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/e artificial pancreas (AP) is a system intended to control blood glucose levels through automated insulin infusion, reducing the
burden of subjects with type 1 diabetes to manage their condition. To increase patients’ safety, some systems limit the allowed
amount of insulin active in the body, known as insulin-on-board (IOB). /e safety auxiliary feedback element (SAFE) layer has
been designed previously to avoid overreaction of the controller and thus avoiding hypoglycemia. In this work, a new method, so-
called “dynamic rule-based algorithm,” is presented in order to adjust the limits of IOB in real time./e algorithm is an extension
of a previously designed method which aimed to adjust the limits of IOB for a meal with 60 grams of carbohydrates (CHO). /e
proposed method is intended to be applied on hybrid AP systems during 24 h operation. It has been designed by combining two
different strategies to set IOB limits for different situations: (1) fasting periods and (2) postprandial periods, regardless of the size
of the meal. /e UVa/Padova simulator is considered to assess the performance of the method, considering challenging scenarios.
In silico results showed that the method is able to reduce the time spent in hypoglycemic range, improving patients’ safety, which
reveals the feasibility of the approach to be included in different control algorithms.

1. Introduction

Type 1 diabetes (T1D) is a chronic condition in which the
pancreatic beta-cells either stop or reduce drastically the
production of insulin. Insulin is a hormone whose function is
to facilitate the glucose uptake from the bloodstream into the
cells to be used or stored. Subjects with absence of insulin in
the body face very high levels of blood glucose (BG) (hy-
perglycemia), which can lead to long-term micro- and
macrovascular complications [1, 2]. /erefore, subjects living
with T1Dmust inject insulin exogenously in order to regulate
blood in a lifelong challenge [3], and intensive insulin therapy
reduces the risk of long-term complications [4]. But main-
taining blood glucose levels into near-normoglycemia is not a
trivial task, and if insulin is overdosed, BG may fall to
dangerously low levels (hypoglycemia), which can lead to
serious hazards, such as diabetic coma or even death [5].

Over the last years, researchers have been working to-
wards a closed-loop system to control BG automatically [6].
/is system, known as artificial pancreas (AP), is usually
composed of a continuous glucose monitor (CGM), a
control algorithm, and continuous subcutaneous insulin
infusion through a pump. Insulin-only AP systems consider
only insulin infusion to control BG, and dual-hormone AP
systems also consider glucagon infusion to elevate BG to
reduce the risk of hypoglycemia. AP systems can also be
classified into two different categories based on the degree of
automation: hybrid closed-loop system, in which subjects
are involved in the control loop andmust announce meals or
other disturbances to anticipate their effects, and fully
closed-loop systems, where no actions are required from the
patients [7, 8].

One of the main challenges of the AP system is
achieving postprandial glucose control mainly because
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the insulin absorption through the subcutaneous tissue is
slower than the appearance of glucose in the blood after a
meal [9]. Due to this difference in dynamics of insulin
action and carbohydrate (CHO) absorption, attempts to
avoid hyperglycemic peaks are usually accompanied by
hypoglycemic excursions [10]. Several approaches have
been tested to overcome such issue [11–14], but while an
ultrarapid insulin analogue is not available [15], post-
prandial control using subcutaneous route will continue
to be a challenging situation for closed-loop systems.
Diverse studies have included estimations of insulin
concentration in the body to avoid excessive insulin
stacking [16–19]; however, hypo- and hyperglycemia are
still a hazard for AP systems, and novel approaches are
still required.

Revert and colleagues introduced a safety auxiliary
feedback element, so-called SAFE layer [20], to limit ex-
cessive insulin in the subcutaneous tissue, i.e., insulin-on-
board (IOB). /is layer is based on the sliding mode ref-
erence conditioning technique [21] and acts on the glucose
reference signal when a specific constraint, related with the
maximum IOB allowed (IOB), is violated. Such technique
has already been applied in different control schemes
[22–25], but so far it is not clear the best methodology to
tune IOB./e selection of the constraint IOB is critical in the
design of the closed-loop system. /is parameter regulates
insulin infusion based on an estimation of the IOB. As
higher IOB, more insulin the controller will be allowed to
deliver. Considering that once insulin is injected into the
body, it cannot be removed, it will act naturally lowering BG
levels.

