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Background: The prediction of the number of acute coronary syndromes (ACSs) based

on the weather conditions in the individual climate zones is not effective. We sought to

investigate whether an artificial intelligence system might be useful in this prediction.

Methods: Between 2008 and 2018, a total of 105,934 patients with ACS were

hospitalized in Lesser Poland Province, one covered by two meteorological stations. The

predicted daily number of ACS has been estimated with the Random Forest machine

learning system based on air temperature (◦C), air pressure (hPa), dew point temperature

(Td) (◦C), relative humidity (RH) (%), wind speed (m/s), and precipitation (mm) and their

daily extremes and ranges derived from the day of ACS and from 6 days before ACS.

Results: Of 840 pairwise comparisons between individual weather parameters and the

number of ACS, 128 (15.2%) were significant but weak with the correlation coefficients

ranged from −0.16 to 0.16. None of weather parameters correlated with the number of

ACS in all the seasons and stations. The number of ACSwas higher in warm front days vs.

days without any front [40 (29–50) vs. 38 (27–48), respectively, P < 0.05]. The correlation

between the predicted and observed daily number of ACS derived frommachine learning

was 0.82 with 95% CI of 0.80–0.84 (P < 0.001). The greatest importance for machine

learning (range 0–1.0) among the parameters reached Td daily range with 1.00, pressure

daily range with 0.875, pressuremaximum daily range with 0.864, and RHmaximum daily

range with 0.853, whereas among the clinical parameters reached hypertension daily

range with 1.00 and diabetes mellitus daily range with 0.28. For individual seasons and

meteorological stations, the correlations between the predicted and observed number

of ACS have ranged for spring from 0.73 to 0.77 (95% CI 0.68–0.82), for summer from

0.72 to 0.76 (95% CI 0.66–0.81), for autumn from 0.72 to 0.83 (95% CI 0.67–0.87), and

for winter from 0.76 to 0.79 (95% CI 0.71–0.83) (P < 0.001 for each).

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.830823
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.830823&domain=pdf&date_stamp=2022-04-08
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jzalewski@szpitaljp2.krakow.pl
https://doi.org/10.3389/fcvm.2022.830823
https://www.frontiersin.org/articles/10.3389/fcvm.2022.830823/full


Wlodarczyk et al. Weather and Acute Coronary Syndromes

Conclusion: The weather parameters have proven useful in predicting the prevalence

of ACS in a temperate climate zone for all the seasons, if analyzed with an artificial

intelligence system. Simultaneously, the analysis of individual weather parameters or

frontal scenarios has provided only weak univariate relationships. These findings will

require validation in other climatic zones.

Keywords: weather, acute coronary syndrome, myocardial infarction, machine learning, artificial intelligence,

prediction

INTRODUCTION

When I look out the window, I can forecast whether today’s see of
practice will be busy or not. This unwritten, intuitive observation
often works in the case of an interventional cardiologist treating

patients with acute coronary syndromes (ACS). Nevertheless,

this common truth is insufficiently proven and does not allow
for any practical recommendations to be drawn. A seasonal

variation in the prevalence of acute coronary syndromes (ACS)
and cardiovascular morbidity is a conventional wisdom. Already

in 1926, an association was noted between coronary thrombosis
and cold weather in New England during winter (1).

Although weather is a complex phenomenon, usually the

impact of only individual weather parameters on ACS prevalence
has been analyzed so far. Bayentin et al. (2) have shown that

cold temperatures during winter months and hot periods during

the summer are associated with a 12% increase in the daily
hospital admission rate for ischemic heart disease. In a large
Swedish registry, one incorporating more than 280,000 patients,
an increase in minimum air temperature by 7.4◦C was associated
with the reduction of the prevalence of the ACS ratio by 2.8%
(3). In contrast, Schwartz et al. have revealed that with each
1◦C temperature decrease the mortality ratio rises by 0.49% and
the frequency of all-cause, circulatory, coronary heart disease,
and ST-segment elevation myocardial infarction (STEMI) death
(4). Blazejczyk et al. (5) have shown that the number of deaths
attributed to a strong heat stress was five times higher and the
total mortality was almost 10% higher in June 2019 than the
average for the period of 2010–2018 in Poland. Also, the exposure
to an acute air pressure decrease more than 10.7 hPa within
7 days before STEMI increased the rate of STEMI (odds ratio
1.12, 95% CI 1.03–1.21) (6). In the population of New York
state, certain demographic groups including the elderly, males,
people with Medicaid insurance, people living in warmer areas,
or in areas with a high PM2.5 concentration were more prone
to cold acute myocardial infarction (MI) effects than others (7).
Barnett et al. (8) have proved that inhabitants of colder countries
such as North Sweden, North Korea, or Finland are less prone
to ACS with temperature changes. This is most likely caused
by better protection against cold temperature including clothes
as well as housing and metabolic adaptation by inhabitants of
these cold areas as observed in the Indians of Tierra del Fuego,
Arctic Indians, and Inuits (9). In turn, in Poland, an increase in
mortality by 9–19% on cold stress days was noted mainly in the
so-called “cool” cities characterized by a clear thermal optimum,

approximately in the range of 5–30◦C of the Universal Thermal
Climate Index (UTCI) (10).

