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A novel methodology, the double layer methodology (DLM), for modeling an individual’s lifestyle and its relationships with health
indicators is presented. The DLM is applied to model behavioral routines emerging from self-reports of daily diet and activities,
annotated by 21 healthy subjects over 2 weeks. Unsupervised clustering on the first layer of the DLM separated our population into
two groups. Using eigendecomposition techniques on the second layer of the DLM, we could find activity and diet routines, predict
behaviors in a portion of the day (with an accuracy of 88% for diet and 66% for activity), determine between day and between
individual similarities, and detect individual’s belonging to a group based on behavior (with an accuracy up to 64%). We found that
clustering based on health indicators was mapped back into activity behaviors, but not into diet behaviors. In addition, we showed
the limitations of eigendecomposition for lifestyle applications, in particular when applied to noisy and sparse behavioral data such
as dietary information. Finally, we proposed the use of the DLM for supporting adaptive and personalized recommender systems

for stimulating behavior change.

1. Introduction

Managing health requires a holistic understanding of the
individual’s behavior [1]. This is particularly the case if one
wants to predict the probability of occurrence of a disease
or assess the quality of life after treatment or track relapses
of certain addictive behaviors, such as smoking, alcohol, and
drug abuse. The ability to recognize, model, and track behav-
iors is paramount to promote self-awareness and should be
a fundamental feature of any personalized recommender sys-
tem aiming for behavioral change. Over the past decade, most
attention has been directed towards recognition problems,
such as activity recognition [2] or emotion detection [3]. Per-
sonalized temporal modeling of human behavioral patterns
remains largely unexplored [4]. Daily diaries and surveys are
still the most extensively adopted methods in longitudinal
research studies and in medical practice to grasp qualitative
insights into a person’s routines. The implementation of diary
annotation tools in self-tracking mobile apps, such as MyFit-
nessPal, Endomondo, Momentum, and HabitBull, has made
self-reporting less cumbersome and more systematic, also

allowing the users to acknowledge their progress during the
attainment of personal goals. Nevertheless, truly automated
analysis of e-diaries and self-reports for modeling individuals’
behavior dynamics is not yet available.

In this work, we propose the use of machine learning
and eigendecomposition techniques to detect individuals’
routines captured from self-reporting of daily diet and daily
activities and to find behavioral correlates of health indica-
tors. The main objectives of this work are to

(i) test the feasibility of the eigenbehavior technique
(initially presented by Eagle and Pentland in 2009
[5] to model social network dynamics) for lifestyle
tracking applications,

(ii) propose a novel approach, referred here to as double
layer methodology (DLM), to model the relation-
ship between individuals’ health indicators and their
behavior,

(iii) discuss the implications of our approach for the

design of adaptive and personalized recommender
systems.
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After describing the study cohort (in Section 2.1), the knowl-
edge representation method and the generation of behavioral
matrices are presented (in Sections 2.2 and 2.3, resp.). In
Section 2.4, we provide a description of the eigenbehavior
technique, following similar notation as in Eagle and Pent-
land [5]. Next (in Section 2.5) we outline the main features
of our implementation, explaining the double layer methodol-
ogy. In Results (1) we present the application of unsupervised
clustering method to group individuals on the basis of health
indicators; (2) we show the primary principal components
of diet and activity behaviors at both individual and group
level; (3) we demonstrate the ability to predict the subsequent
dietary and activity behaviors within a day; (4-5-6) we
illustrate the use of Euclidean distance to uncover within-
individual similarities across days, to detect differences
between individual pairs and to determine an individual’s
belonging to a particular group; (7) and, finally, we report the
evaluation of health indicators-based clustering. Afterwards
we discuss related work and conclude by proposing possible
extensions of the DLM.

2. Material and Methods

2.1. Cohort Selection. The subjects in this study were part of
a bigger study of 75 subjects [6], which had the objective
of developing calibration-free algorithms for fitness level
estimation of healthy individuals in free living conditions.
All the subjects were recruited within the university environ-
ment. Inclusion criteria were no report of medical conditions
and body mass index (BMI) in the range 18.5-27 kg/m”.
Exclusion criteria were age below 18 and above 45, smokers,
presence of chronic diseases, and presence of musculoskeletal
conditions preventing exercise. The subjects were observed
for a maximum period of 2 weeks. Observations consisted of
(1) a series of laboratory tests (submaximal VO2max test and
exercises at different intensities) performed over two days of
the observation period, at the beginning and in the middle
of the 2 week period; (2) recordings in free living conditions,
consisting of continuous monitoring of a subject’s activity and
physiology using a wearable device. During this period, the
subjects were asked to fill out daily diaries and report their
activity and diet. For all subjects, anthropometrics (such as
weight and height) and fitness level (VO2max) were recorded.
The study was approved by the university ethics committee
and signed informed consent was obtained from all of the
participants.

In this work, diary data and anthropometrics from only
21 of the subjects (gender: 8 males, 13 females) have been
used because the other subjects did not provide sufficient
annotation about their diet. The mean number of annotated
days per subject was 10. A summary of the study population
demographics and additional readings, such as VO2max, rel-
ative VO2max, fat mass, fat free mass, percentage of fat mass,
rest metabolic rate (RMR), and basal energy expenditure
(BEE), are reported in Table 1.

