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Abstract: Exogenous ganglioside GM1 has been reported to exert an immunomodulatory effect. We
investigated the anti-inflammatory effect of GM1 ganglioside on endotoxin-induced uveitis (EIU)
in rats and RAW 264.7 macrophages. Methods: EIU was induced in Lewis rats by administering a
subcutaneous injection of lipopolysaccharide (LPS). GM1 was injected intraperitoneally for three
consecutive days prior to the LPS injection. Twenty-four hours after the LPS injection, the integrity
of the blood-aqueous barrier was evaluated by determining the protein concentration and number
of infiltrating cells in the aqueous humor (AqH). Immunohistochemical and Western blot analyses
of the iris-ciliary body (ICB) were performed to evaluate the effect of GM1 on the LPS-induced
expression of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1). The effect
of GM1 on proinflammatory mediators and signaling cascades was examined in LPS-stimulated RAW
264.7 cells using Western blotting and immunofluorescence staining to further clarify the underlying
anti-inflammatory mechanism. Results: GM1 significantly reduced the protein concentration and
number of infiltrating cells in the AqH of rats with EIU. GM1 also decreased the LPS-induced
expression of the ICAM-1 and COX-2 proteins in the ICB. In RAW 264.7 cells, GM1 inhibited the
proinflammatory mediators induced by LPS, including inducible nitric oxide synthase (iNOS), COX-2,
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and this inhibitory
effect was potentially mediated by suppressing transforming growth factor-β-activated kinase 1
(TAK1) and reactive oxygen species (ROS)-mediated activation of nuclear factor-κB (NF-κB) and
mitogen-activated protein kinases (MAPKs). Conclusions: Based on this study, GM1 may be a
potential anti-inflammatory agent for ocular inflammatory diseases.

Keywords: GM1 ganglioside; endotoxin-induced uveitis; iris-ciliary body; anti-inflammation; RAW
264.7 cells

1. Introduction

Among all ocular inflammatory diseases, uveitis is a serious vision-threatening disease
and one of the leading causes of vision loss [1]. It mainly affects the uvea but may also affect
adjacent structures such as the retina and vitreous [2,3]. Although autoimmune diseases,
infections, and toxins are presumed to be the cause of the disease, the detailed pathogenesis
remains unclear [3]. Endotoxin-induced uveitis (EIU) is a well-established animal model
that can be induced by footpad injection in rodents and produces an acute form of uveitis
following exposure to endotoxins such as lipopolysaccharide (LPS), which is a potent
stimulator of the inflammatory response [4,5]. EIU represents a reliable experimental model
to study the pathological mechanisms of uveitis and to assess the pharmacological efficacy
of potential drugs for inhibiting inflammation [5]. The pathology of EIU is characterized
by intense and acute but transient infiltration of the anterior chamber and vitreous cavity
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by neutrophils and macrophages without significant systemic symptoms except temporal
diarrhea, mimicking the pathological progression of acute uveitis in humans [6–9]. The
acute inflammatory response for EIU occurs 4 h after LPS injection, peaks at 18 to 24 h,
and is maintained for 72 h [6,10]. LPS engages Toll-like receptor 4 (TLR4) and induces
the release of critical proinflammatory factors such as nitric oxide (NO), prostaglandin
(PG)-E2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 [11]. Ultimately, the
accumulation of proinflammatory factors leads to disruption of the blood-ocular barrier
and infiltration of inflammatory cells into both anterior and posterior segments of the eye,
which contributes to the pathological progression of EIU [12,13]. Currently, topical systemic
administration of corticosteroids remains the standard treatment for uveitis [14]. However,
this treatment causes many undesirable ocular adverse effects [14,15]. Therefore, studies
of the mechanism of intraocular inflammation and the development of effective and safe
drugs remain important issues.

Ganglioside is a complex structural molecule composed of a glycosphingolipid (ce-
ramide and oligosaccharide) with one or more sialic acids. It is a component of cell
membranes in mammals and some lower animals [16–18] and is located in the lipid rafts
of cell membranes [19]. Accumulating evidence indicates that gangliosides are abun-
dant in the nervous system and are associated with the maintenance and repair of neural
tissues [20,21]. They also participate in various cellular processes, such as cell growth, differ-
entiation, intercellular interactions, adhesion, migration and apoptosis [22,23]. Ganglioside
deficiency leads to damage to nerve tissues and inflammatory responses, as evidenced by
the upregulation of inflammatory cytokines [24,25].

Among gangliosides, monosialoganglioside GM1 is the best studied and most com-
monly used in a variety of experimental animal models to assess its therapeutic effi-
cacy. GM1 administration exerts neuroprotective effects in experimental animal models of
neurological diseases [26]. In vitro studies examining anti-inflammatory properties have
shown that GM1a and GD1a gangliosides prevent TLR4 translocation to lipid rafts in
LPS-stimulated PC12 cells, thus reducing the activity of TLR4 signaling pathways and
inhibiting the expression of proinflammatory factors [27]. In vivo studies have revealed
that the administration of GM1 to nonobese diabetic mice (NOD mice) reduces the ex-
pression of the proinflammatory factors IL-12, interferon-γ (IFN-γ), TNF-α and IL-1β,
which in turn reduce inflammatory cell infiltration and diabetic symptoms [28]. In mice
infected with Trypanosoma cruzi, GM1 reduces myocardial fibrosis and the expression of
the proinflammatory factors IFN-γ and TNF-α [29]. In rats with simulated high-altitude
cerebral edema (HACE), GM1 reduces the levels of proinflammatory factors IL-1β, TNF-α
and IL-6 in serum and brain tissue due to hypoxia [30].

Studies have shown that exogenous GM1 gangliosides exert immunomodulatory
effects; however, the efficacy of GM1 for the treatment of EIU has not been verified. In this
study, we investigated the potential anti-inflammatory effects of GM1 on EIU in rats. Our
in vivo and in vitro findings suggest that GM1 administration prevents ocular inflammation
in rats and exerts anti-inflammatory effects on LPS-stimulated RAW 264.7 macrophages.