Despite a lot of univariate associations between weather
parameter and the prevalence of ACS, their prediction in a given
geographical or climatic zone and season is so far ineffective.
On the other hand, data concerning a multifactorial approach
to this issue are limited (11). Data mining and machine learning
techniques seem to be the optimal choices for the reasons that
they are trying to predict non-linear and complex relationships
between many parameters (12, 13). Among algorithms mostly
used in meteorological and climatological studies, the Random
Forest method is widely applied (14, 15). Therefore, we sought
to investigate if multiple weather conditions analyzed together
with an artificial intelligence system are useful in predicting
the prevalence of ACS in a temperate climate zone. Lesser
Poland Province, being the area of interest, is located in Central
Europe where the global circulation model constitutes a westerly
advection dependent also on the low pressure systems allocated
in north-west Europe in both a cold and warm half-year.

METHODS

Study Design and Population
Between 1 January 2008 and 31 December 2018, a total of
105,934 patients with were hospitalized in the north part of
Lesser Poland Province. The region of interest had a population
of 1,812,272 inhabitants in 2014 and in this period was served
by two meteorological stations in Tarnow (Station A, 50.03N,
20.98 E) and Krakow (Station B, 50.08N, 19.8 E), both located
approximately 200m above sea level (Supplementary Figure 1).
In the area represented by stations A and B, 30,143 and 75,791 of
patients with ACS were treated, respectively.

The studied population was composed of patients who
had been admitted to emergency medical services, emergency
departments, or hospital wards and their diagnosis was
conducted by the treating physician and coded at discharge
according to the International Classification of Diseases (ICD)
classification as unstable angina (UA) (I.20.0), ST-segment
elevation myocardial infarction (STEMI) including acute
transmural MI of the anterior wall (I21.0), of the inferior wall
(I21.1), of other sites (I21.2), or non-ST-segment elevation
myocardial infarction (NSTEMI) including acute transmural MI
of an unspecified site (I21.3), acute subendocardial MI (I21.4), or
unspecified acute MI (I21.9). The exclusion criteria for this study
were an age of<18 years and doubled records of the same patient
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who was transferred between two different units due to the same
incident. The clinical characteristics of the studied patients,
including age, sex, diabetes mellitus (E10–E14), hypertension
(I10–I15), duration of hospitalization, history of renal failure
(N18–N19) or stroke (I62–I64), and in-hospital mortality, were
obtained from the Polish National Health Fund (NHF) registry.
This study protocol complied with the Declaration of Helsinki
was approved by the Ethical Committee of the Jagiellonian
University (approval number 1072.6120.88.2020).

Meteorological Data and Definitions
Meteorological data were obtained from the Institute of
Meteorology and Water Management-National Research
Institute (IMWM-NRI) operating as the National Weather
Service. The weather registry included air pressure (P) (hPa),
air temperature (T) (◦C), dew point temperature (Td) (◦C),
relative humidity (RH (%), wind speed (WS) (m/s), and
precipitation (RR) (mm) as measured in accordance with the
World Meteorological Organization’s standards and regulations
(16). All the data were collected at synoptic stations each hour
a day with the use of calibrated instruments, i.e., barometers,
dry and wet bulb thermometers, anemometers, and rain gauges,
respectively. Most of measurements were in parallel conducted
with dedicated automated sensors for further validation. All the
meteorological variables, with their daily extremes, including
maximum (T_max) or minimum (T_min) temperature,
maximum (Td_max) or minimum (Td_min) of dew point
temperature, maximum (P_max) or minimum (P_min) of air
pressure, maximum (RH_max) or minimum (RH_min) of
relative humidity, maximum (WS_max) or minimum (WS_min)
of wind speed, and maximum (RR_max) or minimum (RR_min)
of precipitation, were analyzed for the day of ACS and for 6
days prior to ACS itself. The daily ranges of the aforementioned
variables were defined as the difference between the maximum
and minimum value within each analyzed day and expressed
as the range of temperature (T_range), range of dew point
temperature (Td_range), range of air pressure (P_range),
range of relative humidity (RH_range), range of wind speed
(WS_range), and range of precipitation (RR_range). To indicate
the day prior to the index ACS for which the weather conditions
were analyzed included was a subscript with values from
1 to 6. For example, RH_max2 means a maximum relative
humidity 2 days prior to the index ACS. Furthermore, a 3-h
air pressure tendency (P3h_tend) and a 6-h aggregated amount
of precipitation (RR6h) were added to the overall analysis. Any
negative value of P3h_tend expresses pressure decrease, whereas
any positive value of P3h_tend expresses pressure increase.

