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Abstract 

Background:  Preeclampsia is a pregnancy-related condition that causes high blood pressure and proteinuria after 
20 weeks of pregnancy. It is linked to increased maternal mortality, organ malfunction, and foetal development limita-
tion. In this view, there is a need critical to identify biomarkers for the early detection of preeclampsia. The objective of 
this study is to discover critical genes and explore medications for preeclampsia treatment that may influence these 
genes.

Methods:  Four datasets, including GSE10588, GSE25906, GSE48424 and GSE60438 were retrieved from the Gene 
Expression Omnibus database. The GSE10588, GSE25906, and GSE48424 datasets were then removed the batch 
effect using the “sva” R package and merged into a complete dataset. The differentially expressed genes (DEGs) were 
identified using the “limma” R package. The potential small-molecule agents for the treatment of PE was further 
screened using the Connective Map (CMAP) drug database based on the DEGs. Further, Weight gene Co-expression 
network (WGNCA) analysis was performed to identified gene module associated with preeclampsia, hub genes were 
then identified using the logistic regression analysis. Finally, the immune cell infiltration level of genes was evaluated 
through the single sample gene set enrichment analysis (ssGSEA).

Results:  A total of 681 DEGs (376 down-regulated and 305 up-regulated genes) were identified between normal and 
preeclampsia samples. Then, Dexamethasone, Prednisone, Rimexolone, Piretanide, Trazodone, Buflomedil, Scoulerin, 
Irinotecan, and Camptothecin drugs were screened based on these DEGs through the CMAP database. Two modules 
including yellow and brown modules were the most associated with disease through the WGCNA analysis. KEGG 
analysis revealed that the chemokine signaling pathway, Th1 and Th2 cell differentiation, B cell receptor signalling 
pathway and oxytocin signalling pathway were significantly enriched in these modules. Moreover, two key genes, 
PLEK and LEP were evaluated using the univariate and multivariate logistic regression analysis from the hub modules. 
These two genes were further validated in the external validation cohort GSE60438 and qRT-PCR experiment. Finally, 
we evaluated the relationship between immune cell and two genes.

Conclusion:  In conclusion, the present study investigated key genes associated with PE pathogenesis that may con-
tribute to identifying potential biomarkers, therapeutic agents and developing personalized treatment for PE.
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Introduction
Preeclampsia (PE) is a pregnancy disorder that causes 
high blood pressure and proteinuria [1] after 20 weeks of 
pregnancy [2].It affects 3%-10% of all pregnancies [3–5], 
and is associated with substantial maternal morbidity, 
mortality, organ dysfunction, iatrogenic premature deliv-
ery [6], and foetal development restriction [7]. Preec-
lampsia affects the brain development and function of 
the offspring, increasing the risk of intellectual disability 
[8], epilepsy [9], autism [10], and schizophrenia [11, 12]. 
Women with a history of PE are more likely to develop 
cardiovascular disease or hypertension,5 resulting in 
financial and psychological consequences on the family 
and society. There is no obvious therapeutic intervention 
for PE today; the only effective treatment is pregnancy, 
which might result in low birth weight and long-term 
detrimental health implications for infants [13, 14]. 
Early assessment of PE risk is critical for high-risk preg-
nant women because it allows for the implementation 
of preventive strategies to lower the incidence of PE and 
improve maternal and infant outcomes.

However, the etiology and pathogenesis of PE are yet 
unknown. Several hypotheses such as maternal-foetal 
(paternal) immune maladjustment [15] and inflamma-
tory cytokine disorders [16], all suggest that PE is asso-
ciated with a number of risk factors, including obesity, 
hypertension, diabetes, oxidative stress, foetal rejection, 
genetic polymorphism inheritance [17], and trophoblast 
insufficiency [18, 19]. The main causes are identified as 
immunological intolerance [20, 21] and angiogenesis 
imbalance, and numerous research has demonstrated the 
immune mechanism of PE development. The latter causes 
PE by generating an imbalance in immune tolerance at 
the mother-infant interaction [22, 23]. The pathophysi-
ological basis of PE is shallow placental implantation. 
The mutual adaptation of villous trophoblast cells and the 
mother’s immune system is required for effective placen-
tal development. The poor placental formation will result 
in acute-like graft rejection disease under the influence of 
specific immunological factors generating immune intol-
erance in the mother and child.