2. Materials and Methods
2.1. Antibodies

The following antibodies were used in this study: mouse anti-intercellular adhe-
sion molecule-1 (anti-ICAM-1) (1:100, Cat#ab171123, Abcam, Cambridge, UK), rabbit
anti-iNOS (1:250, Cat# sc-650, Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit
anti- cyclooxygenase-2 (anti-COX-2) (1:200, Cat# 15191, Abcam, Cambridge, UK), rab-
bit anti-TNF-α (1:200, Cat#11948, Cell Signaling, Danvers, MA, USA), mouse anti-IL-1β
(1:1000, Cat# 12242, Cell Signaling, Danvers, MA, USA), rabbit anti-IL-6 (1:200, Cat#12912,
Cell Signaling, Danvers, MA, USA), phospho- nuclear factor (NF)-κB p65 (1:1000, Ser536;
Cat#3033, Cell Signaling, Danvers, MA, USA), rabbit anti-NF-κB p65 (1:1000, Cat#, Cell
Signaling, Danvers, MA, USA), rabbit anti-p-IκB (1:1000, Ser32/36; Cat#, Cell Signaling,
Danvers, MA, USA), mouse anti-IκB (1:1000, Cat#, Cell Signaling, Danvers, MA, USA), rab-
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bit anti-p-p38 MAPK (1:1000, Thr180/Tyr182; Cat#9215, Cell Signaling, Danvers, MA, USA),
rabbit anti-p38 mitogen-activated protein kinase (MAPK) (1:1000, Cat#9212, Cell Signaling,
Danvers, MA, USA), rabbit anti-p- c-Jun N-terminal kinase (JNK) (1:1000, Thr183/Tyr185;
Cat#4668, Cell Signaling, Danvers, MA, USA), rabbit anti-JNK (1:1000, Cat#9252, Cell
Signaling, Danvers, MA, USA), rabbit anti-p-extracellular-signal-regulated kinase (ERK)
(1:1000, Thr202/Tyr204; Cat#4377, Cell Signaling, Danvers, MA, USA), rabbit anti-ERK
(1:1000, Cat#9102, Cell Signaling, Danvers, MA, USA), rabbit anti-β-actin (1:1000, Cat#8457,
Cell Signaling, Danvers, MA, USA), fluorescein isothiocyanate (FITC)-conjugated goat
anti-rabbit IgG (1:250, Cat#A11034, Invitrogen, Carlsbad, CA, USA), and horseradish
peroxidase-conjugated anti-rabbit (1:10,000, Cat#111-035-003) or anti-mouse IgG (1:10,000,
Cat#115-035-003, Jackson ImmunoResearch Laboratories, West Baltimore Pike, PA, USA).
Biotinylated goat anti-rabbit IgG (1:250, Cat# BA-1000) and anti-mouse IgG (1:250, Cat#
MKB-2225) were obtained from Vector Laboratories (Burlingame, CA, USA).

2.2. Animal Care

We purchased eight-week-old male Lewis rats (180–220 g) from BioLASCO Taiwan
Co., Ltd. (Taipei, Taiwan). All experiments involving animals in the study were con-
ducted in accordance with the guidelines of the Association for Research in Vision and
Ophthalmology (ARVO) statement for the use of animals in ophthalmic and vision research
and were approved by the Institutional Animal Care and Use Committee of the National
Defense Medical Center, Taipei, Taiwan (Approval Number: IACUC-19-098; Approval date:
27 May 2019).

2.3. Endotoxin-Induced Uveitis (EIU) and Experimental Design

EIU was induced by subcutaneously injecting LPS (Cat# L6511, Sigma-Aldrich, St.
Louis, MO, USA) into the footpad as described previously [9,31]. A dose of 200 µg of LPS
was dissolved in phosphate-buffered saline (PBS, pH 7.4), and 100 µg was injected into each
footpad. GM1 ganglioside (Cat# OG03918, Carbosynth Ltd., Berkshire, UK) was dissolved
in PBS with 0.1% dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA) and
injected intraperitoneally (i.p.) to each rat at a dose of 25 mg/kg. Rats were randomly
allocated into the following four groups: (1) vehicle control group (n = 6)—rats received i.p.
injections of vehicle (0.1% DMSO in PBS) daily for 3 days, and then the footpad was injected
with 0.2 mL of PBS for 24 h; (2) GM1 group (n = 6)—rats received daily i.p. injections of
GM1 for 3 days, and then the footpad was injected with 0.2 mL of PBS for 24 h; (3) LPS
group (n = 6)—rats received vehicle daily for 3 days, and then the footpad was injected
with LPS for 24 h; (4) GM1+LPS group (n = 6)—rats daily received i.p. injections of GM1
(25 mg/kg) for 3 days, and then the footpad was injected with LPS for 24 h.

2.4. Evaluation of Clinical Manifestations

Rats were anesthetized 24 h after the LPS or PBS injection, and inflammation in the
anterior segment of the eye was photographed through a microscope equipped with a
digital camera (Nikon D3100, Tokyo, Japan). The ophthalmic scoring of EIU was performed
as described in previous reports [32,33] with some modifications. The severity of EIU
was graded using a score ranging from 0 to 4 points as follows: Grade 0 = no obvious
inflammatory response; Grade 1 = discrete inflammation of the iris and conjunctival vessels;
Grade 2 = moderate dilatation of the iris and conjunctival vessels with a moderate anterior
chamber flare; Grade 3 = intense iris congestion with an intense flare in the anterior chamber;
Grade 4 = the same clinical signs as Grade 3 plus fibrous exudates or pupillary constriction.

2.5. Determination of Cell Counts and Protein Concentration in the AqH

After removing the eyeball, the cornea was punctured with a 30-gauge needle, and
anterior chamber aqueous humor (AqH) was collected. A 5 µL aliquot of AqH was mixed
1:1 with a Trypan Blue solution (Sigma-Aldrich, St. Louis, MO, USA) to exclude the dead
cells, and 10 µL of the cell suspension was added to a hemocytometer. The number of cells
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per square was calculated manually using a light microscope. The average cell counts from 5
squares for each sample was multiplied by 2 to correct for previous dilution. The remaining
AqH was centrifuged at 15,000 rpm for 15 min at 4 ◦C, and the supernatant was collected for
protein concentration analysis, which was measured using a BCA protein assay reagent kit
(Thermo Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s instructions.