2.2. Data Extraction and Knowledge Representation. Daily
activity and diet were manually annotated by the subjectsin a
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TaBLE 1: Study population demographics and health indicators.

Variable Unit Mean = standard deviation
Age Years 26+6
BMI kg/m® 227425
Weight kg 69.7 +10.8
Height cm 1749 +£9.2
VO2max ml/min 3009 + 679
Relative VO2max ~ ml/kg/min 43+6.8
RMR kcal/min 1.2£0.16
BEE kcal/day 1567 + 215
Fat mass kg 144+ 6.9
Fat free mass kg 55.3+9.4
Percentage of fat % 204 +7.7

table format, where the start and end time of the activity and
time of food item consumption were also indicated. Prepro-
cessing techniques, such as tokenization, word removal, spell
checking, and lemmatization, were applied for the analysis of
the provided annotations. Additionally, words were separated
into two categories, one for diet and the other for activity and
grouped into classes as shown in Table 2.

2.3. Behavior Matrices. After preprocessing, the activity and
diet data were treated separately representing two behavioral
spaces. Temporal information was included by considering
activity and diet annotation in different periods of the day.
For activity classes, each day was divided into three periods:

(i) morning (PO, from 00:00 to 12:00),
(ii) afternoon (P1, from 12:00 to 17:00),
(iii) evening (P2, from 17:00 to 24:00).

For diet classes, each day was divided into six periods:

(i) breakfast (PO, from 00:00 to 09:00),
(ii) morning (P1, from 09:00 to 12:00),
(iii) lunch (P2, from 12:00 to 14:00),
(iv) afternoon (P3, from 14:00 to 17:00),
(v) dinner (P4, from 17:00 to 19:00),
(vi) evening (P5, from 19:00 to 24:00).

Successively, binary behavior matrices, B(x, y), were gener-
ated for each subject. Each row of B(x, y) corresponds to
an individual’s behavior, I}, over a day i, and each column
corresponds to a class at a given period of the day, where 1
indicates the presence of a class. For example, sport_PO is set
to L, if the subject annotates a sport activity in the morning.
The absence of the class was indicated by 0 (e.g., set caffeine
drink_P5 to 0 if the subject did not drink coffee in the
evening). The behavior matrices have dimensions D by H. D
represents the number of days of diary reported by a subject.
H has a dimension of n by m, with n indicating the number
of periods in the day and m indicating the total number of
classes per category. Individual behavior matrices were used
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TABLE 2: Activity and diet classes.

Examples of words included in the class

Activity classes

Entertainment/relax Shop, travel, watch, gamg, play, computer,
TV, movie

Work/study Exam., horpework, read, work, lesson,

university, lecture, school, study
sport Run, sport, gym, hockey, swim, fitness,
soccer, workout

Social Meet, friends, call, pa.rt.y, talk, phone,
parent, visit

Vehicle Car, bus, train, taxi, drive

None —

Others Wait, household, pack, shower

Walk Walk

Bike Bike, cycle

Diet classes

Fruit, orange, apple, banana, kiwi,

Fruit pr . S
uit product sultana, pineapple, smoothie, juice

Noodles, oatmeal, muesli, bread,

Grain product .
macaroni

Sandwich, pizza, soup, rice, pasta,

Composite product lasagna, hamburger

Cucumber, spinach, carrot, pumpkin,

Vegetables broccoli, tomato

Meat product Beef, bacon, meat, sausage, chicken, steak
Snacks Nut, pie, Cc:l?i};, nizi kc,rszznléizhocolate,
Alcohol drink Beer, wine, alcohol

Others Butter

Seafood Fish, tuna, salmon

Caffeine drink Cola, tea, coffee, cappuccino
Starchy product Potato, chip, fries

Dairy product Shake, milk, cheese, yoghurt

as the feature space for the analysis at individual level. Behav-
ior matrices for analysis at group level were also generated; in
this case each row of a matrix represents the average behavior
of an individual belonging to the group.

The behavior matrix for one subject with annotations pro-
vided for 14 days is shown in Figure 1. This particular subject
reported the use of an automated vehicle on Saturdays and
Thursdays during the day (class name: vehicle_PI) and he/she
generally reported relaxation and/or entertainment activities
in the evening (class name: entertainmentRelax_P2). The
annotation information about the diet is quite sparse.

2.4. Eigen-Behavior Analysis. Eigenbehavior analysis was
proposed by Eagle and Pentland (2009) [5] to identify and
predict individual and community behaviors within a social
network using mobile phone information [7]. The underlying
hypothesis of this approach is that there is a set of repetitive
behaviors or routines that can be recognized at an individual
and group level. This routine can be used to predict daily

behavior and determine similarities between individuals and
their affiliation to a community. Eigendecomposition is used
to identify such routines. Primary eigenbehaviors are defined
as the principal components of routines and correspond to
the eigenvectors, u, of the covariance matrix of the behavior
data, as defined in Section 2.3, with the largest eigenvalues,
A. Each eigenbehavior represents a vector of M values, each
associated with a class of the behavior space (diet or activity
space in our case). Individuals for which a smaller number
of primary eigenbehaviors is able to explain up to 90%
of the behavior variability can be said to exhibit a more
regular behavior compared to individuals having a higher
number of primary eigenbehaviors. The linear combination
of an individual’s primary eigenbehaviors can be used to
reconstruct the behavior of each day in the data. Additionally,
Eagle and Pentland (2009) [5] showed that when primary
eigenbehaviors are calculated for an individual, it is possible
to infer the projection of an entire day using information from
only a portion of that day. We will show how such an approach
was also applied to our data. The average behavior of each