/e Spanish Consortium on Artificial Pancreas and
Diabetes Technology has been working over the last decade
on the development of a new artificial pancreas system. In
the first clinical trial, to evaluate the performance of the PD
controller with the SAFE layer, an individualized constraint
IOB was designed to control postprandial BG levels after the
consumption of a meal with 60 grams of CHO [26]. /e
closed-loop controller achieved better outcomes compared
with the open-loop therapy, reducing significantly the time
spent in hyperglycemia without increase the risk of hypo-
glycemia. However, a limitation of this study is that IOB was
tuned for this specific meal size./erefore, novel approaches
on how to select IOB for meals of different sizes are required
to cope with daily-life operation of an AP system. In this
work, a novel approach to tune IOB is presented. /is new
approach takes into account previous open-loop therapy to
set IOB for periods without meals and in case of the an-
nouncement of meals, IOB can be raised to reduce hyper-
glycemia without leading to hypoglycemia in the late
postprandial period./e proposal is evaluated in silico using
the UVa/Padova simulator [27].

2. Materials and Methods

2.1. Control-Loop Scheme. In this section, the control
scheme considered in this work is introduced. /e control
algorithm consists of two loops, as depicted by Figure 1.
/e inner loop is composed by a proportional derivative

(PD) controller with an insulin feedback (IFB) loop. /e
outer loop contains the SAFE layer [20], which is inspired
on the sliding mode reference conditioning technique
[21]. /is SAFE layer applies a discontinuous signal
generated by a switching law when estimations of IOB
(􏽤IOB) surpass a preset limit of IOB (IOB). Later, the
discontinuous signal is filtered generating a smooth ref-
erence signal (Grf ) to be applied into the controller.
/erefore, this safety layer is able to maintain IOB inside
desired bounds.

/e control action produced by the PD controller is
presented as follows:

upd(t) � Kp Grf(t) − G(t)( 􏼁 + Td
_G(t)􏼐 􏼑, (1)

where Kp is the proportional gain, Td is the derivative time,
Grf is the glucose reference filtered after the action of the
SAFE layer, and G(t) is the interstitial BG measurements
provided by the CGM.

/en, the control action computed by the PD is aug-
mented by two feed-forward signals: ubolus and ubasal. /e
signal ubasal is the insulin obtained from patients’ daily basal
profile. /e term ubolus is an impulse signal in case of the
announcement of meals to compensate the disturbance
caused by the ingestion of CHO.

/e IFB algorithm [28] emulates the beta-cell physiology
in healthy subjects, suppressing insulin secretion as plasma
insulin concentration increases. /e combination of the PD
algorithm with both SAFE layer and IFB algorithm has
already been investigated and shown to be more effective
than when they are used separately [29]. /e final control
action signal provided to the insulin pump is

ud(t) � upd(t) + ubasal(t) + ubolus − c􏽢Ip(t), (2)

where c is gain parameter and 􏽢Ip is the is the estimated
deviation of plasma insulin from steady state conditions
(basal levels).

/e term Grf in equation (1) is the conditioned reference
due to the action of the SAFE layer to maintain IOB below
IOB. Since the IOB is inaccessible, an insulin absorption
model is considered to estimate IOB [30], through the
following equation:
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Figure 1: Control scheme based on a PD controller with IFB and
with the SAFE layer. PK, pharmacokinetic.
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_C1(t) � ud(t) − KDIAC1(t),

_C2(t) � KDIA C1(t) − C2(t)( 􏼁,

􏽤IOB(t) � C1(t) + C2(t),

(3)

where C1(t) and C2(t) are two compartments, KDIA is a
constant related with the duration of insulin action (DIA),
and 􏽤IOB is the estimation of IOB. /e SAFE layer has a
software-based nature and consists of two main elements: a
switching block responsible to generate a discontinuous
signal to maintain 􏽤IOB into the desired range and a first-
order filter to smooth the discontinuous signal before being
applied to the main controller.