Finally, the catalog of synoptic scenarios in the upper Vistula
river basin covering the area of Lesser Poland Province (17)
was used to distinguish the type and direction of air masses
advection as well as the type of pressure pattern together with the
type of frontal system. Synoptic maps also served as the source
of information of frontal systems distinguished by a surface
weather analysis supported by upper air information (18). Strong
horizontal temperature, moisture, wind gradient, as well as the
vertical shear of a horizontal wind and high vorticity as the
attributes of the boundaries between air masses were identified

and every front was classified as cold, warm, quasi-stationary,
or occluded.

Weather seasons were established on the basis of
meteorological rules as follows: spring (1st March to 31st
May), summer (1st June to 31th August), autumn (1st
September to 30th November), and winter (1st December
to 28/29th February).

Statistics
Statistical analysis was performed with SPSS Statistics software
(version 25.0.0.2, IBM Incorporation, USA). Continuous
variables are expressed as median (interquartile range) and
categorical variables are expressed as number (percentage).
Continuous variables were first checked for normal distribution
by the Shapiro–Wilk test. Differences between two continuous
variables were compared by the Student’s t-test or the Mann–
Whitney U test, if distribution was normal or different
than normal, respectively. ANOVA followed by the post-hoc
Bonferroni test was used to compare the differences in the three
or more groups with normally distributed data, whereas non-
normally distributed data were analyzed by the Kruskal–Wallis
test and the differences between the individual groups were
identified using a test for multiple comparisons of mean ranks.
Categorical variables were analyzed by the chi-squared test or the
Fisher’s exact test. The association between two variables with a
normal or non-normal distribution was assessed by the Pearson
or Spearman test, respectively. A two-tailed P-value of <0.05 was
considered as statistically significant.

Predictions With Machine Learning System
Machine learning analysis was performed using the R package
with the Random Forest algorithm (19). We examined models
with repeated 10-fold cross-validation (10 repeats), which
partitions the original sample into 10 disjoint subsets, uses
seven of those subsets in the training process, and then makes
predictions about the remaining subset. We trained an ensemble
classifier by using the results of a set of constituent classifiers
by taking a (weighted) vote of their individual predictions. The
predictive learning model was based on artificial intelligence
with the Random Forest algorithm. The latter is a decision
tree-based method constructed by creating a series of decision
trees from bootstrapped training samples (20). The decision
tree split is a random process, where a new division of data
is constructed, rather than using the full set of predictors.
The model takes predictions from individual learning algorithm
as an input to build an ensemble learning predictive model
that classified required meteorological parameters up to 6 days
before the day with a specific number of ACS. The variable
importance of each weather parameter was a derivative of all its
measurements obtained on the day of ACS and 6 days before
ACS. For example, the variable importance for T_max means
value calculated for all the maximum temperatures collected
within 7 days. The training and testing datasets were driven from
meteorological parameters, their derivatives, and were combined
with the date and day of the week for each number of ACS,
as there was found a decreasing trend in the numbers of ACS
between 2008 to 2018, as well as significant differences in their
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TABLE 1 | Baseline clinical characteristics.

All patients

n = 105,902

UA

n = 55,786

STEMI

n = 20,042

NSTEMI

n = 30,074

P-value

Age, years 68 (60–76) 67 (60–75) 66 (57–76) 70 (61–79) <0.001

Male 65,859

(62.2)

33,828

(60.6)

13,180

(65.9)

18,851

(62.7)

<0.001

Comorbidities

Diabetes mellitus

type 1 or 2

37,419

(35.3)

19,452

(34.9)

6,530 (32.6) 11,437

(38.0)

<0.001

Hypertension 75,418

(71.2)

39,474

(70.6)

13,799

(68.9)

22,145

(73.6)

<0.001

Renal failure 4,798 (4.5) 2,074 (3.7) 804 (4.0) 1,920 (6.4) <0.001

History of stroke 7,211 (6.8) 3,407 (6.1) 1,432 (7.1) 2,372 (7.9) <0.001

Outcome

Length of

hospitalization,

days

6 (3–9) 7 (4–9) 5 (4–9) 5 (3–9) <0.001

In-hospital death 4,649 (4.4) 583 (1.0) 1,967 (9.8) 2,099 (7.0) <0.001

Data are shown as median (interquartile range) or numbers (percentage), ACS, acute

coronary syndrome; UA, unstable angina; STEMI, ST elevation myocardial infarction;

NSTEMI, non-ST elevation myocardial infarction; P-value for differences between UA,

NSTEMI and STEMI.

distribution between Monday and Saturday or Sunday. The
Random Forest was used to build a predictive model, as well as to
give information about the learning process itself. In this study,
the variable importance of each parameter was examined to
quantify how a meteorological condition or clinical characteristic
is important in the prediction of the number of ACS per day. The
higher the variable importance value (results ranged from 0 to 1),
the more important the given parameter was in the training of
the model. The prediction performed with the Random Forest
algorithm was finally adjusted for age, sex, diabetes mellitus,
arterial hypertension, renal failure, and history of stroke.