individual, ¥ = (1/D) ZnDzl I, (with D total number of days
per subject), can be used to define the behavior space of the
community to which the individual belongs. In this case, the
behavior matrix has dimension N, number of individuals
in the community, by H. Eigendecomposition can then be

applied again to the community behavior data to determine
the primary eigenbehaviors of the community, u; (k is the
number of primary eigenbehaviors for the community j).
Projection of the individual behaviors into the community
behavior space is used to determine the distance between
individuals belonging to a community from the others. Such
projections are obtained by calculating the vector of weights,

Q) = [w{ ,wé,a)g, ceo w{v[]> representing the optimal weight-
ing configuration to get an individual’s behavior as close
as possible to the community behavior space, with weights
being defined as w,]; = u,{(l" — /) (with T the individual’s
behavior or individual’s average behavior and ¥/ the average
behavior of the community j). Euclidean distance between
weight vectors of an individual, )/, and the others, Ql] ,
projected in the same community behavioral space, j, and
defined as 8?1 =1/ - QIJ 1%, is used as a measure of similarity
between individuals [8]. Similarly, similarities between days
for an individual can be obtained from slzd = Q' -
OL|1%, where the weight vector for one day Q' is defined as
o = [wll, wlz, wé, ... wh], and in corresponds to the weight
vectors for the other days, d, and where the weights for each
subject are defined as w;( = uL(Fd — ¥, with T? representing
the individual’s daily behavior and ¥’ = T is the individual’s
average behavior. Euclidean distance can also be applied to
determine the similarity of an individual behavior to the
community behavior as a whole and thus as a tool to estimate
proximity or affiliation of an individual to a community. In

this case, such distance is defined as follows: 8]2- = IIqu - ¢£|I2,

where ¢/ = T — W/ represents the mean-adjusted behavior of

the individual and (/)é = Zf\fl wij u{ is its projection onto the
community’s behavior space.
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FIGURE L: Binary behavior matrices for one subject who annotated a 14-day diary. (a) The activity behavior matrix, each column corresponding
to the activity classes as in Table 2, separated into 3 daily periods; (b) the diet behavior matrix, each column corresponding to the diet classes
as in Table 2, separated into 6 daily periods. Each row corresponds to a daily behavior; a white square corresponds to a performed activity or

consumed items.

2.5. From Social Network Analysis to Lifestyle Pattern Recog-
nition. Recognizing dietary and activity behavioral patterns
across an individual’s lifespan and identifying collective
behaviors, such as the lifestyle of fitness enthusiasts or the
lifestyle of sedentary people, is somewhat different than
defining behavioral dynamics of individuals and communi-
ties in a social network. In particular, meanwhile it is trivial
to make community distinctions, for example, to cluster
students on the basis of their belonging to one or another
school; in the case of lifestyle, considered as a correlate of
health, the definition of grouping is an ethically delicate and
ambiguous problem. This is because in real-life scenarios,
people are generally reluctant to be clustered and can often
exhibit behaviors that are common to several groups; for
example, not all the people that eat sweets are obese. Addi-
tionally, the definition of health is generally not binary; for
example, even within a population of people with chronic
diseases, some will be healthier than others according to their
physical and mental ability to adapt and self-manage [9].

To overcome this problem, we propose the double layer
methodology (DLM). The DLM is a pragmatic approach for
grouping individuals of a population, which does not rely
on the individual’s behavior, but on the individual’s physical
characteristics, such as the factors listed in Table 1. The
reasoning behind this choice is that bodily, physiological, and

metabolic characteristics, such as weight, fitness level [10],
and resting metabolic rate [11], here referred to as health
indicators, have an impact on lifestyle and on dietary and
activity preferences. They can partially contribute to the
exhibition of specific behaviors and can provide indications of
the individual’s health condition. The DLM is then composed
of two layers. On the first layer or bodily level, individuals
are grouped on the basis of health indicators. On the second
layer, individuals’ and groups’ behaviors are evaluated and
compared. A schematic representation of the DLM is shown
in Figure 2.

The DLM, presented in this work, was implemented in
python and organized in the following steps (also summa-
rized in Figure 3).

(1) Clustering of Population by Bodily, Physiological, and
Metabolic Characteristics. At the bodily layer of DLM, we
compared two different unsupervised clustering techniques,
k-means and spectral clustering, to uncover the number
of groups in our population on the basis of individuals’
health indicators. K-means (settings: defaults from the scikit
library implementation in python) and spectral clustering
(settings: affinity matrix obtained with cosine similarity) were
investigated because of their suitability for a small dataset.
Hierarchical clustering methods and grid-based methods
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FIGURE 2: Illustration of the proposed double layer methodology
consisting of (i) grouping individuals on the basis of their health
indicators (as in Table 1) and (ii) identifying emerging individual
behavioral dynamics. Individuals belonging to a group can exhibit a
diverse range of behaviors from behavior dynamic typical of his/her
group to behavior dynamics proper of other groups.

were not considered for this analysis because they are more
suitable for larger datasets [8]. After selecting the final
clustering technique and the optimal number of clusters,
using Silhouette score as performance metric, we evaluated
the contribution of the different health indicators to the
clustering separation using an embedded method for feature
importance detection, namely, extra trees (settings: number
of trees = 101, random state = 0) [12].