Consider the sliding function σ(t) defined by equation
(4), the switching logic is defined as follows:

σ(t) � 􏽤IOB(t) − IOB(t) + τ(
_􏽤IOB(t) − _IOB(t)), (4)

ω(t) �
W, if σ(t)> 0,

0, otherwise,
􏼨 (5)

with W> 0mg/dl.
Finally, the discontinuous signal is filtered by the fol-

lowing equation and generates smooth changes in the
glucose reference signal:

_Grf(t) � − λ Grf(t) − Gr(t) + ω(t)( 􏼁. (6)

Note that when σ(t)> 0, 􏽤IOB is greater than IOB. In
order to drive 􏽤IOB to the desired range, i.e., below IOB, ud

must be decreased. /e addition of W in equation (6)
generates Grf greater than Gr, diminishing the insulin
suggestion provided by the main controller and thus re-
ducing 􏽤IOB. When 􏽤IOB is below IOB, no further action is
provided by the outer loop, letting the controller work freely.

2.2. IOB Constraint Tuning. /e selection of the constraint
IOB is a critical point in the design of the control system. In
this work, a new tuning approach for IOB is presented. In
patients with T1D, insulin requirements vary during the day
and also between days (intra- and interday variability). On
traditional insulin pump therapy, physicians configure pa-
tients’ pump to deliver a steady flow of basal insulin to cope
with intraday variability. In addition, insulin boluses are
delivered when meals are informed by patients, to cover the
disturbance caused on glycemic balance due to the ingestion
of CHO [3].

/e artificial pancreas under development by our re-
search group has been evaluated clinically, where 20 T1D
subjects (age 40.7± 10.4 years, T1D duration 22.2± 9.9 years,
and A1c 7.8± 0.7%) used the CL system in front of a mixed
meal containing 60 grams of CHO [26]. In this trial, an
individualized IOB tune was considered in order the im-
prove postprandial glycemic control when compared with
standard open-loop therapy. For this specific trial, where a
single meal with 60 grams of CHO was consumed, IOB was
adjusted based on parameters taken from patients’ open-

loop therapy and computed in an offline procedure. /e
procedure to compute IOB was as follows: considering that
patients were in basal levels of IOB, IOB was computed as
the estimation of IOB levels 90 minutes after the adminis-
tration of an augmented bolus, by equation (3), to com-
pensate this 60 grams meal. /is augmented bolus was
computed by adding to the standard bolus the amount of
basal insulin that would have been delivered in the next hour
in the case of being in open-loop therapy. /erefore,
knowing in advance the size of the meal and all the pa-
rameters necessary to compute this augmented bolus, it was
possible to compute in an offline fashion what would be the
estimation of IOB levels 90 minutes after the meal bolus.
/is single value was applied as IOB limit during in this
clinical trial [26].

Due to the huge amount of insulin in meal boluses, 􏽤IOB
violates IOB, and a high frequency discontinuous signal is
generated by the SAFE layer in order to return 􏽤IOB back to
IOB bounds. /is action forces insulin delivery to zero for
approximately 90 minutes, minimizing the effects of con-
troller’s overcorrection. When σ(t)≤ 0 (equation (4)), in-
sulin infusion may be restored if the controller deems
necessary.

However, a single value of IOB may not be sufficient
for 24-hour operation, especially due to the large intra-
patient variability in T1D and to the different activities
performed by subjects in their daily-life. /e major
problem observed in the strategy presented previously is
that too high values of IOB may cause that the SAFE layer
be ineffective because it will act in very few conditions,
e.g., only after a meal bolus. It is comprehensible having
higher IOB tuning during postprandial periods, especially
because subjects tend to underestimate the CHO content
in meals [31]. However, during late postprandial period,
where the effects of meals have been covered either by the
bolus or by the controller suggestions, such high values of
IOB may lead to excess of insulin in the body, increasing
the risk of hypoglycemia.