2.6. Histopathological Evaluation of Rats with EIU

The eyes were immersed in Davidson’s fixative for 24 h and then embedded in paraffin.
Tissue sections (4 µm thickness) were cut using a microtome designed for paraffin sections
(Thermo Fisher Scientific, Rockford, IL, USA) and stained with hematoxylin and eosin
(H&E). The tissue of the anterior segment of the eye was observed and scored to assess
inflammatory conditions as described previously [34].

The histopathological evaluation of the inflammatory state was graded from 0 to
3. Grade 0 = no infiltrating cells; Grade 1 = mild cellular infiltration (equal to or less
than 75 inflammatory cells and greater than 0); Grade 2 = moderate cellular infiltration
(equal to or less than 150 inflammatory cells and greater than 75 inflammatory cells);
Grade 3 = severe cellular infiltration and severe anterior chamber exudates (more than
150 inflammatory cells).

2.7. Immunohistochemistry

Whole eyes were fixed with Davidson’s fixative for 24 h and then subjected to routine
paraffin sectioning. Paraffin sections were deparaffinized with xylene and subjected to
antigen retrieval with EnVision FLEX Target Retrieval Solution (low pH) (K8005, Dako,
Glostrup, Denmark) at 95 ◦C for 15 min. Endogenous peroxidase activity was blocked by
treating sections with 3% hydrogen peroxide for 20 min. After washes with TBS, nonspecific
binding was blocked by incubating the sections with blocking solution (3% bovine serum
albumin and 0.3% Triton X-100 in TBS) for 30 min. The sections were incubated with the
primary antibody overnight at 4 ◦C. After washing with TBS, the sections were incubated
with a secondary antibody (goat anti-rabbit or mouse IgG conjugated with horseradish
peroxidase) for 1 h. Staining was visualized using 3,3′-diaminobenzidine (DAB, Sigma-
Aldrich, St. Louis, MO, USA) as the chromogen and hematoxylin (Muto Pure Chemicals
Co., Ltd., Tokyo, Japan) for counterstaining.

2.8. RAW 264.7 Cell Culture

The RAW 264.7 cell line (third passage at the time of purchase) was purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA) and maintained in growth
medium composed of Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 100 µg/mL streptomycin, and 100 U/mL penicillin in
100 mm Petri dishes (BD Falcon, Franklin Lakes, NJ, USA) in a humidified atmosphere
containing 5% CO2 at 37 ◦C. The medium was changed every 2 days, and the cells were
never cultured beyond passage 20. RAW 264.7 cells (2.6 × 104 cells/cm2) were seeded onto
glass coverslips or into six-well plates. The stock solution of GM1 was dissolved in DMSO.
The final concentration of DMSO did not exceed 0.1% in the culture medium. The cultures
were pretreated with GM1 for 1 h before the addition of LPS (1 µg/mL).

2.9. Cell Viability Assays

RAW 264.7 cell viability (2.6 × 104 cells/cm2) was determined using a cell counting
kit (CCK-8) assay (Dojindo, Kumamoto, Japan). Briefly, CCK-8 solution (1:40) was added
to each well of a 24-well plate; the cells were then incubated at 37 ◦C for another 2 h, and
absorbance was measured at 450 nm using a microplate reader.
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2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Culture supernatant was harvested at the indicated time and mouse TNF-α, IL-1β
and IL-6 were detected with enzyme-linked immunosorbent assay (ELISA) kits (Bioss
Antibodies Inc., Woburn, MA, USA) according to the manufacturer’s instructions. The
optical density was monitored at 450 nm using a microplate reader.

2.11. RT-qPCR Analysis

Total RNA from cell cultures was extracted with Trizol reagent (Invitrogen, Carls-
bad, CA, USA). cDNA was synthesized by a High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Waltham, MA, USA). Quantitative real-time PCR (qPCR) was
carried out with TaqMan Gene Expression Master Mix (Applied Biosystems, Waltham,
MA, USA) according to the manufacturer’s instructions. β-actin served as the house-
keeping gene. Primer-probe sets were as follows: β-actin (Mm00607939_s1); TNF-α
(Mm00443258_m1); IL-1β (Mm00434228_m1); and IL-6 (Mm00446190_m1); website link:
https://www.thermofisher.com/tw/zt/home.html (accessed on 22 February 2022).

2.12. Western Blot

Cells or tissues were homogenized in radioimmunoprecipitation assay (RIPA) buffer
containing 1 mM phenylmethanesulfonyl fluoride (PMSF), 5 mM NaF and a protease
inhibitor cocktail. The supernatant was collected after centrifugation at 12,000 rpm for
10 min at 4 ◦C, and the protein concentration was determined with a bicinchoninic acid
(BCA) kit. A total of 35 µg of the protein extract was loaded onto 10–15% SDS–PAGE
gels. The proteins were transferred to polyvinylidene difluoride (PVDF) membranes after
electrophoresis. The membranes were blocked with a blocking solution (TBS-T, 5% nonfat
milk in TBS with 0.1% Tween 20) for 1 h at room temperature, incubated with primary
antibodies at 4 ◦C overnight, and then incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (1:10,000) for 1 h. The membranes were washed with
TBS-T then incubated with enhanced chemiluminescence reagents (ECL, Thermo Fisher
Scientific, Rockford, IL, USA) to visualize the bands. Each experiment was repeated at least
three times. Immunoreactive bands were subjected to densitometry analysis. Images of
each blot were quantified using ImageJ software (Version 1.53f, NIH, Bethesda, MD, USA).
β-actin (1:2000) was used to normalize protein loading.