(2) Estimation of Routines. At the behavior layer of the
DLM, we discovered behavioral routines by applying eigen-
decomposition at individual and group level as described
in Section 2.4. The diet and activity spaces are considered
separately. We estimated the minimum number of primary
eigenbehaviors that was sufficient to describe individuals and
group behavior variability with up to 90% of reconstruction
accuracy. We repeated the same analysis considering the
overall population to verify if the minimum number of
primary eigenbehaviors was balanced across the groups.

(3) Prediction of Daily Behaviors Using a Portion of Data from
the Same Day. We tested the ability of eigendecomposition to
predict diet and activity of a portion of a day by using the
information of the preceding periods in the same day. For
example, in the diet behavioral space, for a given subject, first
the eigenbehaviors u are computed across all days (training
days) except one (test day). The behavior in the test day
(T) was then reconstructed as the linear combination of the
eigenbehaviors of M elements or classes, T = Zf\fl w;u;. By
applying least square fitting using only the classes of the first
half of the test day (values of classes in PO, P1, and P2) it
was possible to estimate the weights w; which together with
the eigenbehaviors were used to estimate the behavior in the
remaining period of the day (values of classes in P3, P4, and
P5). We used leave-one-day cross-validation and we reported
mean accuracy of reconstruction across subjects to evaluate
the predictive capability of such method. The same approach
was used for activity data, in which case values of classes in PO

and P1 (activities in the morning and afternoon) were used to
predict values of classes in P2 (activities in the evening).

(4) Estimation of Day by Day Similarities. For each individual,
we investigated the similarities between days per diet and
activity space, by projecting each day into the individuals
behavior space and computing the Euclidean distance as
described in Section 2.4. Large distances correspond to low
degrees of similarity and small distances to high degrees of
similarity. For each day, n, we determined the most similar
day to it and we annotated it as the day index d,,. We then
built day index vectors, D = [d,,d,,ds,...,d,] for diet and
A =[d,,d,,d;,...,d,] for activity (e.g.,if D = [2,1,7,...],
the value at index 1 of D indicates the most similar day to day
1, day 2, the value at index 2 of D indicates the most similar
day to day 2, day 1, the value at index 3 of D indicates the most
similar day to day 3, day 7, etc.). By computing the percentage
of overlap between values of D and A, we evaluated if day
similarities were kept across different behavior spaces. If this
overlap was high for an individual, it meant that repetitive
diet and activity behavior were intertwined.

(5) Estimation of Similarities between Individuals. Similarities
between individuals were computed by projecting the average
individual’s behavior into each group behavior space and
computing the Euclidean distance as described in Section 2.4.
This analysis allowed us to identify subjects close to each
other within the same group or within different groups and
for which behavioral category, either diet or activity. The
distances between individuals were then visualized using a
gamified illustration. A dartboard-like figure is used which
has the reference subject at the center and the other subjects
positioned at different orbits with the proximity proportional
to their similarity to the reference subject.

(6) Estimation of an Individuals Distance from a Cluster.
For each individual, we computed the Euclidean distances
between the mean-adjusted behavior of the individual and
their projection onto the group’s behavior spaces, as described
in Section 2.4. We used these behavior distances to predict
group membership by applying different machine learning
techniques, such as decision tree, random forest (settings:
number of trees = 101), and support vector machine (settings:
rbf kernel). Leave-one-subject-out cross-validation was used
to evaluate the classification accuracy. Random forest and
SVM hyperparameters were selected using the grid search
method with cross-validation within the training set. This
evaluation had the objective to determine if the clustering
based on health indicators was also reflected at a behavioral
level, in particular to identify for which behavioral space this
statement was plausible.

(7) Evaluation of Health Indicators-Based Clustering. As a
final evaluation of our grouping method, we compared the
average of individual distances from each group behavior,
as obtained by the proposed unsupervised clustering and
as obtained by random clustering. We first created random
groupings by shuffling the individuals in the population 100
times, each time creating different grouping configurations,
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& between individual similarities

sfd, between days similarities

(Step 2) Individual’s behavior regularity, number
of eigenbehaviors explaining up to
90% of data variability
(Step 3) Accuracy of prediction of behavior in
portion of day, leave-one-day-out
cross-validation and least square fitting
(Step 4) Between days similarities overlap
across behavior spaces

(Step 2) Group’s behavior regularity, number of eigenbehaviors
explaining up to 90% of data variability
(Step 5) Between individuals similarities, dartboard-like visualization
(Step 6) Individual’s distance from a group, accuracy of prediction of group
belonging obtained with leave-one-individual-out cross validation
(Step 7) Validation of health indicators-based clustering against random

clustering, relationship between health indicators and behaviors

FIGURE 3: Summary of the steps in the DLM. At each level of the DLM (bodily and behavior), the different steps are numbered as explained
in the main text. Steps adopted per individual and group analysis are separated by the thick blue line.