In this work, a new method to tune IOB to overcome
the limitations presented by the former strategy is pro-
posed. /e new approach is called “dynamic rule-based”
(DRB) algorithm and is intended to be used on hybrid
artificial pancreas systems for 24-hour operation, where
meals of any size are consumed. /e proposed approach
combines two different strategies to set IOB for different
situations: (1) fasting periods: where no big disturbance is
expected, and the controller must deal mainly with in-
traday variability and (2) postprandial periods: where a
substantial raise in BG levels is expected due to the
consumption of a meal and insulin bolus may not be
enough to compensate such disturbance. In summary, the
DRB algorithm generates a time-varying IOB based on
patients’ basal insulin profile taken from open-loop
therapy, and when a meal is announced, the algorithm
evaluated in real-time if IOB should be increased tem-
porarily in order to reduce hyperglycemia. /e following
sections depict the algorithm, and a flowchart is also
presented in Figure 2 to clarify the operation of the DRB
algorithm.
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2.2.1. Fasting Periods. During fasting period (sleeping
hours or daytime fasting periods), the absence of external
disturbances makes the intraday variability the major
challenge for the controller. /e basal insulin profile from
patients’ open-loop therapy is considered to create a
baseline for IOB:

IOBbl(t) � KIOB
2 · ubasal(t)

60 · KDIA
􏼠 􏼡, (7)

where IOBbl is the baseline for IOB and KIOB is a gain that
regulates the amplitude of IOBbl, with KIOB > 0. In case of
KIOB < 1, 􏽤IOB will not be allowed to be greater than it would
have been during open-loop therapy. On the contrary, with
KIOB > 1, the insulin controller can suggest more insulin than
what is programmed by the open-loop therapy. /us, KIOB
should be selected in order to protect patients from hypo-
glycemia but also allowing the control algorithm to suggest
insulin above open-loop regimen when necessary. /us,
during fasting periods, IOB is set to be equal to IOBbl. In this
work, the parameter KIOB is set to 1.3 for daytime period (06:
00–23:00) and to 1.1 for night-time period (23:00–06:00).

Although this approach may be able to provide good
glycemic control in front of intraday variability, patients in
free-living conditions take CHO on several occasions during
the day, requiring a greater amount of insulin for these

periods./erefore, the strategy of IOB during fasting periods
is combined with another one, intended for postprandial
periods, presented in the following section.

2.2.2. Postprandial Periods. /e tuning of IOB during
postprandial period is an extension to the method already
validated clinically by Rossetti and colleagues [26]. Here, the
method is generalized for meals with different amount of
CHO and also includes a set of rules based on BG readings to
modify IOB./is set of rules has been designed to determine
if it is necessary to increase IOB, for cases which the bolus
was not enough to drive BG to near-normoglycemia levels.

/e method works as follows: in case of the an-
nouncement of a meal, an insulin bolus is delivered as a feed-
forward action. /is bolus is an augmented version of the
standard bolus computation, by adding a portion of the
future basal delivery according to the size of the meal, as
shown in the following equation:

ubolus �
MCHO

I2C
+

G(t) − Gr

CF
+ 􏽚

t+MCHO

t
ubasal(t)􏼠 􏼡

MCHO

60
,

(8)

where MCHO is the content of CHO of the meal (in grams),
I2C is the insulin-to-CHO ratio, Gr is the BG reference, and
CF is the correction factor.
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Figure 2: Flowchart describing how the proposed dynamic rule-based algorithm works.
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After the bolus, 􏽤IOB surpasses IOB, and then ufinal is
forced to zero, while 􏽤IOB is greater than IOB, due to the
action of the SAFE layer. /e parameter TIOB (in minutes,
equation (9)) is introduced to regulate the starting time after
the meal from when IOB may be increased. After TIOB
minutes, BG readings start to be evaluated in order to check
whether IOB needs to be increased, aiming to drive BG
below a selected target (G). If in this moment, BG is greater
than a threshold (G), a new IOB limit is computed to control
postprandial BG, based on equation (10). /is value is
maintained as IOB, while BG is greater than G. Finally, when
BG returns to values below G, IOB returns to follow IOBbl.
Note that the parameters G and G can be adjusted intuitively
by physicians. For a more aggressive postprandial control,
these parameters should be decreased as follows:

TIOB � 1.5 · MCHO, (9)

IOBPP � max 􏽤IOB(t − 1), IOBbl(t)􏼐 􏼑. (10)

/e final tuning for IOB is determined during a real-time
procedure, based on the dynamic behavior of patients basal
insulin profile and also in the set of rules activated after the
announcement of meals, to increase IOB during post-
prandial periods. Figure 2 depicts a flowchart of the pro-
posed method to facilitate the understanding.

