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Abstract

Background: Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis
C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are
difficult to detect and investigate. Molecular analysis has been frequently used in the study of HCV outbreaks and
transmission chains; helping identify a cluster of sequences as linked by transmission if their genetic distances are
below a previously defined threshold. However, HCV exists as a population of numerous variants in each infected
individual and it has been observed that minority variants in the source are often the ones responsible for transmission,
a situation that precludes the use of a single sequence per individual because many such transmissions would be
missed.
The use of Next-Generation Sequencing immensely increases the sensitivity of transmission detection but brings a
considerable computational challenge because all sequences need to be compared among all pairs of samples.

Methods: We developed a three-step strategy that filters pairs of samples according to different criteria: (i) a k-mer
bloom filter, (ii) a Levenhstein filter and (iii) a filter of identical sequences. We applied these three filters on a set
of samples that cover the spectrum of genetic relationships among HCV cases, from being part of the same
transmission cluster, to belonging to different subtypes.

Results: Our three-step filtering strategy rapidly removes 85.1% of all the pairwise sample comparisons and 91.0%
of all pairwise sequence comparisons, accurately establishing which pairs of HCV samples are below the
relatedness threshold.

Conclusions: We present a fast and efficient three-step filtering strategy that removes most sequence comparisons
and accurately establishes transmission links of any threshold-based method. This highly efficient workflow will allow a
faster response and molecular detection capacity, improving the rate of detection of viral transmissions with molecular
data.

Background
Hepatitis C virus (HCV) infects nearly 2.8% of the
world’s population and is a major cause of liver disease
worldwide [1]. HCV infection is an important US public
health problem, because it is the most common chronic
blood-borne infection and the leading cause for liver

transplantation [2]. Since 2007, HCV surpasses HIV as a
cause of death in the US [3]. It is estimated that 2.7 mil-
lion to 3.9 million people in the United States have
chronic HCV infection and that more than 15,000 die
each year from HCV-related disease, with mortality ex-
pected to rise in the coming years [4]. Approximately
80% of patients who become infected with HCV develop
chronic Hepatitis and are at risk for advanced liver dis-
ease; 15–30% of these patients have progression to liver
fibrosis and cirrhosis and up to 5% will die from liver
failure due to cirrhosis or hepatocellular carcinoma [2].
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Outbreaks of hepatitis C virus (HCV) infections are
associated with unsafe injection practices, drug diver-
sion, and other exposures to blood and blood products.
Given the long incubation period (up to 6 months) and
that HCV infections can remain asymptomatic in >70%
of infected persons for years, the detection and investi-
gation of Hepatitis C outbreaks is a challenging task.
Molecular phylogenetic analyses of RNA viruses have

been used frequently in the study of outbreaks and
transmission chains [5–9], usually by analysing a single
sequence per infected individual and comparing these
sequences to ascertain if their genetic distances are
below a previously defined threshold. However, HCV ex-
ists as a population of numerous variants in each in-
fected individual and it has been observed that minority
variants in the source are often the ones responsible for
transmission, a situation that precludes the use of a sin-
gle sequence per individual because many such trans-
missions would be missed [10]. Our laboratory has been
using molecular analysis of Viral Hepatitis populations
(rather than single sequence) for more than a decade
[11–14] with a simple and accurate threshold-based ap-
proach for detecting HCV transmissions that streamlines
molecular investigation of outbreaks, thus improving the
public health capacity for rapid and effective control of
hepatitis C [10].
Now with the advent of Next-Generation Sequencing

(NGS) we expect an increase in the sensitivity of trans-
mission detection due to the sampling of minority vari-
ants [10] but this advantage comes with a considerable
computational challenge because all sequences need to
be compared among all pairs of samples. For instance,
for our relatively small dataset of 401 samples, a total of
80200 pairwise sample comparisons are performed, which
account for 4.56 × 1010 pairwise sequence comparisons.