while keeping the number of groups and the number of
the individuals within a group equal to the one obtained by
unsupervised clustering. Then at each shuffle, the individual’s
Euclidean distances from his/her own group and opposite
groups were computed and averaged; for example, in the case
of two groups, group 0 and group 1, the means of within-
group distances, d*° and d"', and the means of between group
distances, d’' and d'°, were obtained (e.g., d”° indicates mean
distances of individuals of group 0 from the average behavior
of group 0 when projected in group 0; d°" indicates mean
distances of individuals of group 0 from the average behavior
of group 1 when projected in group 1). This validation had a
twofold objective: evaluating if our results could be obtained
by chance and revealing the relationship between health
indicators and behaviors.

The results in the following section are presented using
the sequence of steps as defined above.

3. Results

3.1. Clustering of Population by Bodily, Physiological, and
Metabolic Characteristics. Unsupervised clustering applied
to the health indicators listed in Table 1 revealed that, for both
clustering methods, k-means and spectral clustering, the best
clustering configuration was obtained when the population
was separated into two groups; for a higher number of
clusters, separation was poor and not representative (see
silhouette score profile in Figure 4(a)). K-means showed

slightly better separation than spectral clustering. Thus K-
means was selected as the final clustering technique. The
evaluation of feature importance obtained by applying extra
trees classification showed that fitness level (VO2max) and
basal energy expenditure (BEE) were the health indica-
tors that mostly contributed to the clusters separation (see
Figure 4(b)). Additionally, when inspecting the gender of
the participants in the two groups we found that 92.3% of
participants in group 0 were female and 87.5% of group 1
were male. This observation can be explained by known
gender differences in fitness level, metabolism, and body
composition (i.e., males are in general relatively fitter, taller,
and heavier than female).

3.2. Estimation of Primary Eigenbehaviors. Primary eigenbe-
haviors were computed for each individual and for each group
as explained in Section 2.5.

In Figure 5(a), we show an example of the first three
primary eigenbehaviors for a subject belonging to group
0 for the activity and the diet behavior spaces. For the
activity space, the first eigenbehavior is representative of a
routine in which the subject does activities other than work
or study and he/she entertains or relaxes, walks, and uses
transport systems during the middle of the day. The second
eigenbehavior is representative of daily routines consisting
of relaxation during the evening, other, and social activities
during the day and evening cycling. The third eigenbehavior
is similar but does not include other activities and has more
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FIGURE 4: (a) Silhouette scores against number of clusters for k-means and spectral clustering. (b) Feature importance.

evening walks. For the diet space, the first eigenbehavior
is representative of a dietary routine for which grains are
consumed during breakfast (P0) and sweets, fruit, and com-
posite food are consumed during lunch time (P2). The second
eigenbehavior includes dairy and egg products and composite
food during lunch time, meat, vegetable, and starchy product
intake during dinner (P4) and evening snacks (P5). The third
eigenbehavior emphasizes the use of meat and grain products
and alcohol use in the evening.

In Figure 5(b), average group behaviors are reported.
In the activity space, both groups exhibit work and study
activities in the morning. Individuals in group 0 cycle during
the morning and use other transport systems during the
day, while individuals in group 1 mostly cycle during the
day and in the evening. Additionally they do more relaxing/
entertainment activities during the evening. In the diet space,
in both groups, individuals consume composite food during
lunch time and at dinner. Group 0 has higher consumption
of vegetables, fruits, and sweet, while group 1 consumes more
alcohol at the end of the day. Visual inspection shows that
the differences between average group behaviors were more
predominant in activity than in diet space.

For both individuals and groups and in both diet and
activity spaces, behaviors’ reconstruction accuracy above
90% obtained with linear combination of eigenbehaviors
could be reached using the first five to ten eigenbehaviors.
Interestingly, dietary behavior required less number of eigen-
behaviors than activity behavior at parity of accuracy of
reconstruction (see Figure 6).

3.3. Prediction of Daily Behaviors Using a Portion of Data from
the Same Day. Results on the ability to predict an individual’s
behavior during a portion of a day are reported in Figure 7.
Here, the distributions of prediction accuracy averaged across
days for each subject are shown for the diet and the activity

spaces. Mean prediction accuracy was higher for the diet
behavior space (mean accuracy = 88%) than for the activity
behavior space (mean accuracy = 66%).

3.4. Estimation of Day by Day Similarities. Day by day
similarities were computed for each subject. Figure 8(a)
shows an example of Euclidean distances for an individual
belonging to group 0, where each day is compared to the
others separately for diet and activity spaces. For each day of a
subject, the most similar days are considered to form the day
index vector as explained in Section 2.5. Figure 8(b) shows
that the percentage of overlap between day index vectors in
diet and in activity spaces decreased with the number of days.
This was a trivial result because the number of days corre-
sponds to the size of the day index vectors for a subject and
the higher the dimension of the day index vector, the higher
the chances to find differences between days. No statistical
differences (p value < 0.05) were found when comparing the
percentage of overlap in individuals between the two groups.
These observations showed that over a period of up to 14
days, for our study population, there was a chance of about
20% that if two days were similar in activity space, they were
also similar in the diet space, independently of the group
belonging.