2.13. Immunofluorescence Staining

RAW 264.7 cells (2.6 × 104 cells/cm2) growing on coverslips were fixed with 10%
neutral buffered formalin for 10 min. Cells were permeabilized and blocked with blocking
buffer (0.5% nonfat milk and 0.2% Triton X-100 in PBS) for 15 min, followed by incubation
with the primary antibodies overnight at 4 ◦C. The cells were rinsed with PBS and then
incubated with the secondary antibody (FITC-conjugated rabbit or mouse anti-goat IgG)
at room temperature for 1 h. The nuclei were labeled with 4′,6-diamidino-2-phenylindole
(DAPI, 1 µg/mL; Catalog number 40043, Biotium Inc., Fremont, CA, USA) for 10 min. Then,
the coverslips were mounted on slides with mounting medium (3% n-propyl gallate and
50% glycerol in PBS) and observed under a fluorescence microscope (Nikon, Tokyo, Japan).

2.14. Detection of Reactive Oxygen Species (ROS)

Total ROS level was determined by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-
DA) staining. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase
inhibitor diphenyleneiodonium (DPI) was obtained from Cayman Chemical Company
(Ann Arbor, MI, USA). At the end of the treatment, cells were loaded with 10 µM DCFH-
DA (Sigma-Aldrich, St. Louis, MO, USA) and incubated at 37 ◦C for 20 min. Cells were
washed with PBS and images were captured under a fluorescence microscope with exci-
tation/emission 485/535 nm. The captured images were analyzed by ImageJ software to
measure fluorescence intensity. For each image, the corrected total cell fluorescence (CTCF)
was calculated using the formula [35]:

https://www.thermofisher.com/tw/zt/home.html
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CTCF = Average Integrated intensity − (Average selected area × Average mean of background). (1)

Mean fluorescence of background was recorded from randomly selected square areas
outside of the area of interest and at least three independent experiments were run for
each condition.

2.15. Statistics

Quantitative data are presented as the mean ± standard deviation (SD) for at least
three independent experiments. One-way analysis of variance (ANOVA) was used to
analyze the data and the statistical significance was determined by Bonferroni’s post hoc
test. Differences were considered significant at * p < 0.05 and highly significant at ** p < 0.01.

3. Results
3.1. Effect of GM1 on the Inflammatory Manifestation of EIU in Rats

First, we examined the effects of GM1 on the clinical manifestations of EIU in rats.
The rats were pretreated with or without GM1 prior to the LPS injection. After 24 h,
inflammatory symptoms in the anterior segment of the eyes were observed and imaged.
As shown in Figure 1, no inflammatory response was observed in the control group
(Figure 1A) or the GM1 alone group (Figure 1B). In the LPS group, conjunctival edema,
ciliary congestion and iris vasodilatation (erythema or redness) were observed in rats 4 to
6 h after the LPS injection. At 12 to 16 h, fibrous exudates and occlusion of the pupil were
observed, which peaked at 22–24 h (Figure 1C). However, these clinical symptoms were
alleviated in the GM1+LPS group (Figure 1D). The pathological severity was assessed as a
score ranging from 0 to 4 according to the degree of inflammation; a higher score indicates
a greater severity. GM1 significantly attenuated LPS-induced clinical EIU scores compared
to those of the LPS-treated group (Figure 1E).
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Figure 1. Effect of GM1 on the inflammatory manifestation of EIU in rats. Lewis rats were pretreated
with GM1 and then treated with or without LPS for another 24 h. Representative ocular images of
the anterior segment for four different treatment groups: control (A), GM1 alone (B), LPS (C), and
GM1+LPS (D). (E) The inflammatory response was significantly reduced in the GM1 pretreatment
group compared to the LPS group in terms of clinical scores. Data are presented as the mean ± SD.
## p < 0.01 compared with the control group; ** p < 0.01 compared with the LPS treatment group.
Each group contained n = 6 rats.
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3.2. Effects of GM1 on LPS-Induced Cellular Infiltration and Protein Concentration in the AqH of
Rats with EIU

The pathological characteristics of EIU include ocular infiltration by inflammatory
cells and leakage of protein into the AqH of the eye. We collected AqH to count cells and
measure the protein concentration to investigate the anti-inflammatory effect of GM1. As
shown in Figure 2A, the number of infiltrating cells in the AqH was significantly increased
in the LPS group compared to that in the control group. However, in the GM1+LPS group,
the number of infiltrating cells was decreased significantly compared to the LPS group.
Similarly, the protein concentration in the AqH of the LPS group increased significantly
compared to that in the control group; however, in the GM1+LPS group, this increase in
protein concentration was significantly attenuated (Figure 2B) compared to that in the LPS
group. Based on these results, GM1 attenuates the LPS-induced decrease in the integrity of
the blood-ocular barrier in rats with EIU.
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Figure 2. Effects of GM1 on cellular infiltration and protein concentration in the AqH of rats with
EIU. Rats were pretreated with GM1 and then treated with or without LPS for another 24 h. The AqH
was collected from each group, cells were counted, and the protein concentration was measured by
a blinded observer. GM1 significantly decreased cellular infiltration (A) and protein concentration
(B) in the AqH of EIU rats. The data are presented as the mean ± SD. # p < 0.05 compared with
the control group; * p < 0.05 compared with the LPS-treated group. n = 6 rats per group. AqH:
aqueous humor.

3.3. Effects of GM1 on the Histopathological Changes Adjacent to the Iris-Ciliary Body (ICB) of
EIU Rats

The histopathological analysis of the effect of GM1 on the anterior segment of rats
with EIU was performed using H&E staining. As shown in Figure 3, the morphological
data indicated no cellular infiltration adjacent to the ICB of the anterior segment in either
the control (Figure 3A) or GM1 alone group (Figure 3B). Conversely, in the LPS group,
the histological evaluation revealed the accumulation of cells infiltrating into the anterior
segment (Figure 3C). Compared with the LPS group, the GM1+LPS group showed a reduc-
tion in cellular infiltration (Figure 3D). The severity of histological changes was evaluated
by histopathological scoring with a scale ranging from 0 to 3 (see the Section 2). GM1
significantly attenuated LPS-induced histopathological scores in rats with EIU (Figure 3E).
Therefore, GM1 prevented LPS-induced histopathological changes in rats with EIU.
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Figure 3. Effects of GM1 on the histological changes in the ICB of rats with EIU. Rats were pretreated
with GM1 and then treated with or without LPS for another 24 h. Representative images of H&E
staining of the ICB from the four different treatment groups: vehicle control (A), GM1 alone (B), LPS
(C) and GM1+LPS (D). The LPS-treated rats showed increased leukocyte infiltration in the ICB and
the AqH (arrows in C), whereas the number of infiltrating cells was reduced by GM1. (E) The severity
of histological changes was evaluated by histopathological scoring with a scale ranging from 0 to 3.
GM1 significantly attenuated LPS-induced pathological scores in the ICB. ## p < 0.01 compared with
the control group; * p < 0.05 compared with the LPS-treated group. Bar = 50 µm. ICB: iris-ciliary body.
AqH: aqueous humor.