Immune system modifications have been widely rec-
ognized as the key determinants of PE [24], which is a 
systemic inflammatory response resulting in  an imbal-
ance between placental substances and the correspond-
ing adaptation of the mother[25, 26]. Shah et al. [27] in 
their study compared the expression of CD66B, nuclear 
factor NF-κB, and cyclooxygenase-2 (COX-2) in the 

subcutaneous fat of women with PE (n = 7), normal preg-
nant women (n = 6), and normal non-pregnant women 
(n = 5). The percentages of CD66B, NF-κB, and COX-2 
in PE patients were significantly higher than in normal 
non-pregnant or normal pregnant patients. Moreover, 
Xu et al. [28]. discovered five hub genes that are associ-
ated with immune cells in the immunologic microenvi-
ronment at the maternal-foetal interface.

An increasing number of researchers are actively pur-
suing molecular markers using data mining and analysis 
of databases to the diagnosis and treatment of PE. How-
ever, most recent studies using single dataset to iden-
tify the key genes and lack of external validation cohort, 
which may induce a unstable and unreliable result. For 
example, Liu et al. using the GSE60438 dataset to identify 
17 hub genes through the differentially expressed analy-
sis, protein–protein network and svm analysis, while lack 
of external cohort [29]. Lin et  al. using the GSE48424 
dataset to identify three key genes (HDC, MS4A2 and 
SLC18A2) associated with PE through PPI network 
analysis. Although they applied GSE149437 to verify the 
predictive value of the above these genes, the result still 
lack reliability [30]. Moreover, Wang et  al. explored the 
immune cell infiltration in PE, however, the dataset that 
used in the study is relatively small, and lack of the stabil-
ity [31].

In this study, we aimed to investigate the potential 
biomarkers, immune cell infiltration and drug in PE via 
integrative multiple datasets. These results were further 
validated using the qRT-PCR experiment. Our findings 
might provide the novel biomarkers for the prediction 
and diagnosis of PE.

Methods
Selection of the GEO dataset and data processing
The gene expression microarray datasets GSE10588, 
GSE25906, GSE48424, and GSE60438 were downloaded 
from the GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/). GSE10588 contains 26 normal placental tissues 
and 17 preeclampsia placental tissues [32], GSE25906 
contains 37 normal placental tissues and 23 preeclamp-
sia placental tissues [33], GSE48424 contains 18 normal 
blood samples and 18 preeclampsia blood samples [34], 
and GSE60438 contains 42 normal samples and 35 PE 
samples [35]. To verify data reliability, we used the com-
bat function in the ‘SVA’ R package to eliminate the batch 
effect from three datasets (GSE10588, GSE25906, and 
GSE48424) and combined these three datasets (Merge 
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dataset). The distribution of datasets before and after the 
merger was then evaluated using principal component 
analysis. The dataset GSE60438 was selected for exter-
nal validation [35]. The detail pipeline of this study was 
showed in Fig. 1.

Differential expression analysis
We used the ‘Limma’ R package (version 4.0; http://​www.​
bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​limma.​
html) to discover differential genes between normal and 
PE samples in a combined dataset of 81 normal samples 
and 58 PE samples. For the screening criterion, corrected 
P-values less than 0.05 and log2 |Fold Change|> 0 were 
considered statistically significant.

CMAP drug database analysis
To find potential small-molecule agents for the treatment 
of PE, the top 1000 up-regulated and down-regulated 
DEGs were uploaded to the Connective Map database 
(CMAP) (http://​www.​broad​insti​tute.​org/​cmap/).