3.5. Estimation of Similarities between Individuals. Simi-
larities between individuals were computed by projecting
individuals in different groups and calculating the Euclidean
distances between individual pairs.

We represented such distances for each subject using a
dartboard-like representation as shown in Figure 9, with the
subject in the middle of the board and the distance from other
subjects being represented by different rays at equally spaced
angles. Concentric rings with equally spaced ray were also
drawn to provide reference distances from the center. The
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FIGURE 5: (a) Three primary eigenbehaviors for an individual belonging to group 0. (b) Average groups behavior.

left two dartboards represent an individual (a) from group
0 (blue points) projected into group 1 (red background) in
the activity and diet space; the right two dartboards represent
an individual (b) from group 1 (red points) projected into
group 0 (blue background) in the activity and diet space.

When projected into group 1, individual (a) shows activity
behavior similar to two people from group 1 (see black circles
in the nearest occupied concentric rings) with whom he/she
shares also similar diet behavior, meaning that individual (a)
shared similar behaviors with same people in different spaces.
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FIGURE 6: (a) Mean and standard deviation of daily reconstruction accuracy across days and individuals against the number of eigenbehaviors
required for such reconstruction. (b) Mean reconstruction accuracy of group behaviors.

His/her diet behavior was in general similar to the people
belonging to her/his group (see green circles in the nearest
occupied concentric rings). When projected in group 0,
individual (b) shows diet behavior more similar to individuals
of group 0 than to the group in which he/she belonged (see
how blue points are closer to the center than red points, and
also notice more black circles than green circles in the nearest
occupied concentric rings). In this case the most similar
individuals to (b) with respect to diet and activity were not the
same, meaning that individual (b) shared similar behaviors
with different people in different spaces.

3.6. Estimation of an Individual’s Distance from a Cluster. The
Euclidean distances between the mean-adjusted behavior of

the individual and its projection onto the groups behavior
for diet and activity spaces were computed as explained in
Section 2.5.

Figure 10 shows distances of individuals from group
0 (Figure 10(a)) and from group 1 (Figure 10(b)), where
each axis corresponds to a different behavior space. Group
separation was mostly driven by activity behavior rather than
by diet behavior, independently of the group onto which
the subject was projected. In particular, individuals from
group 0 had more variability in activity behavior, while
individuals from group 1 had more regular activity behavior.
Dietary behavior varied similarly across groups. If the diet
and activity spaces were linearly correlated and if differences
between the average group behaviors were comparable across
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FIGURE 7: Prediction accuracy for the behavior during the last part
of the day (P2, for activity; P3-P4-P5 per diet) given the behavior
in the first part of the day (P0-P1 for activity, PO-P1-P2 for diet). An
average of 66% accuracy is obtained for activity behavior, and 88%
is obtained for diet behavior.

diet and activity, subjects belonging to group 0 would have
exhibited lower distance both in diet and activity when
projected onto the group 0 behavior space (blue triangles,
in Figure 10(a)). Similarly subjects belonging to group 1
would have exhibited lower distance both in diet and activity
when projected onto group 1 behavior space (red points, in
Figure 10(b)). Despite these observations, we tested the use of
these behavioral distances for detecting an individual’s group
membership. For all the used machine learning techniques
the classification accuracy was below 70% (64% for decision
tree, 60% for random forest, and 48% for support vector
machine).

3.7. Evaluation of Health Indicators-Based Clustering. The
proposed health indicators-based clustering was compared
with random clustering as explained in Section 2.5.

Figure 11(a) shows within-group distance distributions,
where dggﬁvity and dj, represent mean distances across
individuals of group 0 from the behavior of group 0, when
each individual is projected in the activity and diet spaces
of group 0. d;clnvny and dj;, represent mean distances across
individuals of group 1 from the behavior of group 1, when
each individual is projected in the activity and diet spaces of
group L. In Figure 11(b), between group distance distributions
are shown, where dgiﬁvity and dgilet represent mean distances
across individuals of group 0 from the behavior of group 1,
when projected in the activity and diet spaces of group 1.
d;gﬁvity and d}y), represent mean distances across individuals
of group 1from the behavior of group 0, when projected in the
activity and diet spaces of group 0. In each plot the dashed
lines correspond to the mean distances as obtained by our

clustering. Health indicators-based clustering produced same
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outcomes of random clustering for distances computed in the
diet space independently of the group projection, and this is
indicated by the dashed lines lying in the bulk of the distances
distributions. On the other hand, health indicators-based
clustering was different from random clustering for distances
computed in the activity space. In this case the dashed lines
lay outside the bulk of the distances distributions. In particu-
lar, small d;clﬁvity indicated that individuals in group 1 have
very similar within-group activity behaviors, large dggﬁvity
indicated that individuals in group 0 had very different
within-group activity behaviors, small digﬁvity indicated that
individual in group 1 had also very similar between-group
activity behavior, and large dgclﬁvity indicated that individual
in group 0 had also very different between-group activity
behavior.