RESULTS

Study Population
The demographic and clinical characteristics of the studied
patients are shown inTable 1. In the whole study period, unstable
angina was the most frequent diagnosis comprising 52.7% of all
the patients with ACS, while STEMI occurred in fewer than one-
fifth of patients (Table 1). Patients with STEMI were the youngest
(P < 0.001), with the highest percentage being males (P <.001).
Only 1% of patients with UA died during index hospitalization,
whereas the highest in-hospital mortality occurred in the STEMI
population (P < 0.001). Simultaneously, patients with NSTEMI
were characterized by the highest percentage of diabetes mellitus,
hypertension, renal failure, and history of stroke (all P < 0.001)
(Table 1).

The total number of acute coronary syndromes has been
decreasing since 2013 (Supplementary Table 1). Between 2008
and 2018, the annual number of UA decreased by 67% and
STEMI by 47%. Simultaneously, the absolute number of patients
with NSTEMI increased during the analyzed period by 39%. In
2018, hypertension was identified more frequently than in 2008

TABLE 2 | Seasonal weather characteristics at both the meteorological stations.

Weather

parameter

Season Station A Station B P-value

T_max, ◦C Spring 15.1 (9.6–20.4) 14.5 (9.0–19.6) <0.001

Summer 24.9 (21.4–28.3) 24.3 (20.9–27.5) <0.001

Autumn 14.3 (9.3–19.1) 13.4 (8.7–18.6) <0.001

Winter 3.2 (−0.5–6.8) 2.4 (−0.9–5.7) <0.001

T_min, ◦C Spring 4.4 (0.7–8.2) 3.8 (0.1–7.7) <0.001

Summer 13.2 (10.8–15.8) 13.1 (10.9–15.5) 0.021

Autumn 5.7 (2.2–9.3) 4.9 (1.1–8.5) <0.001

Winter −1.9 (−6.2–0.9) −2.9 (−6.8 to −0.3) <0.001

P_max, hPa Spring 1,018 (1,013–1,023) 1,019 (1,013–1023) <0.001

Summer 1,018 (1,014–1,020) 1,018 (1,015–1,021) <0.001

Autumn 1,021 (1,016–1,026) 1,021 (1,017–1,026) 0.075

Winter 1,022(1,015–1,028) 1,022 (1,015–1,028) 0.027

P_min, hPa Spring 1,013 (1,007–1,018) 1,013 (1,007–1,018) <0.001

Summer 1,013 (1,010–1,016) 1,014 (1,010–1,016) <0.001

Autumn 1,016 (1,011–1,021) 1,016 (1,011–1,021) 0.286

Winter 1,015 (1,008–1,022) 1,015 (1,008–1,022) 0.255

RH_max, % Spring 95 (91–98) 95 (91–97) 0.002

Summer 96 (93–98) 95 (92–97) <0.001

Autumn 97 (93–98) 96 (95–98) <0.001

Winter 94 (89–97) 96 (93-−98) <0.001

RH_min, % Spring 44 (34-60) 47 (37–64) <0.001

Summer 44 (37–57) 46 (38–58) <0.001

Autumn 61 (49–74) 65 (52–79) <0.001

Winter 69 (59–79) 75 (65–83) <0.001

WS_max,

m/s

Spring 3 (3–4) 6 (5–8) <0.001

Summer 3 (2–3) 6 (4–7) <0.001

Autumn 3 (2–4) 5 (4–7) <0.001

Winter 3 (2–4) 6 (4–8) <0.001

Data are shown as median (interquartile range), T, daily temperature; P, air pressure; RH,

relative air humidity; WS, wind speed;max, maximum daily value; min, minimum daily

value; P-value for comparisons between station A and B.

(68.1 vs. 65.8%, P = 0.002, respectively), but diabetes mellitus
(30.0 vs. 34.5%, P < 0.001), renal failure (2.4 vs. 4.7%, P <.001),
and a history of stroke (4.0 vs. 7.7%, P < 0.001) were identified
less frequently. The mortality rate was similar in 2018 vs. 2008
(4.7 vs. 4.6%, P = 0.377).

Patients with ACS were hospitalized most frequently on
Mondays (P < 0.0001, Supplementary Table 2) without
significant trends in the annual cycle (Supplementary Figure 2).
UA was most frequent on Mondays (P < 0.0001), while STEMI
(P < 0.0001) or NSTEMI (P < 0.0001) was most frequent
on Saturdays. The oldest patients with a median age of 69
years were admitted on weekends. Also, renal failure (5.1 vs.
4.1%, P = 0.002) or stroke (7.3 vs. 6.7%, P = 0.002) was more
frequent, while in-hospital death was higher (6.7 vs. 3.9%, P <

0.001) in patients admitted during weekends as compared with
working days.

General Meteorological Characteristics
Both the stations are located relatively close. So, for all the
seasons, most of the weather characteristics had a similar
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TABLE 3 | The correlations between the number of acute coronary syndrome (ACS) and the weather conditions as measured in the day of ACS.