Given that the molecular surveillance of HCV is just start-
ing, this number will certainly grow in the near future and
the detection of transmission will soon become impracti-
cal. We present an efficient three-step filtering strategy
that removes 85.1% of all the pairwise sample compari-
sons and 91.0% of all pairwise sequence comparisons, ac-
curately establishing which pairs of HCV samples are
below the relatedness threshold.

Methods
Problem definition
Given P = {P1,P2,…}, a set of samples where each Pi is asso-
ciated with a set Si = {Si

1,Si
2, …} of homologous sequences,

enumerate all sample pairs (Pi, Pj) where any pairwise
sequence comparisons (Si

x, Sj
y) has an edit distance lower

than the relatedness threshold, T (see Fig. 1). Given that
every sample-pair needs to be considered, it yields an
O(n2) algorithm, where n is the number of samples.
However, we have observed than less than 1% of all

sample-pairs are linked by transmission in a typical study
(see Fig. 2). Therefore, an exhaustive search over all pairs
of sequences is very inefficient due to the fact that the
great majority of sample pairs are above T. Briefly, it
would be very advantageous to remove most of these pairs
in order to reduce the number of computations needed to
establish transmission on a set of samples.

Datasets
Sample description
We analyzed two set of files that cover the spectrum of
genetic relationships among HCV cases. The “Unrelated
dataset” is comprised of 401 HCV cases that are epide-
miologically unrelated to each other and were obtained
from national collections and other research projects
[15, 16]. The “Related dataset” is comprised of 18 HCV

Fig. 1 Transmission detection overview. In this example, there are 3 samples: Pi contains 3 different sequences, Pj contains 4 and Pk contains 3.
In addition, Pi and Pj are related, whereas Pk is unrelated to the other two. A total of 33 pairwise sequence comparisons must be performed to
find the minimal distance between each pair of samples. The rationale of our approach is to quickly remove the sample-pair comparisons with
zero probability of having a minimal distance lower than T
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cases from an outbreak where a surgical technician
diverted drugs and infected patients at a health-care set-
ting [17]. All samples in the related set are epidemiologi-
cally linked and their minimal edit distance is smaller
than T (3.77%). The average number of different se-
quences per sample is 534.3

Experimental methods
For each sample, we used the sequences obtained and
described in [10, 16]. Briefly, we amplified the E1/E2
junction of the HCV genome (306pb), which contains
the Hyper Variable Region 1 region) using our nested
PCR protocol as previously described [18]. PCR products
were pooled and subjected to pyrosequencing using GS
FLX Titanium Sequencing Kit (454 Life Sciences, Roche,
Branford, CT). Low-quality reads were removed using
the GS Run Processor v2.3 (Roche) and then processed
by matching to the corresponding identifier. The NGS
files were processed using the error correction algo-
rithms KEC and ET [19].

Algorithms
We developed a three-step strategy that filters pairs of
samples according to different criteria. Figure 3 shows
an overview of the filtering strategy.

K-mer bloom filter
For a sequence pair (Si

x, Sj
y) to be similar enough to link

two samples, the following condition must be satisfied:

the edit distance between Si
x and Sj

y is < LT (Length x T).
This means that when we align Si

x and Sj
y, the lower

bound of the maximal common substring is k = (L –
LT)/(LT + 1), which for our particular T would be 26.
We took advantage of this maximal common substring
requirement and created for each sample a Bloom filter
of all its 26-mers. A bloom filter is a space-efficient
probabilistic data structure supporting dynamic set
membership queries with false positives [20]. False posi-
tive matches are possible, but false negatives are not,
thus a Bloom filter has a 100% recall rate [20]. For any
pair of samples, we tested the intersection of k-mer sets:
If it is empty, the sample pair is considered unrelated
and removed from the sample-pair candidate list; if it is
non-empty, the sample pair may be related and remains
in the sample-pair candidate list.