3.4. Effect of GM1 on the Recruitment of COX-2-Positive Cells Adjacent to the ICB in Rats
with EIU

COX-2 is an inducible isoform of COX that is primarily expressed in inflammatory
cells. COX-2 is a key enzyme required for the generation of prostaglandins from arachidonic
acid. In this study, the effects of GM1 on infiltrating COX-2-positive cells were investigated
in the ICB of rats with EIU using immunohistochemistry. As shown in Figure 4, few COX-
2-positive cells were observed in the anterior segment of both the control (Figure 4A) and
GM1 alone groups (Figure 4B); however, in the LPS group, the anterior segment exhibited
a large number of infiltrating COX-2-positive cells (Figure 4C). Compared to the LPS
group, the number of COX-2-positive cells was markedly decreased in the GM1+LPS group
(Figure 4D). Western blot analysis further confirmed that GM1 attenuated LPS-induced
COX-2 expression in the anterior segment of rats (Figure 4E). Based on these results, GM1
decreased the recruitment of COX-2-positive cells adjacent to the ICB in rats with EIU.

3.5. Effects of GM1 on ICAM-1 Expression in the ICB of Rats with EIU

Previous studies have reported an important role for increased ICAM-1 expression
in inflammatory cell infiltration during EIU [36]. We examined the effects of GM1 on
ICAM-1 expression in the ICB of rats with EIU using immunohistochemical staining. As
shown in Figure 5, the ICB constitutively expressed low levels of ICAM-1 in both the
control (Figure 5A) and GM1 alone groups (Figure 5B); however, in the LPS group, the
ICB expressed high levels of ICAM-1 (Figure 5C). Compared to the LPS group, ICAM-
1 expression was markedly reduced in the GM1+LPS group (Figure 5D). Western blot
analysis further confirmed that GM1 attenuated LPS-induced ICAM-1 expression in rats
(Figure 5E). The results indicated that GM1 reduced ICAM-1 expression and contributed to
attenuating the recruitment of inflammatory cells adjacent to the ICB in rats with EIU.
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Figure 4. Effect of GM1 on COX-2 expression in the anterior segment of rats with EIU. Rats were
pretreated with GM1 and then treated with or without LPS for another 24 h. Representative images
of COX-2 immunohistochemical staining in sections from the four different treatment groups: vehicle
control (A), GM1 alone (B), LPS (C) and GM1+LPS (D) at 24 h after the LPS injection. Note that
abundant COX-2-positive inflammatory cells infiltrated the ICB of rats with EIU (arrows in C), and
this inflammatory response was attenuated by GM1. (E) Western blot analysis of COX-2 levels.
The protein bands from each treatment group were quantified by densitometry. GM1 significantly
reduced the LPS-induced increase in COX-2 expression in the anterior segment of rats. Data are
presented as percentages of the LPS-treated group (mean ± S.D., n = 3). ## p < 0.01 compared with
the control group; ** p < 0.01 compared with the LPS-treated group. Bar = 50 µm.
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Figure 5. Effect of GM1 on ICAM-1 expression in the ICB of rats with EIU. Rats were pretreated
with GM1 and then treated with or without LPS for another 24 h. Representative images of ICAM-1
immunohistochemical staining in sections from the four different treatment groups at 24 h after the
LPS injection: vehicle control (A), GM1 alone (B), LPS (C) and GM1+LPS (D). (E) Western blot analysis
of ICAM-1 levels. The protein bands from each treatment group were quantified by densitometry.
GM1 significantly reduced LPS-induced increases in ICAM-1 expression. Data are presented as
percentages of the LPS-treated group (mean ± S.D., n = 3). ## p < 0.01 compared with the control
group; ** p < 0.01 compared with the LPS-treated group. Bar = 50 µm. ICB: iris-ciliary body.

3.6. Effect of GM1 on the Transcribed and Secreted Level of Proinflammatory Factors in
LPS-Stimulated RAW 264.7 Cells

First, we examined the cytotoxicity of GM1. RAW 264.7 cells were treated with GM1 at
concentrations ranging from 0 µM to 80 µM for 24 h, and cell viability was measured using
the CCK-8 assay. As shown in Figure 6A, GM1 (up to 50 µM) did not affect cell viability.
Therefore, subsequent experiments were conducted with GM1 at concentrations less than
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30 µM. Moreover, GM1 (5, 15 and 30 µM) does not cause cytotoxicity to cells in the presence
of LPS (1 µg/mL) (Figure 6B).

TNF-α, IL-1β and IL-6 are the main proinflammatory mediators in response to LPS
stimulation. We investigated the effect of GM1 (5, 15 and 30 µM) on these factors in
LPS-stimulated RAW 264.7 cells. The transcribed and secreted levels of these factors were
determined by RT-qPCR and ELISA, respectively. As shown in Figure 6, mRNA (Figure 6C)
and secreted levels (Figure 6D) of TNF-α, IL-1β and IL-6 were markedly increased upon
exposure to LPS. However, GM1 significantly suppressed the effects in a dose-dependent
manner, and this anti-inflammatory effect was not due to cytotoxicity.
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Figure 6. Effect of GM1 on the transcribed and secreted levels of proinflammatory mediators in
LPS-stimulated RAW 264.7 cells. (A,B) Effect of GM1 with or without LPS stimulation on cell viability.
Cells were treated alone with different concentrations of GM1 as indicated (A) or pretreated with
GM1 for 1 h and then stimulated with LPS (1 µg/mL) for 24 h (B). Cell viability was determined using
a CCK-8 assay. Quantitative data are presented as percentages of the corresponding untreated control
value (mean ± S.D., n = 3, quadruplicate wells for each condition). (C) Cells were pretreated with
different concentrations of GM1 (5, 15, 30 µM) and then stimulated with LPS for 6 h. mRNA expression
levels for TNF-α, IL-1β and IL-6 were measured by RT-qPCR. (D) Cells were pretreated with different
concentration of GM1 (5, 15, 30 µM) and then stimulated with LPS for 24 h. Secreted levels of TNF-α,
IL-1β and IL-6 were determined by ELISA. ## p < 0.01 compared with the control group; * p < 0.05
compared with the LPS-treated group; ** p < 0.01 compared with the LPS-treated group.