4. Related Works and Discussion

The increasing availability of data from web, mobile, and
wearable sensing in combination with the increasing usage of
machine learning techniques is facilitating the employment
of holistic approaches in the design of lifestyle applications,
such as recommender systems for behavior change [13]. In
particular, the possibility to aggregate several data types,
such as diet, activity, social interactions, and physiological
responses to physical and mental stress, is contributing to
improving our understanding of the relationships between
behavioral and physiological dynamics and health outcomes.
Nevertheless, very few studies have been oriented to mod-
eling and predicting behavior dynamics for lifestyle applica-
tions. Prediction of behaviors was explored in the context of
social network in [5] using mobile technology and in [14]
using wearable cameras. Activity prediction models were also
proposed in [4] using infrared motion sensors installed in
resident smart home apartments and in [15, 16] using social
media data from Facebook, Renren, and Twitter. In [17] a
multiscale adaptive personalized model that quantifies the
effect of both lag and behavior cycle for predicting future
behavior was presented. In none of these studies, correlations
between behavior and health indicators were considered. In
this work we proposed a novel approach, the double layer
methodology, to model and uncover such dependencies. We
demonstrate the use of the DLM to the problem of tracking
lifestyle from self-reports of diet and activity behaviors. In
the first layer of the DLM, unsupervised machine learning
techniques were used to clusters individuals on the basis of
health indicators. In the second layer of the DLM eigende-
composition techniques were used to model individual and
group behaviors. Eigendecomposition was selected because
compared to other techniques such as Markov models, they
had the advantage of incorporating temporal patterns across
different timescales [14].

The computational steps at the first layer of the DLM
revealed that our population could be clustered in two
groups and that rest metabolic rate and fitness level could
be considered relevant health indicators for clustering our
study population. Resting metabolic rate is linearly related
to the basal energy expenditure and depends on factors such
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FIGURE 8: (a) Heatmap representation of between days Euclidean distances in activity and diet space for an individual belonging to group 0.
(b) Percentage of overlap between diet and activity days day index vectors against number of annotated day. Each point corresponds to data

from a different individual.

as gender, age, weight, and height [11]. Fitness level is also
related to gender, age, and muscular mass and it is recognized
as quantitative predictor of all-cause mortality and cardiovas-
cular events in healthy men and women [10]. They are both
gender dependent, which means that clustering based on
these health indicators captured also gender differences. It is
important to state that unsupervised clustering does not label
individuals in predefined categories, for example, healthy or
not healthy, and this allows overcoming problems related to
ethical considerations. Instead it allows finding the hidden
patterns in a population and to group individuals on the basis
of bodily, physiological, and metabolic characteristics that
can be considered as a proxy of health status.

At the second layer of the DLM, the eigendecomposition
technique was applied for detecting behavioral routines and a
validation of the health indicators-based clustering technique
was proposed. We showed that, for our population, dietary
routines were more regular than activity routines, both at
individual and at group level. At parity of reconstruction
accuracy, the number of primary eigenbehaviors needed for
reconstructing diet behavior was minor than for activity
behavior. This outcome was also reflected in the higher

accuracy of prediction of diet behaviors in portion of a
day (88%), compared to prediction of activity behaviors
(66%). These results should be considered in the light of
the assumption upon which eigenbehavior analysis is based:
eigenvectors with large eigenvalues contain most of the
data variability. It follows that small number of primary
eigenbehaviors corresponds to higher regularity of a routine.
This assumption might not be necessarily true for routines
across different behavioral spaces, and it can lead to incorrect
interpretation if the data are noisy and sparse.

When computing between days similarities we found that
the overlap between diet and activity routines was dependent
on thelength of the observation period and that, over a period
of 14 days, there was a chance of about 20%, on average that
if two days were similar in the activity space, they were also
similar in the diet space. In a real scenario, overlap of routines
across different behavioral spaces can occur, for example, if
an individual is undergoing a physical training for which
daily consistency of exercise and diet timing are required.
Identification of day similarities can be used to estimate the
frequency of a routine, especially for datasets covering longer
recording period. In the context of recommendation, it could
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FIGURE 9: Gamified illustration of distances between individuals.
Individuals (a) and (b) are in the center of the dartboards. (a)
is projected in group 1 (indicated by the red background); (b) is
projected in group 0 (indicated by the blue background). Individuals
belonging to group 1 and group 0 are represented by red and blue
dots, respectively. Equally spaced rays represent distances of differ-
ent subjects from the central subject ((a) or (b)). Gray concentric
rings are equally spaced reference distances to facilitate distance
perception (in each dartboard the distances between rings are the
same). Green and black circles highlight the closest individuals,
belonging to the same group or the other group, respectively.

allow inferring in which days the user is more prone and open
to receive feedback for behavior change.

When distances of individual behaviors from the average
group behavior in diet and activity spaces were used to detect
the individual’s group belonging, a classification accuracy
below 70% was obtained. This result reflected the nonlin-
earity between health indicators and behaviors, meaning
that the people having the same range of health indicators
did not necessarily exhibit similar behaviors or that people
with different health indicators could have exhibited similar
behaviors, across different behavior spaces.