Hamming radius filter
For each sample Pi in the database, we calculated and
stored the following: (i) its Multiple Sequence Alignment
(MSA); (ii) its Consensus, Ci, defined as the majority nu-
cleotide state at each position in the alignment; and (iii)
its Hamming radius, Ri, defined as the maximum edit
distance found between the consensus and all other vari-
ants of the sample.
For any pair of samples we calculated a sample distance,

Sd, defined as: Sd = dist(Ci, Cj) – (Ri + Rj). Each sample-
pair is tested in this fashion and if Sd is higher than LT, it
is removed from the sample-pair candidate list because
these two samples cannot have any sequence-pair with a
distance lower than T (see Fig. 4). If Sd is lower than the
threshold, the sample pair may be related and remains in
the sample-pair candidate list.

Identical sequences filter
We have previously estimated that 51.63% of sample-
pairs coming from the same transmission cluster share
at least one identical sequence [10]. Candidate pairs that
share one or more sequences do not be need to be fully
evaluated because their minimal distance is zero and
therefore are ensured to be below the T. We take advan-
tage of this fact to create a simple filter that quickly
identifies those sample-pairs sharing identical sequences.
In order to achieve this, we calculate for each sequence
in a sample its hash “fingerprint” with a standard crypto-
graphic function (MD5). The set of such strings is con-
structed for each sample file only once and then stored.
When comparing sample-pairs, we check for intersec-
tion in their hash sets and if the size of the intersection
is at least 1, then the sample-pair is considered related.
If it is not, the sample pair remains in the sample-pair
candidate list.

Fig. 2 Transmission network density This is an example of a real
HCV transmission network obtained during an outbreak study. A
link is drawn if the minimal edit distance between the two samples is
smaller than T, whereas the size of the node is proportional to its
genetic heterogeneity. In this particular example, only 0.8% of all
sample-pairs are linked by transmission

The Author(s) BMC Genomics 2017, 18(Suppl 4):372 Page 13 of 55



Detection of transmission
For each sample-pair remaining in the candidate list,
all its sequences are used to create a MSA, which is
then used to calculate the edit distance between every
pair of sequences. The two samples are considered re-
lated if the minimal edit distance between any of
their sequences is smaller than T.

All edit distances were calculated with HDIST, a
custom-made, highly optimized distance calculator
that minimizes processor pipeline stalls and takes
advantage of modern superscalar architecture. The
procedure involves breaking a sequence pair into con-
secutive 3-mers, converting them into base 5 integers
and using them as indices into a pre-calculated look-

Fig. 3 Overview of the filtering strategy

Fig. 4 Hamming radius filter. If Sd is higher than LT these two samples cannot have any sequence-pair with a distance lower than T
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up table. The choice of 3-mers was made by testing
different word sizes to maximize processor cache
memory hits.

Results
Filtering strategy
We developed a three-step strategy that filters pairs of
samples according to different criteria. The rationale of
the approach is that the great majority of sample pairs
are very different (unrelated) and it would be advanta-
geous to remove these pairs in order to reduce the
amount of computation needed to establish transmission
on a set of samples. Every sample-pair is still considered,
yielding an O(n2) algorithm, where n is the number of
samples. However, the 3-step filtering strategy efficiently
prunes most comparisons from the candidate list with
much lower computational effort than the full distance
calculation, even though both have the same order.

Filtering performance
For the Unrelated dataset, the whole algorithm can
be performed under 5 min on a desktop computer,
accurately removing 85.1% of all possible candidates
and 91.0% of all pairwise sequence comparisons. The
number of sample-pair candidates that are removed
by each filter can be seen in Table 1. On this dataset,
the best individual filter is the Hamming radius filter,
which removes 84.7 of all sample-pairs. Only 302
candidates are removed by the k-mer bloom filter that
are not removed by the Hamming radius filter,
whereas 15404 candidates are removed by the Ham-
ming radius that are not removed by the k-mer
Bloom filter. With regard to the overlap, 52234 candi-
dates are removed by both filters.
We studied the behavior of the bloom filter with dif-

ferent k-mer values. Figure 5 shows how the percentage
of removed sample-pairs increases with the value of k.
With our particular T value, the 26-mer bloom filter
removes 65.5% of all sample-pairs are removed. As the k
value increases, the percentage of removed sample-pairs
increase very quickly. For instance, a common related-
ness threshold used in HIV molecular epidemiology is
1%, which on this dataset yields a k-mer of 72 that filters
88.6% of all sample-pairs.
For the Related dataset, the whole algorithm can be

performed under 10 s on a desktop computer, accurately

identifying 51.6% of all possible candidates and removing
them from the workflow (see Table 2). On this dataset,
both the k-mer bloom and the Hamming radius filter do
not remove any candidates, as is expected given that all
of them are below T.