3.7. Effect of GM1 on the Protein Level of Proinflammatory Enzymes and Factors in
LPS-Stimulated RAW 264.7 Cells

The main proinflammatory enzymes involved in the synthesis of NO and PGE2 are
iNOS and COX-2, respectively. Therefore, we examined the effect of GM1 on the expression
of the iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells using Western blot
analysis. As shown in Figure 7A–C, the expression of iNOS and COX-2 was induced in
LPS-stimulated RAW 264.7 cells. GM1 pretreatment significantly inhibited the LPS-induced
increases in expression in a dose-dependent manner (0–30 µM) compared to the control
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group, whereas treatment with GM1 alone had no effects on the expression of these proteins
(Figure 7A–C). The effect of GM1 on LPS-induced production of proinflammatory mediators
was further examined using Western blot. As shown in Figure 7A, LPS administration
markedly induced the production of proinflammatory cytokines, including TNF-α, IL-1β
and IL-6; in contrast, pretreatment with GM1 decreased the production of these cytokines
in a dose-dependent manner (Figure 7D–F). Treatment with GM1 alone (30 µM) had no
effect on the production of these proinflammatory cytokines compared to the control group
(Figure 7D–F). Thus, GM1 exerts an anti-inflammatory effect on LPS-stimulated RAW
264.7 cells.
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Figure 7. Effect of GM1 on the protein levels of proinflammatory mediators in LPS-stimulated RAW
264.7 cells. (A) Cells were pretreated with different concentrations of GM1 (5, 15, 30 µM) for 1 h,
stimulated with LPS (1µg/mL) for 8 h, and then subjected to Western blot analysis with anti-iNOS,
anti-COX-2, anti-TNF-α, anti-IL-1β and IL-6 antibodies; β-actin was used as an internal control.
(B–F) The protein bands from each treatment group were quantified using densitometry. Data are
presented as percentages of the LPS-treated group (mean ± S.D., n = 3). ## p < 0.01 compared with
the control group; ** p < 0.01 compared with the LPS-treated group.

3.8. Effect of GM1 on NF-κB Activation in LPS-Stimulated RAW 264.7 Cells

NF-κB activation and nuclear translocation play a key role in the production of iNOS,
COX-2 and proinflammatory factors [37]. We investigated the effect of GM1 on NF-κB
activation in LPS-stimulated RAW 264.7 cells. NF-κB activation was determined by measur-
ing the phosphorylation of p65 and IκB and degradation of IκB. As shown in Figure 8A,B,
the phosphorylation of p65 was significantly increased in LPS-stimulated RAW 264.7 cells.
GM1 pretreatment dose-dependently inhibited the LPS-induced increase in p-p65 levels. In
addition, LPS administration promoted IκB degradation via IκB phosphorylation, whereas
GM1 attenuated LPS-induced IκB phosphorylation in a dose-dependent manner while
attenuating IκB degradation. Treatment with GM1 alone (30 µM) had no effect on NF-κB
activation (Figure 8A,B). Immunofluorescence staining (Figure 8C) further confirmed the
inhibitory effect of GM1 on the translocation of NF-κB p65 to the nucleus. In the control
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group of cells, NF-κB p65 was mainly located in the cytoplasm. In contrast, a significant
increase in nuclear NF-κB p65 immunofluorescence staining was observed after 1 h of
LPS stimulation. After pretreatment with 30 µM GM1, NF-κB p65 translocation to the
nucleus was inhibited, whereas GM1 administration alone did not affect its cytoplasmic
and nuclear distribution (Figure 8C,D). Therefore, GM1 reduces the production of proin-
flammatory enzymes and proinflammatory cytokines by inhibiting NF-κB activation and
nuclear translocation.
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MAPKs, including p38, JNK and ERK, are associated with the production of proin-

flammatory factors and NF-κB activation [38,39]. Therefore, we analyzed the effect of 

Figure 8. Effect of GM1 on NF-κB activation in LPS-stimulated RAW 264.7 cells. (A) Cells were
pretreated with different concentrations of GM1 (5, 15, 30 µM) for 1 h and then stimulated with LPS
(1 µg/mL) for 1 h. Western blot analysis was performed to determine the levels of the p-p65, p65,
p-IκB and IκB proteins. β-Actin was used as an internal control. (B) Quantitative analysis of protein
levels. Data are presented as percentages relative to the LPS group (mean ± SD, n = 3). ## p < 0.01
compared with the control group; * p < 0.05 and ** p < 0.01 compared with the LPS treatment group.
(C) Immunofluorescence analysis of NF-κB nuclear translocation. Cells were pretreated with GM1
(30 µM) for 1 h and then administered LPS (1 µg/mL) for 1 h. Nuclear translocation of NF-κB
p65 was determined by performing immunofluorescence staining using anti-p65 NF-κB antibodies.
Nuclei (blue) were stained with DAPI. Bar = 30 µm. (D) Percentage of cells with nuclear NF-κB
p65. Quantitation of NF-κB p65 nuclear translocation in the indicated groups. Data are reported as
percentages of p65 nuclear-positive cells among 100 cells per sample (mean ± S.D., n = 3). ## p < 0.01
compared with the control group; * p < 0.05 compared with the LPS treatment group; ** p < 0.01
compared with the LPS treatment group.
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3.9. Effect of GM1 on MAPK Activation in LPS-Stimulated RAW 264.7 Cells

MAPKs, including p38, JNK and ERK, are associated with the production of proin-
flammatory factors and NF-κB activation [38,39]. Therefore, we analyzed the effect of GM1
on LPS-induced MAPK activation by using Western blotting to detect the phosphorylation
of p38, JNK, and ERK.