Co‑expression network analysis of weighted genes
The “WGCNA” R package was used for co-expression 
analysis. The genes with the largest variance (25%) 
were firstly selected to assure the heterogeneity and 
then filtered to remove outliers using sample clustering 

methods. The co-expression similarity matrix included 
absolute values of correlations between transcription 
expression levels. A Pearson correlation matrix was 
constructed for matching genes. We used the power 
function amn =| key | beta (key = the Pearson correla-
tion between gene m and n; AMN = adjacency between 
gene M and gene N) to construct a weighted adjacency 
matrix. The parameter β highlighted genes with signifi-
cant correlations while penalizing those with weak cor-
relations. Following that, the appropriate β value was 
selected to perform the similarity matrix and investigate 
the scale-free co-expression network. The adjacency 
matrix was then transformed into a topological overlap 
matrix (TOM), which calculated the network connect-
edness of the genes in the topology matrix as the sum of 
the adjacent genes generated by all the other networks. 
Based on TOM similarity data, average linkage level clus-
tering was performed, and the minimum size of the gene 
tree (genome) was selected 30. The gene significance 
(GS) was calculated to quantify the correlation between 
genes and sample traits to determine the value of each 
module. Module eigengenes (MEs) were regarded as the 
major components in the principal component analy-
sis of each gene module, and the expression patterns of 
all genes could be summed as a single typical expression 
profile within a specific module. The log10 conversion of 

Fig. 1  The overall design of the study
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p-value in linear regression between gene expression and 
clinical data (GS = lgP) was designated as GS. Modular 
significance (MS) was defined as the average GS within 
a module, reflecting the correlation between the mod-
ule and the sample features. We established a threshold 
value (< 0.25) to increase the capacity of the modules by 
merging several modules of comparable height. Normal 
and PE samples were selected as clinical phenotypes. The 
gene modules were then examined alongside the clini-
cal phenotypes. After identifying the relevant modules, 
we calculated GS and MM values (module membership 
[MM] is the correlation between the genes of the module 
and gene expression profile) and set the threshold values 
for each key gene.

GO and KEGG enrichment analysis
The R package of ‘clusterProfiler’ to perform Gene 
ontology (GO) and the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [36–38]enrichment analysis to 
uncover the function of genes and potential pathways in 
the module. Furthermore, the screening criteria for sig-
nificant functions and pathways were adjusted p-value 
less than 0.05.

Logistic regression
To identified key genes associated with PE, we firstly 
constructed PPI network based on the hub modules. We 
then using the MCODE algorithm and logistic regression 
analysis to screened key genes from the PPI network. 
The receiver operating characteristic (ROC) curve analy-
sis was applied to the accuracy of the diagnostic model 
from the result of logistic regression analysis in the merge 
dataset and external validation dataset.

Immune infiltration analysis
The immune cell gene sets were retrieved from previous 
related literature, and then used to assess the immune 
cell infiltration between normal and PE samples [28]. The 
function of immune-related gene sets was acquired to 
enrich gene sets and calculate the concentration of each 
sample score, standardized between 0 and 1, using the 
single-sample Gene Set Enrichment Analysis (ssGSEA) 
algorithm [39].

Collection of human tissue specimens
A total of 60 placenta specimens were collected between 
August 2021 and January 2022, 30 specimens from 
patients with PE and 30 from healthy pregnant women 
at the The First Affiliated Hospital of USTC, Division of 
Life Sciences and Medicine, University of Science and 
Technology of China (Anhui Provincial Hospital) (Hefei, 
China). Written informed consent was obtained from 
all participants. This study was approved by The First 

Affiliated Hospital of USTC, Division of Life Sciences 
and Medicine, University of Science and Technology of 
China (Anhui Provincial Hospital) research ethics board 
(NO:2021KY161) and is based on the ethical require-
ments of the Helsinki Declaration. All participants have 
the right to know.

Detection of the mRNA expression of the hub genes 
by RT‑PCR
Tissue RNA was extracted using TRIzol® (Invitrogen; 
Thermo Fisher Scientific, Inc.) to assess the expres-
sion of important genes in the placentas of PE patients 
and healthy pregnant women. Total RNA was reverse 
transcribed into cDNA at 42˚C for 30 min using Prime-
Script™ RT Master Mix (Takara Biotechnology Co., Ltd.). 
Subsequently, qPCR was performed on a CFX96™ Real-
Time PCR Detection system (Bio-Rad Laboratories, Inc.) 
using TB Green™ Fast qPCR mix. The 2-ΔΔCq method 
was used to quantify the relative mRNA levels for the 
gene expression analysis [40]. The values were adjusted 
to endogenous GAPDH expression, and each experiment 
was repeated three times separately. Critical Technolo-
gies: GAPDH sense, 5′-GAA​GGT​GAA​GGT​CGG​AGT​
CAA-3′; antisense 5′-CTG​GAA​GAT​GGT​GAT​GGG​
ATTT-3′; PLEK sense, 5′-AGA​TGC​CTG​GGT​TCG​GGA​
TA-3′; antisense, 5′-GGT​TTC​TGG​CAG​TCG​AAT​GGA-
3′; LEP sense, 5′-GCT​GTG​CCC​ATC​CAA​AAA​GT-3′; 
antisense, 5′-CCA​GGA​ATG​AAG​TCC​AAA​CCG-3′. The 
thermocycling conditions were as follows: 95˚C for 30 s, 
followed by 40 cycles of 95˚C for 5 s and 60˚C for 30 s.