Finally, the comparison of the proposed health indica-
tors-based clustering techniques against random clustering
revealed that the results obtained in the diet space could
have been produced by chance. This consideration also
extends to the results on the regularity of diet behavior,
particularly, because diet data were noisier and sparser (as
shown in the example of behavior matrix in the diet space in
Figure 1(b)). On the other end, this validation analysis also
revealed that the grouping based on health indicators was
actually mapped at a behavior level in the activity space.
In this space, our clustering produced different results from
random clustering, also showing different behavior patterns

BioMed Research International

across different groups. For example, individuals from group
1 had activity behaviors close to average behavior of both
groups and individuals from group 0 had activity behaviors
distant from the average behavior of both groups. In the ideal
case of tight and straightforward relationships between health
indicators and behaviors, we would expect the within-group
behavior distances obtained to be minimal and the between
group behavior distances to be maximal for both activity and
diet spaces. In reality, since individual bodily characteris-
tics might only partially contribute to one’s behavior, such
relationship should be discovered only for some groups in
specific behavior spaces, in our case for group 1 and activity
space.

Taken together, our results show the limits of applying
eigendecomposition to model behavioral routines. In partic-
ular its sensitivity to noise and its assumption of linearity
should be carefully accounted for, considering the sparse
and complex nature of human behavior. The proposed DLM
and validation technique allowed identifying the limitations
of eigendecomposition and finding behavioral correlates of
health indicators for our study population.

We believe that the DLM, here demonstrated as a tool
for automatic analysis of behaviors from self-reports, has a
potential use for the development of tailored recommender
systems that account for differences in behaviors across indi-
viduals in different groups. In particular, it could be applied
to characterize specific health profiles. Also, the proposed
dartboard-like visualization could be used to facilitate the
selection of advices to be given to an individual, not only on
the basis of the collective behavior of the group to which
he/she belongs, but also on the basis of his/her similarities
to individuals belonging to other groups [18]. The dartboard-
like visualization and the insights produced by the DLM
could increase the richness of recommendations to an indi-
vidual to stimulate behavior change and could also be used
to show the hypothetical consequences of an unhealthy
behavior to a healthy user, for example, by showing the profile
of an unhealthy population exhibiting similar behaviors.

The major limitations of our study lie in the typology
of our data source (semantic information from self-report
diary) and in the size of our dataset (in terms of both number
of participants and number of observations per subject). Self-
reporting of diet and activity, in the form of diary or 24-hour
recall questionnaires, is largely employed in large epidemi-
ological studies, representing a trivial and at hand solution
to collect information on individual behaviors. However,
self-reporting measures require considerable efforts from the
observant, and lack of motivation, memory decay, and impre-
cision of recall can compromise the reliability of such infor-
mation for accurate behavior tracking [19, 20]. Imprecision of
self-reporting in our data might have produced misleading
results in the projection of the individual behavior in a
specific behavioral space or group or in the computation of
between-subject differences and within-subject day by day
similarities. Self-reported diaries should therefore be juxta-
posed or complemented with more quantitative and objective
readings, such as those provided by personal tracking devices
for continuous monitoring of activity and physiology (i.e.,
smartphones and wearable health monitors). Finally, the
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results presented in this study model the behaviors of a
limited and specific healthy young population, monitored for
a short period of time. With the use of cross-validation and
comparison to randomly shuftled data we could prove the
solidity of our results. At the same time, large-scale studies
with wider population varying per demographics, ethnicity,
and socioeconomic status, and longitudinal studies which are
able to account for the routines that activate across short and
long time scale [21, 22] should be considered to prove the
validity of our approach as a supporting tool for behavior
change applications (i.e., weight management, smoking ces-
sation).

5. Conclusion

Self-report and daily diary both in the form of manual anno-
tation and mobile applications constitute up to today the most
commonly used and intuitive method for recording behavior
routines either for personal self-tracking or for clinical
prescription. In this work, we propose the DLM for analyzing
lifestyle patterns emerging from self-reports of daily diet and
activity. Despite the limited size of our dataset, we show
the potential of the DLM for the identification of behavior
routines and of their relationship with health indicators. We
evaluated the limits of eigenbehavior decomposition when
applied to behavior data for lifestyle applications. We also
proposed a novel gamified representation of individual and
group behaviors which could be used to support selection of
advices in personalized recommender systems for behavior
change.

The novelty of the DLM lies in the criteria that were
used for grouping individuals by health indicator surrogates.
We showed that such separation partially reflects in group
behaviors, for particular behavior spaces, which indicates that
health condition and intrinsic physical characteristics can
play a role in the exhibition of a particular behavior. Although
at this stage, causal relationships between behavior and health
status cannot be proven, this result has potential for the
application in behavioral therapy for improving a person
lifestyle and health.

Future extensions of the DLM will include the use of other
sources of information, such as data from wearables and ubiq-
uitous sensing and the validation of other behavior tracking
algorithms for overcoming the limitations of eigenbehavior
decomposition. In particular, alternative definitions of rou-
tines will be considered (e.g., the definition of de Lira et al.
(2014) [23] of semantic regularity profiles) (where entropy
is used as a measure of spatial and temporal regularity of
a behavior) and alternative algorithms to models behavior
dynamics and long-range temporal correlations such as
autoregressive models and neural networks [17, 24, 25] will
be evaluated.
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