As shown in Figure 9, LPS stimulation of RAW 264.7 cells resulted in the phosphoryla-
tion of ERK, JNK and p38. Concentration-dependent reductions in LPS-induced ERK, JNK
and p38 phosphorylation were observed after treatment with GM1 (0–30 µM). GM1 alone
(30 µM) had no effect on ERK, JNK and p38 phosphorylation. The results indicated that
GM1 pretreatment inhibited LPS-induced activation of MAPK signaling pathways.
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Figure 9. Effect of GM1 on MAPK activation in LPS-stimulated RAW 264.7 cells. (A) Cells were
pretreated with various concentrations of GM1 (5, 15, 30 µM) for 1 h and then stimulated with LPS
(1 µg/mL) for 1 h. Cell lysates were subjected to Western blotting to determine levels of MAPK
proteins (p-ERK/ERK, p-JNK/JNK and p-p38/p38). (B–D) Quantitative analysis of MAPK protein
levels. Data are presented as percentages relative to the LPS group (mean ± SD, n = 3). ## p < 0.01
compared with the control group; * p < 0.05 and ** p < 0.01 compared with the LPS treatment group.

3.10. Effect of GM1 on ROS Production by LPS-Stimulated RAW 264.7 Cells

Macrophages, the first line of defense, are responsible for the production of reactive
oxygen species (ROS) at the onset of exposure to inflammatory stimuli [40]. In LPS-treated
RAW 264.7 cells, a moderate level of ROS can act as a second messenger to initiate an
inflammatory response [41]. LPS stimulates ROS production through membrane-bound
NADPH oxidase (NOX) activation [42–44]. NOX-dependent ROS production was associ-
ated with the activation of NF-κB and MAPK signaling, which is required for LPS-induced
macrophage activation [40,43,45]. In the present study, we determined the effect of GM1
on ROS formation by LPS-stimulated RAW 264.7 cells using the dichlorodihydrofluores-
cein diacetate (DCFH-DA) assay. As shown in Figure 10, intracellular ROS levels were
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significantly increased after LPS treatment, whereas GM1 treatment abolished LPS-induced
ROS production.
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Figure 10. Effect of GM1 on LPS-stimulated ROS production by LPS-stimulated RAW 264.7 cells.
(A) Cells were pretreated with 30 µM GM1 or 500 nM DPI and then stimulated with LPS for 9 h.
Intracellular ROS level was measured using the DCFH-DA assay. Bar = 50 µm. (B) Quantification
of ROS level. Staining intensity was measured as corrected total cell fluorescence (CTCF). Data are
expressed as a percentage of the LPS-treated group (mean ± SD, n = 3). ## p < 0.01 vs. control group;
** p < 0.01 vs. LPS-treated group.

In addition, the NOX inhibitor diphenylene iodonium (DPI) also significantly inhibited
LPS-induced ROS production, suggesting that NOX activation is required for LPS-induced
ROS formation. GM1 inhibited the activation of NF-κB and MAPKs signaling, which may be
partially attributed to its potent downregulation of NOX-mediated ROS production. Figure 11
summarizes the possible mechanisms by which GM1 inhibits inflammatory responses.
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Figure 11. Schematic of the anti-inflammatory mechanism of GM1 ganglioside. GM1 inhibited the
proinflammatory responses in LPS-treated RAW 264.7 cells by suppressing NADPH oxidase-mediated
ROS production and subsequently inhibiting NF-κB and MAPK signaling pathways.

4. Discussion

In this study, we describe the role of exogenous GM1 ganglioside in anti-inflammatory
responses. In the EIU animal model, GM1 alleviated LPS-induced clinical symptoms
of uveitis, and decreased inflammatory cell infiltration and protein concentration in the
AqH, as determined by biochemical examinations. Histopathological and Western blot
analyses showed that GM1 attenuated LPS-induced infiltration of the anterior segment
by COX-2-positive inflammatory cells that was accompanied by the downregulation of
ICAM-1, a critical adhesion molecule expressed in the ciliary body that is responsible
for the recruitment of inflammatory cells. Experiments aimed at elucidating the anti-
inflammatory mechanism showed that GM1 completely inhibited LPS-induced production
of proinflammatory mediators by RAW 264.7 macrophages by suppressing the activation of
NF-κB and MAPKs, suggesting that GM1 is a promising candidate drug for inflammation-
mediated ocular diseases.

The pathology of uveitis is basically caused by excessive inflammatory conditions [46].
LPS is one of the most effective stimulants that triggers proinflammatory responses. EIU
is a well-established model for investigating the pathological mechanism of ocular in-
flammation and evaluating the therapeutic efficacy of potential anti-inflammatory agents.
Administration of LPS induces the infiltration of inflammatory cells in the ICB and increases
protein concentration in the AqH of rats with EIU, accompanied by clinical pathological
symptoms, including conjunctival chemosis (edema), erythema (redness) and ocular dis-
charge. However, GM1 alleviated these clinical symptoms and reduced LPS-induced
increases in protein and the number of infiltrating cells, indicating the anti-inflammatory
effects of GM1.

Recruitment and activation of inflammatory cells in the ICB is the primary pathogene-
sis of EIU. These inflammatory cells mainly include neutrophils and macrophages. Immune
cells release proinflammatory mediators that modulate the pathological progression of
uveitis. Among these mediators, prostaglandin is a critical proinflammatory mediator.
Prostaglandin is produced by COX-2; therefore, COX-2-positive cells are useful as an
indicator of the presence of inflammatory cells. In this study, abundant COX-2-positive
cells infiltrated into the anterior chamber and ICB tissue of rats with EIU, whereas GM1
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reduced the recruitment of these cells and attenuated the expression of the COX-2 protein.
A reduction in the infiltration of inflammatory cells may be one of the significant effects of
GM1 for alleviating uveitis.