Statistical analysis
All RT-PCR experimental data were analyzed using 
GraphPad Prism 7.0. The expression level of each hub 
gene was expressed as a fold change using the 2−ΔΔC 
method. P < 0.05 was considered significant.

Results
Identification of differential genes in PE
GSE10588, GSE25906, and GSE48424 datasets were 
pooled. We obtained a dataset with 81 normal sam-
ples and 58 PE samples after removing the batch effect. 
As shown in Figs.  2A and B, the datasets were discrete 
before merging. while the batch effect was removed, we 
discovered that the datasets were merged, showing that 
the batch effect was successfully erased. By comparing 
normal and PE samples, we found 376 down-regulated 
genes and 305 up-regulated genes (Figs. 3A and B). Fig-
ure  3A depicts up-down-regulated differential genes; 
down-regulated genes are denoted by green and the up-
regulated genes are denoted by red point. Moreover, a 
heat map of the differentially regulated genes is shown in 
Fig. 3B.
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Identification of potential drugs for PE
Based on these DEGs, we looked into potential drug 
targeting pathways in the CMAP database. The analy-
ses of the mechanism of action in the CMAP data-
base revealed 39 mechanisms of action of 51 drugs. 
As illustrated in Fig.  4, dexamethasone, prednisone, 

rimexolone, and piretanide interacted via the glucocor-
ticoid receptor agonist, whereas Trazodone, buflomedil, 
and scoulerine interacted via the adrenergic receptor 
antagonist. The co-action mechanism of irinotecan, 
camptothecin, and doxorubicin, on the other hand, was 
via topoisomerase inhibitor. These results may provide 
new insights for the treatment of PE.

Fig. 2  Evaluation of the batch effect before (A) and after (B) merging through the principal component analysis

Fig. 3  Identification of differentially expressed genes in the merged dataset. A Volcano plot of the genes, the green dots represent the 
down-regulated genes, red dots represent the up-regulated genes, while the black dots showed genes with no significance. B A heatmap plot of 
the differentially expressed genes
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Modular identification and key gene screening for PE
WGCNA was used to construct gene co-expression net-
works to discover biologically essential gene modules 
and better understand genes linked with clinical traits. 
We selected the genes with the largest variance (25%) 
to the WGCNA analysis. In this investigation, β = 5 
(scale-free R2 = 0.90) was selected as the soft threshold 
to establish a scale-free network. We then applied aver-
age-linkage hierarchical clustering method to cluster 
these genes and six module were obtained, of which yel-
low and brown modules were the most associated with 
disease (Fig.  5A-B). We further used MS as the overall 
gene expression level to assess the correlation with clini-
cal phenotypes. The Fig. 5C and D showed that the cor-
relation between gene significance and clinical trait in 
yellow and brown modules. According to the GO and 
KEGG enrichment analyses, the genes in the yellow 
module were significantly enriched in the NADP meta-
bolic process, cellular aldehyde metabolic process, and 
other processes (Fig. 6A). Chemokine signalling pathway, 
Th1 and Th2 cell differentiation, B cell receptor signal-
ling pathway, and oxytocin signalling pathway were all 
significantly enriched in KEGG enrichment (Fig.  6B). 