Station A Station B

Spring Summer Autumn Winter Spring Summer Autumn Winter

T_max ◦C r 0.01 −0.06 0.00 −0.12 −0.06 −0.03 −0.01 −0.02

P 0.87 0.06 0.96 <0.001 0.07 0.28 0.70 0.61

T_min,
◦C r −0.01 −0.00 −0.06 −0.14 −0.06 −0.04 0.02 −0.07

P 0.89 0.93 0.08 <0.001 0.07 0.20 0.46 0.03

T_range,
◦C r 0.01 −0.07 0.06 0.04 −0.02 −0.01 −0.04 0.08

P 0.68 0.03 0.07 0.17 0.45 0.78 0.18 0.01

P_max, hPa r 0.02 −0.02 0.03 0.06 −0.03 −0.01 −0.04 0.05

P 0.46 0.56 0.30 0.06 0.30 0.83 0.17 0.13

P_min, hPa r 0.02 −0.03 0.02 0.02 −0.03 −0.02 −0.03 0.04

P 0.55 0.29 0.45 0.57 0.37 0.50 0.31 0.27

P_range, hPa r 0.01 0.04 0.01 0.08 −0.01 0.03 −0.02 0.02

P 0.79 0.25 0.70 0.02 0.77 0.28 0.63 0.53

P3h_tend, hPa r −0.05 −0.00 0.02 0.04 −0.01 0.04 −0.01 −0.04

P 0.10 0.90 0.51 0.23 0.74 0.19 0.84 0.22

Td_max, ◦C r −0.01 0.03 −0.01 −0.10 −0.04 −0.02 0.01 −0.02

P 0.79 0.38 0.81 0.002 0.21 0.45 0.85 0.57

Td_min, ◦C r −0.02 0.03 −0.04 −0.14 −0.02 −0.02 0.02 −0.06

P 0.63 0.36 0.25 <0.001 0.44 0.52 0.60 0.07

Td_range, ◦C r 0.02 −0.01 0.07 0.12 −0.03 −0.00 −0.02 0.09

P 0.67 0.82 0.03 <0.001 0.30 0.96 0.44 0.003

RH_max, % r −0.03 0.05 0.11 0.02 0.04 0.02 −0.01 0.05

P 0.35 0.11 <0.001 0.57 0.16 0.44 0.82 0.15

RH_min, % r 0.00 0.09 −0.02 −0.01 0.06 0.03 0.02 0.00

P 0.99 0.005 0.45 0.87 0.08 0.30 0.59 0.99

RH_range, % r −0.01 −0.07 0.06 0.02 −0.05 −0.03 −0.02 0.02

P 0.67 0.02 0.05 0.56 0.15 0.39 0.55 0.56

RR6h, mm r −0.03 0.01 −0.01 −0.03 0.02 0.03 0.05 −0.05

P 0.29 0.64 0.82 0.43 0.62 0.42 0.13 0.14

WS_max, m/s r 0.02 0.00 −0.07 0.02 −0.04 0.06 0.07 −0.01

P 0.54 0.97 0.03 0.62 0.26 0.05 0.04 0.83

r, correlation coefficient; T, daily temperature; P, air pressure; P3htend, daily 3-hour pressure tendency; RH, relative air humidity; Td, dew point temperature; RR6h, cumulative amount

of precipitation within 6 h; WS, wind speed; max, maximum daily value; min, minimum daily value; range, daily range; The significant associations are highlighted with bold.

distribution. However, due to differences in their geographical
location, the median values of most of the meteorological
characteristics calculated for the study period of 11 years
were different in both the stations (Table 2). The highest
absolute differences between both the stations concerned with
air temperature, relative humidity, and wind speed. Station A
had higher maximum and minimum temperatures than station
B in all the seasons, with the median T_max value in summer
reaching 24.9◦C as compared to 24.3◦C in station B. Station
A had lower median values of RH_min also in all the seasons,
with the biggest difference for winter. Median values of wind
speed in station A were equal to 3 m/s, while for station B they
reached 5 m/s for autumn and 6 m/s for the rest of the year
(Table 2).

Acute Coronary Syndrome Prevalence vs.
Individual Weather Parameters
Analysis comparing individual weather parameters derived from
the day of ACS and the 6 preceding days with the number of ACS

in the index day including their seasonal distribution concerned
420 pairwise comparisons for each station separately. Of them, in
station A 88 (21.0%) and in station B 40 (9.5%) were significant
but weak, with the correlation coefficients ranged from −0.16 to
0.16 (Table 3 and Supplementary Table 3).

In both the stations, 16 (13.3%) of the weather parameters
derived from the day of ACS incident were significantly
correlated with ACS number. In the case of 5 (4.2%) parameters
recoded in station A (T_min, T_max, Td_min, Td_range,
and RH_max), correlation coefficients were higher than |0.10|
(Table 3).

