see Protocol S1). While the model presented here
was developed from literature (including other models), it is, to the
best of our knowledge, the only coagulation model to simultaneously

describe all 21 datasets, including coupled platelet and thrombin
activation and the activity of three different anticoagulants, using
only minimal parameter variation (three-parameter change for a
single case).

Error analysis of the coagulation simulations. The correlation
between model simulations and experimental data and the scaled
standard error were used to quantify the simulation uncertainty. The
correlation between simulation and experimental observation was
calculated using the relationship:

r2 ¼

XNT

k¼1
ðYmðtkÞ � �YÞ2

XNT

k¼1
ð �YðtkÞ � YmðtkÞÞ2 þ

XNT

k¼1
ðYmðtkÞ � �Y Þ2

ð4Þ

where Ym(tk) denotes the model value at time point k, �Y denotes the
global average experimental value (average of experimental measure-
ments over time), �YðtkÞ denotes the average experimental value at
time point k (average of experimental trials at a single time point),
and NT denotes the number of time points. The numerator of
Equation 4 is the variation in the experimental data explained by the
model, while the denominator is the total variation; thus, Equation 4
describes the fraction of the dynamics explained by the model across
all time points. In addition to correlation, the scaled standard error
was used to measure the agreement between the model and
experiment:

sE ¼
1

maxkð �YðtkÞÞ

XNT

k¼1
ð �YðtkÞ � YmðtkÞÞ2

NT

0
BBBB@

1
CCCCA

1=2

ð5Þ

Both error metrics were taken from Spiegel [79].
Computation of the OSSCs. The sensitive or fragile elements of the

coagulation architecture were determined by computing OSSCs [26].
Because each parameter corresponds directly to a particular
molecular interaction in the cascade, OSSC values were used to
gauge which elements of the architecture influence thrombin
formation; large OSSC values for parameters relative to their peers
indicates fragility or sensitivity, while small OSSC values indicates
robustness. OSSC values were calculated by first calculating the first-
order sensitivity coefficients:

rijðtkÞ ¼
@xi
@pj

�����
tk

ð6Þ

which are solutions of the differential equation:
dsj
dt
¼ AðtÞsj þ bjðtÞ j ¼ 1; 2; :::;P ð7Þ

subject to the initial condition sj(t0)¼ 0. In Equation 7, the quantity j
denotes the parameter index, P denotes the number of parameters, A
denotes the Jacobian matrix, and bj denotes the jth column of the
matrix of first-derivatives of the mass balances with respect to the
parameter values. The Jacobian matrix (A) and the matrix of first-
derivatives of the mass balances with respect to the parameter values
(B) are given by:

A ¼ @f
@x

�����
ðx� ;p�Þ

B ¼ @f
@p

�����
ðx� ;p�Þ

ð8Þ

where (x*,p*) denotes a point along the nominal or unperturbed system
solution. We solved Equation 7 for each parameter using the ODE15s
routine of Matlab R2006a (The Mathworks, http://www.mathworks.
com). The matrices A and B were estimated at each time step using a
generalized gradient algorithm [80]. The OSSC value for parameter j
defined as

Soj ðtÞ ¼
p�j
N

XNT

k¼1

XN
i¼1

1
x�i

@xi
@pj

� �2
tk

 !1=2

ð9Þ

was computed using the scaled first-order sensitivities. The quantity
NT denotes the number of time points used in the simulation, while N
denotes the number of proteins/protein complexes in the model. To
account for parametric uncertainty, the OSSC values (Soj ) were
calculated over a family of random parameter sets; we randomly
perturbed each nominal parameter by up to 6�50%, then solved the
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sensitivity balances for each family member. OSSC values were also
computed over a family of random parameter sets generated by
perturbing the nominal set by up to 62 orders of magnitude. The
large perturbation family produced similar results to those reported
here (see Protocol S1).

Statistical analysis of the shifts in OSSCs. Two different statistical
tests were performed to identify large statistically significant shifts in
the OSSC values between treatment cases. A Welch t-test [81] was
used to find all statistically significant shifts resulting from the
different treatments, and then a secondary test on the z-score of each
shift was performed to find only the most prominent significant
shifts. The OSSC values calculated over the family of random
parameter sets were assumed to follow normal distributions in each
treatment case. The standard test to determine if the means of
normal distributions are equal is the student t-test; however, the
student t-test assumes the two distributions in question have equal
variances. We cannot a priori guarantee this is true for the OSSC
distributions in different treatment cases; thus, we have chosen the
Welch t-test. The Welch t-test is very similar to the student t-test, with
the exception that the two distributions being compared are not
required to have equal variances. The statistical significance of shifts
in OSSC values for each treatment case relative to the control were
determined by performing a Welch t-test with the null hypothesis that
the means of the OSSC values were equal at a 1% significance level.
The list of significant OSSC values was further restricted to only those
shifts with a magnitude larger than a specified z-score (0.1) away from
the squared mean displacement over the significant OSSC values. We
defined the displacement of an OSSC value relative to the control as:

dj;q ¼ ð �S q
oj � �S c

oj Þ
2 j ¼ 1; 2; . . . ; 148 ð10Þ

where �Scoj denotes the mean OSSC value over the family of random
parameter sets for parameter j in the control, while �Sqoj denotes the

same quantity for treatment case q. A significant shift in OSSC value
was accepted if:

dj;q.zrdq þ ldq ð11Þ

where z denotes a desired z-score, rdj denotes the standard deviation
of the total displacement over all significant OSSC values for the qth
treatment case, and ldq denotes the mean of the significant displace-
ments for treatment case q.

Supporting Information

Protocol S1. Impact of Perturbation Size on the Prediction of Fragile
Mechanisms and the Initial Conditions for the Validation Simulations

Found at doi:10.1371/journal.pcbi.0030142.sd001 (156 KB PDF).
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