In the brown module, GO enrichment analysis revealed 
that the genes were significantly enriched in regulation 
pf lipid metabolic process, aging, cytokine activity, nega-
tive regulation of B cell activation, negative regulation of 
leukocyte activation (Fig.  7A), and cytokine – cytokine 
receptor interaction, HIF- 1 signalling pathway, TGF—
beta signalling pathway, and leukocyte trans-endothelial 
migration were enriched in KEGG pathway (Fig. 7B). We 
then constructed a protein–protein interaction network 
(PPI) from the hub module through the String database 
and further visualized using the Cytoscape software. 
Figures  8A and 8B depict the interaction relationship 
between genes in the yellow and brown modules, respec-
tively. Finally, we used the Maximal Clique Centrality 
(MCC) algorithm from the cytoscape software to identify 
15 hub genes, including LCP1, IGSF6, TLR8, HCK, SLA, 
DOCK2, RAC2, LCP2, PLEK, CD53, SERPINE1, ENG, 
ANG, LEP, and FLT1. To restrict the spectrum of core 
genes, a logistic univariate and multivariate regression 
analyses were used to construct models associated with 
PE. Finally, two important genes, PLEK and LEP, were 
retained with P < 0.05 (Table 1). According to ROC analy-
sis, the area under the curve (AUC) value of this model 

Fig. 4  Identification of the molecular compounds with their mode of action using the CMAP database
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on the merging dataset and external validation dataset 
achieved 0.923 (Fig. 9A) and 0.670 (Fig. 9B), respectively. 
PLEK was shown to be significantly expressed in the 
pooled dataset, although in normal tissues rather than 
PE tissues (Fig.  10A). However, PLEK was not signifi-
cantly expressed in the external validation set (P = 0.065), 
which could be attributed to the limited PE sample size 
in the external dataset (Fig. 10C). Interestingly, the LEP 
gene was significantly expressed in both the merged data-
set and the external validation set, but its expression in 

normal tissues was lower than in PE tissues (Figs.  10B 
and D).

Immune infiltration analysis
The immune enrichment value of each sample was 
calculated using the ssGSEA algorithm, and the wil-
coxon-rank test was used to evaluated the immune 
cell infiltration level between normal samples and PE 
samples (Fig. 11). In addition, the relationship between 
PLEK, LEP, and immune infiltration was investigated. 

Fig. 5  Identification of hub modules using the WGCNA analysis. A The dendrogram of the co-expression network was clustered based on the 
dissimilarity. B The module-trait heatmap showing the correlation between module eigengenes (ME) and traits. C Scatter plot of the red module. D 
Scatter plot of the brown module
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We discovered a substantial link between PLEK CCR, 
TIL, and other immune functions, implying that PLEK 
may play an important role in immunity, whereas LEP 
was significantly positively correlated with Th2 cells 
and negatively correlated with Th1 cells. This suggested 
that LEP was closely linked to T cell function (Figs. 12A 
and B).

RNA extraction and quantitative real‑time PCR
As illustrated in Fig. 13, the PLEK expression levels were 
significantly lower in the PE samples as compared to nor-
mal tissues, while LEP expression levels were significantly 
higher in normal samples, which was consistent with our 
analysis results (Figs. 13A and B).

Discussion
This study employed a multi-step integrated bioin-
formatics analysis of the chip data to identify the hub 
gene as a biomarker for PE. 376 down-regulated and 
305 up-regulated DEGs were firstly identified using the 
gene expression profiles of the GSE10588, GSE25906 
and GSE48424 datasets. According to these DEGs, we 
further evaluated prospective drugs for PE treatment 
through the CMAP database. The analysis of the action 
mode of 51 compounds revealed that the interaction 
mechanism for prednisone, dexamethasone, rimex-
olone, and piretanide occurred via the glucocorticoid 
receptor agonist. Trazodone, buflomedil, and scouler-
ine interacted via the adrenergic receptor antago-
nist, whereas the co-action mechanism of irinotecan, 

Fig. 6  Gene ontology enrichment (A) and KEGG (B) enrichment analysis were performed in the yellow modules

Fig. 7  Gene ontology enrichment (A) and KEGG (B) enrichment analysis were performed in the brown modules
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camptothecin, and doxorubicin occurred via topoi-
somerase inhibitor. Our study identified drugs for PE 
and may suggest therapeutic targets for future research. 
However, there is a need to deeply understand whether 
these treatments are effective in treating PE to provide 
safe outcomes for the both mother and the foetus.