In both the stations, in total, 66 (18.3%) of the weather
parameters recorded at least once, 1 to 3 days prior to ACS
incident, were significantly correlated with the number of ACS
in the given index day (Supplementary Table 3). In the case of
14 (3.9%) measurements, the correlation coefficients were higher
than |0.10|, including 13 in station A in winter (T_max1−3,
Td_max1−3, T_min1−3, Td_min1−3, and Td_range3) and one in
station B in spring (WS_max3), while in station A in winter, the
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TABLE 4 | Median values of ACS in relation to the occurrence of a specific atmospheric front.

No front

N = 2,339

Cold front

N = 361

Warm front

N = 517

Quasi–stationary

front

N = 221

Occluded front

N = 341

Different

fronts

N = 239

P–value#

The whole period 38 (27–48) 40 (29–52) 40 (29–50)* 37 (28–49) 37 (27–48) 38 (27–51) 0.012

January 37 (25–48) 40 (31–51) 37 (25–48) 42 (30–49) 39 (28–52) 48 (36–62) 0.155

February 40 (29–51) 41 (29–56) 40 (27–58) 41 (32–48) 40 (31–49) 47 (33–59) 0.861

March 40 (29–48) 44 (29–55) 46 (29–56) 37 (21–57) 39 (31–46) 40 (28–52) 0.708

April 36 (25–50) 42 (37–52) 39 (30–52) 39 (36–54) 37 (30–46) 38 (28–55) 0.481

May 37 (28–48) 45 (32–50) 46 (30–54)* 34 (30–42) 30 (23–45)* 36 (30–45) 0.015

June 37 (26–47) 40 (33–59) 39 (28–47) 32 (27–42) 38 (28–45) 35 (25–57) 0.276

July 35 (26–46) 34 (32–44) 38 (30–46) 34 (27–46) 32 (23–41) 34 (24–51) 0.423

August 36 (27–45) 32 (27–43) 38 (27–47) 48 (26–56) 28 (20–38)* 26 (21–48) 0.017

September 38 (28–48) 39 (31–52) 42 (31–50) 39 (33–49) 36 (22–53) 40 (26–47) 0.805

October 40 (28–50) 41 (32–54) 46 (32–56) 39 (32–51) 45 (35–53) 37 (31–52) 0.388

November 38 (28–52) 39 (26–55) 38 (29–52) 31 (23–50) 46 (40–62) 44 (33–50) 0.284

December 34 (25–46) 36 (23–45) 37 (25–50) 28 (23–47)* 56 (44–60)* 36 (25–50) 0.019

Data are shown as median (interquartile range), #ANOVA Kruskal-Wallis for differences in six groups, *P < 0.05 vs. no-front days for post-hoc comparisons. The significant differences

are highlighted with bold.

lower T_max, Td_max, T_min, Td_min, or the higher T_range
and Td_range in the 3 days preceding the higher number of ACS
in the index day.

In both the stations, in total, 46 (12.8%) of the weather
parameters recorded at least once, 4 to 6 days prior to
ACS incident, were significantly correlated with the number
of ACS in the given index day. In the case of 15 (4.2%)
measurements, the correlation coefficient was higher than |0.10|.
All of them were found in station A, 13 in winter (T_max4−6,
T_min4−6, Td_min4−6, Td_range4−6, and P_range5) and 2 in
autumn (RH_max5,6).

Acute Coronary Syndrome Prevalence vs.
Frontal Analysis
In the years 2008–2018, 58% of ACS occurred during days
without any fronts as they constitute almost 60% of all the
analyzed days. The remaining ACS happened on days with cold
(11%) or warm (10%) fronts or during days with quasi-stationary
frontal systems (9%), occluded fronts (6%), or with different
fronts in the course of the self-same same day (6%).

In the whole period studied, especially in spring months,
the number of ACS was the highest during days with cold
or warm fronts, but a significant difference in the number
of ACS was found only between warm front days and days
without any front (Table 4). In summer, autumn, and winter,
there were no significant differences in the median number of
ACS across the different frontal scenarios. The occurrence and
type of front was associated with different ACS distribution
in May, August, and December (Table 4). The number of
ACS in days with an occluded front was the lowest in May
and August, while in December this was the highest. In the
remaining months, there were no significant differences in
ACS distribution.

Machine Learning-Based Prediction for
Acute Coronary Syndrome Prevalence
The correlation between the predicted and observed number
of ACS per day was 0.82 with a CI of 0.80–0.84 (P <

0.0001) (Figure 1A). Of all the weather parameters, the highest
variable importance for machine learning (range 0–1) involved
dew point temperature daily range, air pressure daily range
and its maximum, and RH maximum with 1.00, 0.875,
0.864, and 0.853, respectively (Figure 1B). Among the clinical
parameters, the variable importance for hypertension was 1.00,
the variable importance for diabetes mellitus was 0.28, the
variable importance for a history of stroke was 0.10, the variable
importance for chronic kidney disease was 0.07, the variable
importance for median age was 0, and the variable importance
for sex was 0 (Figure 1C).