/e variables “PP_state” and “flag_PP” included in
Figure 2 were considered for implementation purposes. In
the initialization of the system, both variables should be
set to zero. “PP_state” indicates that a meal has been
consumed, and that IOB may be increased considering a
set of rules to evaluated BG levels TIOB minutes after the
announcement of the meal. /e variable “flag_PP”
guarantees that a single value of IOBPP is computed for
each meal. Figure 3 depicts the application of the method
in one representative virtual patient during a simulation,
with a meal containing 45 g of CHO at 07:30 (represented
by the green triangle in Figure 3(a)). Note that 67.5
minutes after the meal (computed by equation (9)), the
limit of IOB has been increased because BG levels were
above G. When IOB was increased, the controller sug-
gested more insulin in order to reduce the postprandial
excursions since the insulin bolus was not enough for this
specific meal. /is period of time represents the first meal
of a single patient during Scenario C, which is detailed in
Section 2.3.3.

In summary, the DRB algorithm has been designed to
make use of patients’ basal profile, which is an indicative of
insulin requirements along the day, combined with a
modified version of the approach already tested clinically
with real patients, which achieved good results during
postprandial control. In addition, BG measurements has
been incorporated to set IOB, aiming to track glucose back to
regular values safely. All the relevant parameters used in the
simulations are listed in Table 1.

2.3. In Silico Evaluation. /e proposed method is validated
in the UVa/Padova simulator [27] on three challenging

scenarios, including intrapatient variability in insulin sen-
sitivity and in meal absorption rate [32].

Circadian variability has been included to simulate
different requirements of insulin during the day and follows
a sinusoidal variation. /e parameters Vmx and kp3, which
are related with the insulin sensitivity are modified as
follows:

q(t) � q0 + 0.3 · q0 · sin
2π

24 · 60
􏼒 􏼓t + 2π · rand, (11)

where q(t) is the corresponding time-varying parameter; q0
is the default individual parameter value (Vmx or kp3), and
rand is a uniformly distributed random number between 0
and 1.

Additionally, meal absorption rate and insulin ab-
sorption parameters (parameters kabs, kd, ka1, and ka2)
assume different values (±30% around the standard value)
after every single meal consumption. Further details about
the aforementioned parameters are described elsewhere
[27, 33].

2.3.1. Scenario A. /is scenario is considered to compare the
performance of the DRB algorithm (IOBDRB) against the
method already validated clinically, with a fixed value for
IOB (IOBF). In a 7-day scenario, the adult cohort consumed
a single meal containing 60 grams of CHO per day, between
10:00 and 16:00, in order to assess the postprandial control
under different intrapatient variability conditions. /is
amount of CHO has been selected to conduct a fairly
comparison since the former strategy was clinically validated
for this specific meal size.

2.3.2. Scenario B. /is scenario is considered to compare the
performance of the DRB algorithm (IOBDRB) in front of
meals with CHO content varying between 40 and 120 grams
of CHO. In a 45-day scenario, the adult cohort consumed a
single meal per day, between 08:00 and 19:00, in order to
assess the postprandial control under different intrapatient
variability conditions. It is considered just a single meal per
day in order to avoid the accumulated effects of meals in the
results.