Implementation
The k-mer bloom filter was implemented in JAVA,
whereas the Hamming radius filter, the identical se-
quence filter and HDIST were implemented in Py-
thon and Cython. Although all the programs are
available upon request, they are part of our recently de-
veloped web system for the advanced molecular detec-
tion of HCV transmissions, the Global Hepatitis
Outbreak and Surveillance technology (GHOST, which
will be described elsewhere). The web system includes
the analytical methods described in this article, improv-
ing the accuracy and response time of transmission de-
tection by integrating epidemiological evidence, NGS
and data analysis. The tool is available to public health
laboratories to identify outbreaks by simply uploading
viral sequences.

Discussion
The utility of the “Identical sequences filter is only evi-
dent when there are samples coming from the same geo-
graphical region or from a suspected outbreak, as we
have previously estimated that 51.63% of sample-pairs
coming from the same transmission cluster share at least
one identical sequence [10].
The Hamming radius filter seems to be outperform-

ing the k-mer bloom filter on this dataset. However,
the Hamming radius filter requires a pre-calculation
step for each sample, which involves a MSA. This
MSA can be performed efficiently with MAFFT but it
has high memory requirements depending on the
number of sequences. Therefore, the Hamming radius
filter is contingent on the feasibility of the MSA,
whereas the k-mer bloom filter is alignment free. This
particular NGS dataset was obtained with 454 Life
Sciences, where the average number of different se-
quences per sample is 534.3. Our initial tests on the
Illumina MiSeq platform indicate that although the
number of different sequences is around 15 times
greater, the MSA step is still feasible.
The idea behind the Hamming radius to exclude

sample-pairs could be generalized to exclude sequences
within a patient that are too distant from the sequences
of the other sample. We are currently using just the
maximum distance to the consensus (radius), but all
those distances could be used to filter a great amount
of sequences that are very close to the consensus. A re-
duced number of sequences will decrease the number

Table 1 Filtering results on the unrelated dataset

Filter Individually Serial workflow

k-mer bloom filter 52536 (65.5%) 52536 (65.5%)

Hamming radius filter 67940 (84.7%) 68242 (85.1%)

Identical sequences filter 0 (0.0%) 68242 (85.1%)

Number of candidate pairs removed by each filtering approach
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of pairwise comparisons that are calculated at the last
HDIST step.
Until recently, molecular phylogenetic analyses of

RNA viruses used a single viral sequence per patient
to detect transmission. However, the advent of NGS
data immensely increases the computational burden
of this simple approach. Our proposed filtering strat-
egy can be used for detecting transmissions of any
heterogeneous virus where a threshold-based method
has been validated.
The number of samples in our database is now in the

order of 102, but it is constantly increasing with time as
HCV molecular surveillance becomes more common-
place with the aid of cheaper and more effective NGS
technologies. Just in the United States, it is estimated
that 2.7 million to 3.9 million people have chronic HCV
infection [4] and if we want to respond to a rapidly
growing database of NGS data, there is a great need for
our highly efficient workflow to accurately infer the net-
work of HCV transmissions. The availability of this sys-
tem for the detection of HCV transmissions will foster
deeper involvement of public health researchers and
practitioners in HCV outbreak investigation in the
United States and worldwide. Improvement in molecular
detection capacity also will increase the rate of detection
of transmissions in the United States, thus providing

opportunity for a rapid and effective response to the
growing number of Hepatitis C outbreaks.

Conclusions
We present a fast and efficient three-step filtering strategy
that removes most sequence comparisons and accurately
establishes transmission links of any threshold-based
method. This highly efficient workflow will allow a faster
response and molecular detection capacity, improving the
rate of detection of viral transmissions with molecular
data.
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