For individual seasons, the correlations between the observed
and predicted number of ACS (Figure 2) within the operations
of station A were for spring 0.77 (CI 0.72–0.82), for summer
0.76 (CI 0.71–0.81), for autumn 0.83 (CI 0.80–0.87), and for
winter 0.79 (CI 0.75–0.83) (P < 0.0001 for each correlation).
The analogous correlations for station B were for spring 0.73 (CI
0.68–0.78), for summer 0.72 (CI 0.66–0.77), for autumn 0.72 (CI
0.67–0.78), and for winter 0.76 (CI 0.71–0.81) (P < 0.0001 for
each prediction).

Of all the analyzed meteorological parameters, the most
important in the machine learning model with a variable
importance of more than 0.8 was for station A in spring RH_max,
T_max, and P_range, in summer Td_max, T_range, and
RH_range, in autumn T_range, and in winter P_min, P_range,
and Td_max (Figure 3). For station B, the meteorological
parameters with a variable importance of more than 0.8 were
in spring P_max, RH_max, Td_range, P3htend, and P_min, in
summer RH_max, in autumn Td_range, P_range, and P3h_tend,
and in winter Td_range and T_range.
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FIGURE 1 | The predicted vs. observed numbers of ACS. (A) The correlation between the predicted vs. observed number of ACS per day. (B) The importance of

individual weather conditions for machine learning. (C) The importance of clinical parameters for machine learning. ACS, acute coronary syndrome; T, temperature; P,

air pressure; P3h_tend, daily 3 hours pressure tendency, RH, relative air humidity, Td, dew point temperature, RR6h, precipitation, WS, wind speed, max, maximum

daily value, min, minimum daily value, range, daily range.
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FIGURE 2 | The predicted vs. observed numbers of ACS in individual seasons and meteorological stations. ACS, acute coronary syndrome.
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FIGURE 3 | The importance of weather conditions in prediction of the number of ACS with machine learning in relation to the season and the meteorological station.

T, temperature; P, air pressure; P3h_tend, daily 3 h pressure tendency; RH, relative air humidity; Td, dew point temperature; RR6h, precipitation; WS, wind speed; max,

maximum daily value; min, minimum daily value; range, daily range.
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DISCUSSION

Summary of Findings
To the best of our knowledge, this study is the first study to
demonstrate that weather parameters analyzed with an artificial
intelligence system using machine learning accurately predict
the daily number of ACS in a temperate climate zone. The
accuracy of this prediction turned out to be irrespective of
the season and location of the meteorological station. Machine
learning system has produced a unique prediction pattern based
on a broad set of weather data including their absolute values,
several hour tendencies, and also their dynamic changes derived
from the day of ACS and 6 days prior to ACS. Of all the
analyzed meteorological parameters in this specific population,

the most influential on these predictions was both the daily
ranges of dew point temperature and air pressure, as well as

the maximum value of air pressure and of relative humidity.

On the other hand, analysis of atmospheric fronts as well as
individual weather parameters provided several univariate and

significant relationships; however, ones not universal and only
specific to a selected season and station. Thus, this study provides

evidence indicating that artificial intelligence algorithms used for
the analysis of weather conditions together might be a valuable
and clinically important tool estimating the everyday risk of ACS.

Univariate Relationships Between Weather
and Acute Coronary Syndrome Prevalence
In this study, we observed significant but weak correlations
between individual weather parameters and ACS prevalence.
Unfortunately, these relationships were not repeatable for all the
seasons and meteorological stations, thus their predictive value
was useless. The WHO Monitoring Trends and Determinants
in Cardiovascular Disease (MONICA) project (21) showed that
a 10◦C decrease was associated with a 13% increase of the
total number of myocardial infarctions or coronary deaths.
For an atmospheric pressure, a V-shaped relationship was
found with a minimum of the daily event rate at 1,016 hPa.
Simultaneously, a 10-hPa decrease below or a 10-hPa increase
above 1,016 hPa was associated with a 12 or 11% increase in
ACS event rate, respectively. Swedish analysis (3) indicated a
higher ACS prevalence in the days with air temperatures of
<0◦C, while ACS rate was lower when temperatures rose to 3–
4◦C. Equally Canadian data (22) revealed that cold days with a
temperature below the 1st percentile of temperature distribution
were associated with a 29% increase in acute MI rate (95% CI 15–
45) and high temperatures above the 99th percentile increased
coronary heart disease hospitalizations by 6% (95% CI 1–11) as
compared with the days with an optimal temperature. Low air
temperatures were a significant risk factor for hospital admissions
from diseases of the circulatory system also in the Iberian
Peninsula, regardless of calculated meteorological index (23).
Urban and Kyselý (24) have found that apparent temperature
and physiologically equivalent temperature appear to be more
universal predictors of heat- and cold-related mortality than
UTCI when both the urban and rural environments were of
concern. In turn, significant cold-related mortality in the rural
region showed potential for UTCI to become a useful tool in

cold exposure assessments. Michelozzi et al. (25) have analyzed
the impact of high environmental temperatures on hospital
admissions in 12 European cities participating in the Assessment
and Prevention of Acute Health Effects of Weather Conditions
in Europe project. They found that high temperatures have a
specific impact on respiratory admissions, particularly in the
elderly population, but the underlying mechanisms were unclear.
In turn, high temperature was associated with an increased
cardiovascular mortality, but not cardiovascular admissions.
These relationships also remain not elucidated. In this study,
the strongest univariate correlations concerned with temperature
and dew point temperature only in winter in station A. These
results indicate that a universal ACS prediction based on single
individual weather parameters does not work. It may be due to
the fact of significant day-to-day variability of weather conditions
in Southern Poland, described also by Piotrowicz (26).