2.3.3. Scenario C. A 14-day scenario is considered to assess
the performance of the proposed method intended to
mimic real-life operation of the AP systems. A total of
three meals, with different amounts of CHO, are consumed
per day at 7:30 (45 grams), 13:00 (90 grams), and 18:30 (50
grams). An error of ± 15% on CHO counting has also been
included to challenge the system. To apply meal absorption
variability, the 10 mixed meal models from each patient
were randomly assigned for each meal intake along with
the simulation. A total of four different strategies are
applied in this scenario: (1) the DRB algorithm to adjust
IOB (IOBDRB), (2) a fixed value of IOB as used in Scenario
A (IOBF), (3) IOB is set to be equal to IOBbl, without the
rules considered for postprandial period (IOBbl), and (4)
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the same insulin controller considered in other strategies,
but without IOB.

3. Results and Discussion

In this section, glycemic outcomes are presented for all the
scenarios previously described. /e performance of dif-
ferent methods to adjust IOB is evaluated according the
time spent into different glycemic ranges [34]. Results are
computed based on CGM measurements. Individual
metrics for the adult cohort from the simulator are com-
puted, and then the results are presented as the median
(25th–75th percentile) among the cohort. Additionally, the
occurrence of hypoglycemic episodes (defined as at least 15

consecutive minutes with glucose below 70mg/dl) is also
analyzed.

3.1. Scenario A. Table 2 shows the metrics for Scenario A.
/ese metrics assess the performance of IOBDRB and IOBF

during postprandial period (i.e., 4 hours following the meal),
once the last has been designed for such purpose. /e
metrics used for this evaluation are: average BG levels,
percentage of time spent in different glycemic ranges, gly-
cemic excursion (defined as the difference between the
maximum BG level and the premeal BG level), and the total
insulin delivered by the controller after the meal bolus.

Note that both strategies achieved similar results. Al-
though IOBF obtained numerical results slightly superior
than the proposed method, no significant difference was
observed in any of the metrics. /e new strategy (IOBDRB),
besides being applicable for meals of any size, achieved
equivalent outcomes when compared with the former
strategy, which was designed for meals with 60 grams of
CHO and achieved good results in real patients.

However, analyzing the whole simulation period (7-
days), the new strategy was able to eliminate the occurrence
of hypoglycemic events, while five events were observed for
IOBF. /is fact reinforces the hypothesis that modifying IOB
over the day increases patients safety.

3.2. Scenario B. Table 3 shows the metrics during post-
prandial period in Scenario B for the two methods applied in
this Scenario B.

7
Time (h)

100

120

140

160

180

BG
 (m

g/
dl

)
Meal
8 9 10 11 12

G

G

(a)

0

1

2

3

In
su

lin
 d

el
iv

er
y

ubolus (U)
ufinal (U/h)

7
Time (h)

8 9 10 11 12

(b)

100

200

300

400

500

G r
f (

m
g/

dl
)

7
Time (h)

8 9 10 11 12

(c)

2

3

4

5

6

IO
B 

(U
)

7
Time (h)

8 9 10 11 12

IOB

(d)

Figure 3: Operation of the dynamic rule-based algorithm during a postprandial period. Note that, after the meal (consumed at 07:30 and
represented by the green triangle), the algorithm deemed necessary to increase IOB because BG levels were above G. (a) BGmeasurements in
mg/dl. (b) Insulin delivery. (c) /e conditioned reference signal Grf . (d) Estimation of IOB levels and the constraint IOB.

Table 1: Parameters considered in this work for both inner and
outer loops.

Parameter Value Unit
Kp TDI/2250 U/min
Td 90 min
Gr 100 md/dl
Γ 0.42 L/min
W 350 mg/dl
Τ 10 min
Λ 0.1 min
KDIA 0.013 min− 1

G 150 mg/dl
G 140 mg/dl
TDI, total daily insulin.
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Different from Scenario A, in Scenario B, meals from
different sizes were considered to evaluate the postprandial
performance of the controller, which is more realistic. Re-
sults showed a slight superiority of the IOBDRB against the
IOBF in all the glycemic metrics analyzed. Notice that the
percentage of time spent in tight glycemic range increased
from 38.1% to 41.52%, while the percentage of time spent in
hyperglycemia reduces at the same time, from 15.63% to
14.14%. /is analysis shows that the previous tuning of IOB
may not be sufficient for varied size of meals.