With the development of the high-through sequenc-
ing, a large number of disease-related biomarkers have 

been identified. Non-coding RNAs play a critical role in 
the development and biological process of disease [41–
43]. Chen et  al. reviewed and developed a numerous of 
computational models to predict the potential non cod-
ing RNAs–disease associations. For example, a NCM-
CMDA and DBNMDA model which applied to predict 
the potential miRNA–disease associations, showed a 
high performance than many previous computational 

Fig. 8  Protein–protein networks of the hub genes in the red (A) and brown (B) modules

Table 1  Univariate and multivariate logistic regression

Note: 

NA Univariate analysis NA Multivariate analysis NA

OR (95% CI) P value P value P value

LCP1 0.145 (0.059–0.355)  < 0.001 NA

IGSF6 0.365 (0.205–0.650)  < 0.001 NA

TLR8 0.303 (0.141–0.649) 0.002 NA

HCK 0.257 (0.116–0.567)  < 0.001 NA

SLA 0.325 (0.158–0.666) 0.002 NA

DOCK2 0.340 (0.165–0.697) 0.003 NA

RAC2 0.324 (0.155–0.680) 0.003 NA

LCP2 0.335 (0.163–0.688) 0.003 NA

PLEK 0.104 (0.039–0.278)  < 0.001 4.100000e-02 (3.000000e-03–5.150000e-01) 0.013

CD53 0.219 (0.102–0.471)  < 0.001 NA

SERPINE1 2.040 (1.253–3.321) 0.004 NA

ENG 4.949 (2.678–9.146)  < 0.001 NA

ANG 3.438 (1.766–6.691)  < 0.001 NA

LEP 2.228 (1.698–2.924)  < 0.001 2.524000e + 00 (1.568000e + 00–4.065000e + 00) 0.000

FLT1 2.083 (1.427–3.040)  < 0.001 NA
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Fig. 9  Evaluation of specificity and sensitivity of the hub genes using the receiver operating characteristic in the training dataset (A) and external 
validation dataset (B)
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methods [44, 45].Cumulative evidence revealed that the 
unbalanced expression of specific ncRNA is involved in 
the pathogenesis of PE [46].

However, there is no researches about incorporate the 
existing predictive model to predict the potential associa-
tion between non coding RNA and PE presently. There-
fore, it is urgent need to applied these model to predict 
the association between non coding RNA and PE. In our 
study, trough WGCNA and logistic analysis, we identi-
fied two key genes (PLEK and LEP) and constructed a 
diagnostic model. Leptin (LEP), also known as a placental 
hormone, is a multifunctional 16  kDa peptide hormone 
encoded by the LEP gene on chromosome 7 (7q31). It is 
abundant in adipocytes, the placenta, and tissues such 
as muscles, liver, brain, and ovaries. LEP is a well-known 
potential serum marker for PE, particularly in early-
onset PE placental tissues [47, 48]. Furthermore, leptin 
can boost blood supply to the placenta by promoting the 

formation of new blood vessels [49]. Researchers discov-
ered that leptin can reduce trophoblast cell apoptosis in 
PE [48], as well as induce endothelial cell proliferation 
[50], promote immune cell activation, proliferation, and 
maturation, and prevent monocyte apoptosis. In general, 
leptin promotes Th-1 response and mediates the produc-
tion of pro-inflammatory cytokines such as TNF-α, inter-
leukin-2, and interleukin-6. According to Muy-Rivera 
et al. [51], pregnant women with elevated plasma leptin 
levels have a 3.8-fold greater risk of developing PE. Leptin 
has also been shown to raise blood pressure in non-preg-
nant rabbits [52]. Leptin injection raised ICAM-1 and 
Eseltin circulation concentrations, resulting in hyperten-
sion and proteinuria in pregnant rats [53]. Our findings 
show that the expression level of this gene was higher in 
the placenta of the PE group than in the control group, 
which is consistent with earlier findings. PLEK, another 
hub gene, was found to be significantly expressed in the 
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merged dataset. Its expression was higher in normal tis-
sues than in PE tissues, although it was not significantly 
higher in the external validation set. Pleckstrin (PLEK), 
which is found on human chromosome 2, is a protein 
kinase C target [54] that is involved in signal transduc-
tion and hematopoietic cell differentiation [55]. PLEK 
play an important role in immune and inflammatory 
responses [56, 57]. Studies have been shown that PLEK 
is significantly over-expressed in periodontitis, cardiovas-
cular disease, rheumatoid arthritis, and ulcerative colitis 
[58], and thought to be a crucial mediator in the secretion 
and activation pathways of pro-inflammatory cytokines 
TNF-α and IL-1β [59, 60]. While studies have suggested 
that LILRA2, EVI2A, and PLEK play a role in recurrent 
miscarriage [61], the underlying mechanism in placental 
function and regulation has yet to be fully investigated. 
This is the first study to examine PLEK expression in PE. 
An examination of its mechanisms would necessitate 
additional research.