Given the complex nature of the weather, in the next step, we
focused on the influence of atmospheric fronts on the occurrence
of ACS. The median daily number of ACS was higher on days
with warm fronts compared to days without any front, especially
in spring. Recently, Boussoussou et al. (27) have observed
in patients with acute cardiovascular diseases in the area of
Budapest a 9.5% increase in hospitalizations associated with cold
or occluded fronts. This effect was 10% stronger in a situation
of day-to-day front replacement from warm or stationary to a
cold one. In Europe, active frontal weather occurs in 40% of days
in a year and frontal systems induce substantial and dynamic
modifications of weather conditions, including significant air
pressure and wind speed shifts, as well as temperature changes
(28). Therefore, the approach to assess the number of ACS
depending on the type of front seemed to be particularly justified,
but again it turned out that the results were not repeatable for
individual seasons as well as for shorter time intervals such
as months.

Weather Parameters Analyzed With
Artificial Intelligence for Prediction of
Acute Coronary Syndrome Prevalence
The lack of a satisfactory predictive value of individual weather
parameters as well as frontal analysis has become an argument for
applying a more sophisticated analytical method. In this study,
artificial intelligence with machine learning using the Random
Forest system was used to predict the number of ACS based
on the weather characteristics. Ambale-Venkatesh et al. (29)
have tested random survival forest to predict six cardiovascular
outcomes in comparison to standard risk scores. They found
that artificial intelligence added to traditional methods improves
the prediction accuracy of cardiovascular events in an initially
asymptomatic population. In turn, Wang et al. (30) have shown
that the Random Forest displayed a satisfying performance
compared to traditional linear regression models for heatstroke
prediction based on meteorological and socioeconomic factors.
The feature identification process of building a machine learning
model that combined both the data-driven methodology and
domain knowledge resulted in comprehensive variables in
complex sets. Our machine learning-based analysis showed
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seasonal and regional differences in the influence of atmospheric
processes on ACS prevalence indicating the most influential
weather parameters specific to a given time and place. Weather
elements act as stimuli, especially when they reach extreme
values or their parameters change in a short time interval. Some
of them act permanently, being intensified by synergism with
others finally forming a stimulant weather complex. Thermal and
moisture conditions are one of the most important factors, which
profile the human heat budget. In this study, the most influential
on the prevalence of ACS was maximum relative humidity and
the daily range of dew point temperature describing temperatures
at which the concentration of water vapor in the air was
saturated. A low temperature activates the thermoreceptors of
the hypothalamic-pituitary-adrenal axis and stimulates adrenal
glands to secrete adrenalin, which causes vasoconstriction
and blood pressure elevation. Finally, increased shear stress
may induce atherosclerotic plaque rupture. Simultaneously,
cold weather increases diuresis and diminishes serum volume
deteriorating its rheological properties (31). In contrast, a
high temperature leads to parasympathetic nervous system
stimulation, vasodilatation, and a decrease in blood pressure (32).
Mechanical stimuli caused, in turn, by atmospheric circulation,
particularly pressure and frontal systems, fluctuations that affect
the human body through air pressure and wind speed. In this
study, the maximum and daily range of atmospheric pressure was
found to be the most influential for a learning machine process
with specific differences for separate seasons.

First, weather conditions vary across different climate zones;
therefore, analysis with a machine learning model for our specific
region cannot be one-to-one extrapolated to other regions, with
local validation being required each time. Second, particular
caution must be exercised when interpreting the results of
meteorological variables with local effects, such as precipitation,
even if they were included in regional analyses. Third, for
patients with NSTEMI, the date of hospital admission does not
precisely reflect the time of symptom onset due to the delay
effect associated with the diagnosis process, while the timing
of symptoms for patients with STEMI can be considered fairly
accurate. Fourth, in this study, solar radiation characteristics
were not analyzed. Although they are important for human body,
their effects are gradual and their availability is limited what
would make a study difficult for further implementation. Finally,

the clinical characteristics of the studied groups are limited;
hence, the National Health System has to collect data selectively.

CONCLUSION

Our findings indicate that weather conditions are useful for the
prediction of the number of ACS in a temperate climate zone,
if analyzed with an artificial intelligence system. Simultaneously,
the analysis of individual weather parameters or frontal scenarios,
although separately providing weak univariate relationships, was
insufficient for a reproducible prognosis in different seasons
and locations. The adoption of these novel findings in other
climatic zones might be clinically relevant, but would require
local validation.
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