3.3. Scenario C. Table 4 shows the results for the 14-day
scenario comparing the system with the DRB algorithm
(IOBDRB) against the other strategies. It displays the mean
glucose, percentage of time spent in different glycemic
ranges and the number of hypoglycemic events for the entire
cohort.

/e results display the solid performance of the strategies
using the SAFE layer when compared with the insulin
controller without IOB limitation, mainly to avoid hypo-
glycemia. /e arm with the IOBDRB strategy achieved the
lowest amount of hypoglycemic events when compared with
the other methods. /e IOBF strategy is the one with the
lowest mean glucose values during daytime, but the fixed
value of IOB is not enough to avoid hypoglycemic events,
especially during night-time. On the contrary, the IOBbl arm
considered only the adjustment for IOB presented in Section
2.2.1. Such approach did not consider the rule-based algo-
rithm to increase IOB during postprandial periods, and this
is reflected in the slightly worse outcomes for this strategy
when compared with IOBDRB, during daytime. /e IOBDRB
arm achieved lower mean glucose values and spent less time
in the hyperglycemic range, when compared with the IOBbl
arm.

Also during daytime, it can be observed that IOBDRB
achieved higher mean glucose values when compared with
the insulin controller without IOB, considerably above the
Gr. Although these values are higher than in healthy people,
they are still acceptable considering the recommendations

of the American Diabetes Association (ADA) [35], which is
A1C<7% for nonpregnant adults. /e median GMI (glu-
cose management indicator) achieved by the proposed
method during daytime is 6.7%, which gives the approx-
imate A1C levels based on CGM measurements [36].
During night-time, IOBDRB was able to lower mean glucose,
without any hypoglycemic event. Considering 24-hour
period for the entire scenario, the proposed method
achieved a median GMI of 6.5%, within the limits rec-
ommendable by the ADA.

/e control-variability grid-analysis (CVGA) [37], in
Figure 4, allows a graphical visualization regarding the
glycemic variability within an observational period of 24
hours. Note that the IOBDRB approach achieved the highest
percentage of points falling either in Zone A or Zone B, with
97.85%. Additionally, Figure 5 shows the dynamics of BG
and insulin delivery for a single day, comparing IOBDRB with
the arm without IOB limits, to better illustrate the influence
of the IOB in the control action.

Observing the results in Table 4 and Figure 4 it is possible
to note that the action of the SAFE layer avoids the over-
reaction of the insulin controller due to the rise of glucose,
caused by the meals. Although the results obtained by the
DRB algorithm are only slightly better when compared with
the other strategies which included the SAFE layer, it was
observed a reduction on the occurrence of hypoglycemic
events without leading to excessive hyperglycemia. All the
three hypoglycemic events observed in the IOBDRB arm were
caused by the meal bolus and not by any insulin suggested by
the controller after the meal. /erefore, the hypoglycemic
episodes were very likely caused by overestimation of CHO
content to compute the bolus.

/e starting point of the proposed method was another
strategy which has already been extensively tested both in
silico and clinically, making the task of achieving better
results even more difficult. Nevertheless, it has been possible
to improve slightly the performance of the AP system in this
in silico study, being able to apply different limits of IOB
according to the CHO content of meals and by applying a
lower IOB during night-time. Any improvement in

Table 2: Population metrics for postprandial glycemic control in scenario A.

Mean glucose Percentage of time spent in
Excursion (mg/dl) Total basal (U)

(mg/dl) 70–140 70–180 >180 <70

IOBDRB
141.48 46.58 96.13 3.87 0.00 62.00 3.56

(136.4–153.0) (24.7–56.5) (93.8–100.0) (0.0–6.3) (0.0–0.0) (55.9–67.3) (3.0–4.0)

IOBF

141.40 47.77 96.43 3.57 0.00 63.36 3.78
(136.7–150.8) (25.6–53.6) (94.0–100.0) (0.0–6.0) (0.0–0.0) (53.6–68.7) (3.1–4.1)

Table 3: Population metrics for postprandial glycemic control in scenario B.