The expression of ICAM-1, an adhesion protein expressed in the epithelium of the ICB,
is induced by LPS [47]. ICAM-1 participates in cellular infiltration during inflammation.
ICAM-1 is recognized by inflammatory cells and is involved in rolling and adhesion [36,48].
Systemic administration of anti-ICAM-1 monoclonal antibodies has been shown to inhibit
LPS-induced cellular infiltration into the anterior segment of the eye [36]. In this study, GM1
reduced macrophage activation; therefore, it decreased LPS-induced inflammation and
ICAM-1 expression, contributing to a reduction in the infiltration of COX-2-positive cells.

Macrophage activation is associated with the pathogenesis of several inflammatory dis-
eases, and inhibition of macrophage activation and production of proinflammatory factors
may contribute to the development of effective treatments for inflammatory diseases [49].
In LPS-stimulated RAW 264.7 cells, iNOS and COX-2 produce the proinflammatory fac-
tors NO and PGE2, respectively. The proinflammatory factors TNF-α, IL-1β and IL-6 are
also associated with the development of uveitis. In the current study, GM1 significantly
inhibited the production of iNOS, COX-2, TNF-α, IL-6 and IL-1β by LPS-stimulated RAW
264.7 cells. Based on these results, GM1 exerts anti-inflammatory effects in vitro.

This study investigated whether GM1 affects the activation of NF-κB to further elu-
cidate the anti-inflammatory mechanism of GM1. NF-κB is a protein complex consisting
mainly of p50 and p65 heterodimers that is an inducible transcription factor regulating
DNA transcription and proinflammatory factor production during inflammation. In the
inactivated state, NF-κB activity is inhibited by a physical interaction with IκBα, whereas
upon stimulation by LPS, IκBα is phosphorylated by IκB kinase and dissociates from NF-κB,
and is subsequently degraded via the ubiquitin–proteasome pathway. Free p50 and p65 are
activated, and phosphorylated p65 and p50 are then translocated to the nucleus where they
function as transcription factors to induce the expression of proinflammatory genes [50,51].
In the present study, GM1 inhibited the LPS-induced phosphorylation and degradation of
IκBα in RAW 264.7 cells along with phosphorylation of NF-κB p65 and nuclear transloca-
tion. Therefore, GM1 can suppress LPS-induced expression of proinflammatory molecules
by inhibiting the activation of NF-κB p65.

MAPKs are a family of serine/threonine protein kinases that modulate various cellular
processes in response to external stress signals [52]. Downstream activation of MAPKs is
associated with the production of proinflammatory factors; therefore, they are considered
potential therapeutic targets for anti-inflammation [53,54]. Activated MAPKs phosphory-
late various substrate proteins, including proinflammatory transcription factors such as
c-Jun, c-Fos, Elk-1, activated transcription factor 2 (ATF2) and cardiomyocyte enhancer
factor, and positively regulate gene transcription [55]. In macrophages, LPS-stimulated
TLR4 signaling increases the phosphorylation of MAPKs, including JNK, p38 MAPK and
ERK, which increases the expression of proinflammatory and chemotactic factors and
promotes inflammatory responses [56]. In addition, MAPKs participate in the positive
regulation of NF-κB transcriptional activity [57]. In the present study, GM1 pretreatment
attenuated the LPS-induced phosphorylation of JNK, p38 MAPK and ERK in RAW 264.7
cells. The results suggest that inhibition of MAPK activity by GM1 in LPS-stimulated RAW
264.7 cells is associated with its anti-inflammatory activity.

ROS act as signaling molecules triggering various biological responses upon exposure
to stressful environments [40,58]. At moderate (non-toxic) levels of ROS, they can be
considered as a second messenger necessary for the initiation of the inflammatory response
and to maintain cellular homeostasis. However, excessive ROS production is thought to be
critical for the production of various inflammatory mediators and the progression of tissue
damage [40]. Therefore, modulating ROS production and oxidative stress would be an
effective strategy for treating inflammatory diseases. In macrophages, LPS can trigger ROS
production via NOX activation at the cell membrane [41,43,44]. Inhibition of NOX with
DPI can prevent ROS production and activation of NF-κB and MAPKs, thus attenuating
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the inflammatory response [41,43,45]. In the present study, LPS-induced ROS production
by RAW 264.7 cells was significantly inhibited by GM1. It is likely that GM1 may inhibit
LPS-induced activation of NF-κB and MAPKs in part by reducing NOX-dependent ROS
production. Previous studies have indicated the anti-inflammatory activity of several
gangliosides (e.g., GM3 and GD1a) in LPS-stimulated RAW 264.7 macrophages [59,60].
In the present study, GM1 exerted an anti-inflammatory effect on LPS-stimulated RAW
264.7 cells. Nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen and aspirin) are
commonly used for anti-inflammation, but their prolonged use may cause gastric ulcers,
kidney damage, stroke or heart attack [61]. Corticosteroids are still the standard treatment
for uveitis. However, corticosteroids may cause many adverse ocular side effects, including
accelerated cataracts and increased intraocular pressure [62], as well as systemic side
effects, such as Cushing’s syndrome, hypertension, hyperglycemia and osteoporosis [14,63].
Recently, GM1 was found to ameliorate chemotherapy-induced peripheral neurotoxicity
in a phase III clinical trial [64], suggesting its safety and applicability, but the detailed
anti-inflammatory mechanism of GM1 requires further investigation.

5. Conclusions

The present study revealed a potential inhibitory effect of GM1 on the inflammatory
symptoms in the eye of an animal model of EIU. In addition, GM1 inhibited the production
of proinflammatory factors by LPS-stimulated RAW 264.7 macrophages by suppressing
the NADPH oxidase-mediated ROS production, and subsequently inhibiting NF-κB and
MAPK signaling pathways. These observations suggest that GM1 gangliosides have
the potential to inhibit macrophage activation and infiltration by preventing ICAM-1-
mediated ocular inflammatory diseases. However, further studies are needed to elucidate
the detailed mechanisms.
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