PE is a complex systemic condition, and it has been 
shown that the immune system plays a significant role 
in its development [62]. As a result, we evaluated the 
landscape of 29 immune cell infiltration levels in PE 
and control samples. The results indicated that the infil-
tration level of neutrophils, T helper cells, Th2 cells, 
TIL, and Treg cells were significantly differed between 
PE and normal tissues. Immune cell infiltration is a 
new bioinformatics technique that has been used to 
investigate the diagnosis and prognosis of kidney can-
cer [63], malignant glioma [64], breast cancer [65], oral 
squamous cell carcinoma [66], ulcerative colitis[67], 
osteosarcoma [68], and variety of other diseases. None-
theless, it has received little attention in the field of 
PE. The complicated connection between the maternal 
immune system and its semi-allogeneic foetus is criti-
cal in normal pregnancy. Moreover, establishing and 
maintaining the maternal and foetal immune balance 
is a prerequisite for normal pregnancy [69]. Abnormal 
maternal immunological and inflammatory responses 
to foetal antigens result in increased release of various 
toxic cytokines, which causes trophoblast cell invasion, 
vascular remodelling, and placental implantation disor-
ders. Changes in the innate immune system primarily 
regulate this inflammatory response, with the adaptive 
immune system possibly playing a supporting role [70].

T cells are thought to be the most important cells in regu-
lating immunological homeostasis [71, 72]. T lymphocytes 
account for 1%-3% of decidual immune cells [73]. In a normal 
pregnancy, the mother exhibits Th2 cell-type immunological 
tolerance, preventing embryo rejection [74]. However, in PE 
patients, the Th1/Th2 ratio increases. As a result, the Th1/
Th2 balance changes towards Th1 [75]. Aside from the Th1/
Th2 imbalance that contributes to the onset and progression 

of the disease, there is also an imbalance of Th17/ regulatory 
T cells. This imbalance, which was exacerbated by the Th17 
immune bias, also contributed to the development of PE. 
Th17/ Treg cells are balanced at the maternal-foetal interface 
during normal pregnancy to preserve maternal immunologi-
cal tolerance and inhibit the inflammatory response [76]. In 
our study, we identified most of T cells showed a significant 
difference between normal and PE samples, reveled that the 
T cells play an important role in PE.

Conclusion
PLEK and LEP were identified as two genes implicated in 
the development and progression of PE in this investiga-
tion. Although more in vivo and in vitro validations are 
needed, our findings help to understand the pathological 
process of PE and may serve as a theoretical foundation 
for future research. The functional annotation and path-
way enrichment analysis results show that the immu-
nological mechanism is important in the etiology of PE. 
Also, because of the maternal and infant complications of 
PE, it is critical to uncover the aetiology and molecular 
mechanism, develop molecular biomarkers and investi-
gate effective drugs for the early detection, prevention, 
and personalized treatment of PE.

Limitations
This study not only points out several benefits of bioin-
formatics analysis but also highlights some limitations. 
The dependability of the original microarray dataset is 
critical to the validity of our conclusions, although the 
results are constrained due to the small sample size. Sim-
ilarly, validation results are limited. Second, despite the 
identification of two hub genes as prospective biomarkers 
for PE immunotyping, no in vivo and in vitro studies have 
been conducted. More research on the functions and reg-
ulatory mechanisms of key genes in PE is still needed. As 
a result, this will be the focus of future efforts.
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