Mean glucose Percentage of time spent in
Excursion (mg/dl) Total basal (U)

(mg/dl) 70–140 70–180 >180 <70

IOBDRB
146.79 41.52 85.86 14.14 0.00 71.79 3.19

(144.7–154.7) (35.4–48.5) (77.7–90.2) (9.8–20.8) (0.0–0.0) (66.1–74.7) (2.1–3.6)

IOBF

148.96 38.10 84.38 15.63 0.00 75.43 3.43
(147.0–156.2) (25.3–47.3) (77.1–86.3) (13.7–22.9) (0.0–0.0) (69.0–79.4) (2.6–4.1)
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Figure 4: Control-variability grid-analysis for different arms evaluated in scenario C: (a) IOBDRB, (b) IOBF, (c) IOBbl, and (d) without IOB.

Table 4: Population metrics comparing the performance of the system with the dynamic rule-based algorithm (IOBDRB) against other
strategies, in scenario C.

IOBDRB IOBF IOBbl Without IOB

Daytime (06:00–23:00)
Mean glucose 140.30 (134.2–143.5) 135.57 (133.0–140.3) 142.72 (134.7–145.3) 116.92 (114.0–121.6)
% of time spent in
70–140 56.58 (49.3–66.3) 60.17 (56.1–65.4) 53.43 (46.3–64.6) 71.53 (67.4–79.4)
70–180 92.10 (85.5–95.3) 92.70 (85.9–96.6) 90.91 (85.2–95.0) 90.88 (83.5–93.7)
>180 7.90 (4.7–14.5) 7.30 (3.4–14.1) 9.09 (5.0–14.8) 5.25 (3.0–8.4)
<70 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0) 5.27 (0.4–9.9)
<54 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0) 1.61 (0.0–6.3)
# Hypoglycemic events 3 4 4 112

Night-time (06:00–23:00)
Mean glucose 114.61 (112.1–118.8) 106.51 (104.0–107.2) 114.81 (112.9–126.1) 102.37 (100.1–103.9)
% of time spent in
70–140 98.09 (94.3–99.1) 99.36 (96.0–100.0) 97.75 (87.2–99.2) 98.04 (96.0–99.3)
70–180 100.00 (100.0–100.0) 100.00 (100.0–100.0) 100.00 (100.0–100.0) 98.13 (97.1–99.4)
>180 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0)
<70 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0) 1.87 (0.6–2.9)
<54 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.00 (0.0–0.0) 0.13 (0.0–0.9)
# Hypoglycemic events 0 4 0 11
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postprandial glycemic control can reflect in a reduction on
the risks associated with long-term complications, given its
correlation with A1C levels [38], and the avoidance of
nocturnal hypoglycemia is a major concern in T1D treat-
ment. In addition, it also allows modification on the pa-
rameters of the proposed algorithm to be performed
intuitively by physicians, if they deem necessary to further
improvements on glycemic control. However, clinical trials
involving real patients must be conducted to assess the
performance of the proposed algorithm under real-life
operation, in which patients may forget to announce meals,
and the performance of the DRB algorithm may not be
suitable to avoid hyperglycemia. Furthermore, the DRB
algorithm may not be applicable in fully automatic AP
systems, in which patients do not need to announce meals.
Finally, the adjustments of IOB is a major task for AP
systems which considers the SAFE layer, and the proper
adjustment of this constraint also plays an important role
even during physical activity [39, 40], by reducing the
amount of injected insulin during and after exercise.

4. Conclusions

/edynamic rule-based algorithm proposed in this work has
been designed to tune in real-time limiting of IOB to safely
control BG levels. /is algorithm is intended for 24-hour
operation, which includes postprandial and fasting periods.
During postprandial periods, it allows the increase of IOB
limits when more insulin is required to have a more ag-
gressive controller but yet safe. /e strategy has been
evaluated in silico under challenging conditions and
achieved satisfactory performance, with emphasis on the
reduction of hypoglycemic events during nocturnal period
and without excessive hyperglycemia during postprandial
period for meals with different CHO contents. Although, in
this paper, the proposed strategy has been applied and
evaluated in a PD controller, such approach could also be
used by other algorithms, since the SAFE layer can be added
to control algorithms of any nature.
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