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Postnatal undernutrition delays a key step in the W)
maturation of hypothalamic feeding circuits
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ABSTRACT

Objective: Humans and animals exposed to undernutrition (UN) during development often experience accelerated “catch-up” growth when food
supplies are plentiful. Little is known about the mechanisms regulating early growth rates. We previously reported that actions of leptin and
presynaptic inputs to orexigenic NPY/AgRP/GABA (NAG) neurons in the arcuate nucleus of the hypothalamus are almost exclusively excitatory
during the lactation period, since neuronal and humoral inhibitory systems do not develop until after weaning. Moreover, we identified a critical
step that regulates the maturation of electrophysiological responses of NAG neurons at weaning — the onset of genes encoding ATP-dependent
potassium (Katp) channel subunits. We explored the possibility that UN promotes subsequent catch-up growth, in part, by delaying the maturation
of negative feedback systems to neuronal circuits driving food intake.

Methods: We used the large litter (LL) size model to study the impacts of postnatal UN followed by catch-up growth. We evaluated the maturation
of presynaptic and postsynaptic inhibitory systems in NAG neurons using a combination of electrophysiological and molecular criteria, in
conjunction with leptin’s ability to suppress fasting-induced hyperphagia.

Results: The onset of Karp channel subunit expression and function, the switch in leptin’s effect on NAG neurons, the ingrowth of inhibitory
inputs to NAG neurons, and the development of homeostatic feedback to feeding circuits were delayed in LL offspring relative to controls. The
development of functional Katp channels and the establishment of leptin-mediated suppression of food intake in the peri-weaning period were
tightly linked and were not initiated until growth and adiposity of LL offspring caught up to controls.

Conclusions: Our data support the idea that initiation of Karp channel subunit expression in NAG neurons serves as a molecular gatekeeper for

the maturation of homeostatic feeding circuits.
© 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION Little is known about mechanisms that regulate growth rates following

developmental exposure to UN. Rodents exposed to moderate re-

Suboptimal maternal nutrition is associated with a delay in the
maturation of circuits regulating diverse physiological process,
including growth, reproduction and cognition [1—4]. Although
“developmental delay” has negative connotations, a delay may
beneficial if it provides a window during which the normal develop-
mental program can be reinstated if adequate nutritional stores are
available. Studies in humans and rodent models support the idea that
early nutritional supplementation and rapid catch-up growth can
mitigate impacts of maternal UN on cognitive function [5—8], but at the
cost of increased risk of metabolic disease [9—12].

striction (<50%) during lactation increase food intake in the post-
weaning period such that they ultimately attain the body weight of
controls; however, more severe restriction usually leads to persistent
decreases in food intake and body weight [13—16]. In cases of
moderate postnatal UN, there is evidence that the accelerated growth
rate is supported, in part, by increased orexigenic drive in the post-
weaning period. Neurons in the arcuate nucleus of the hypothala-
mus (ARH) that co-express neuropeptide Y (NPY), agouti-related
peptide (AgRP) and gamma-aminobutyric acid (GABA) exert a power-
ful orexigenic influence on central circuits regulating food intake
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[17,18]. NAG neurons are an important node of homeostatic regulation
of feeding, as they are activated by signals of negative energy balance
(i.e. ghrelin) and are inhibited by circulating signals of an energy
replete state (i.e. leptin) [19,20]. Projections from NAG neurons that
regulate food intake are formed during the suckling period [21,22], and
postnatal UN due to lactation in a large litter (LL) leads to increases in
the number of projections to downstream targets at 3—4 weeks of age
[23—25].

Leptin is well-positioned to serve as a conduit for impacts of UN on
developing feeding circuits. There is a surge in leptin levels in the first
two weeks of lactation [26] that precedes its ability to modulate food
intake [27]. During this period, leptin promotes axonal outgrowth from
NAG neurons [24,28,29]. This neurotrophic effect is observed in
immature NAG neurons that are activated by leptin [30], while leptin’s
actions in mature NAG neurons are inhibitory [19,20,30]. As UN can
alter the timing and/or levels of leptin during the surge [24,31,32], we
hypothesized that the effects of postnatal UN on orexigenic drive are
mediated through impacts on leptin signaling in NAG neurons.

We previously used a combination of genetic, immunohistochemical
and electrophysiological criteria to characterize the onset of leptin-
mediated signaling in NAG neurons across the postnatal period. In
contrast to the well-characterized effect of leptin to hyperpolarize adult
NAG neurons via Karp channels [33,34], we found that all of the Npy-
GFP + neurons [35] that responded to leptin on postnatal days 13—15
(P13—15) were depolarized [30]. Starting at P21, there was a gradual
increase in the number of hyperpolarized neurons at the expense of
depolarized neurons, such by P30, all of the leptin-responsive Npy-
GFP + neurons were hyperpolarized. Moreover, we discovered that the
onset of leptin-mediated hyperpolarization at weaning coincided with
the onset of Kyrp channel subunit expression [30]. The maturation of
the electrophysiological properties of NAG neurons coincides with the
onset of homeostatic regulation of food intake [21,27].

In these studies, we explored whether effects of moderate postnatal
UN to increase post-weaning growth rates are associated with im-
pairments in the maturation of systems that provide negative feedback
to the orexigenic actions of NAG neurons. We found that UN delays the
development of homeostatic regulation of feeding, which is tightly
correlated with the onset of Karp channel expression and the matu-
ration of electrophysiological properties of NAG neurons.

2. MATERIALS AND METHODS

2.1. Animals

All mouse protocols were overseen and approved by the Columbia
University Medical Center or the Oregon Health and Science University
Institutional Animal Care and Use Committees. Mice were maintained
in a temperature (22+/— 1 °C) and light controlled (12 h light: 12 h
dark) barrier facility. Mice were weaned at P21 and had ad libitum
access to chow (13.2% calories from fat, 5053; PicoLab Rodent Diet
20) and autoclaved drinking water. Npy-hrGFP mice (B6.FVB-Tg(Npy-
hrGFP)1Lowl/J, Stock No: 006417) were purchased from The Jackson
Laboratory. The number of pups per litter was adjusted atP3ton =8
(control litter) or n = 12 (LL litter) in a randomized way. Main exclusion
criteria for any experiment were based on: a) any sign of sickness and
b) body weight outliers: mice with a deviation of 2 times the standard
deviation from the mean value of the group. Data from males and
females were combined, as we did not detect any gender differences
in the endpoints examined. Mice were allocated to saline vs. leptin
treatment groups on the basis of body weight, ensuring that the dis-
tribution of body weights was similar. Experimenters were not blinded
to the experimental groups of animals. Mice were weighed 3 times per
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week. Body composition was assessed on a biweekly basis using
nuclear magnetic resonance imaging (Minispec, Bruker). Naso-anal
length was measured bi-weekly on anesthetized animals (4%
isoflurane).

2.2. Immunohistochemistry

Mice were injected with 0.9% saline or leptin (4 mg/kg, i.p., National
Hormone Peptide Program) and after 45 min were transcardially
perfused with saline followed by 4% paraformaldehyde in 0.1M PB
under avertin (2.5 mg/10 g, Sigma) anesthesia. Pups under P21 were
injected and anesthetized in their breeding cage. Mice older than P21
were fasted for 3 h before injection, to minimize fasting-induced NAG
neuronal activation. After perfusion, brains were removed, postfixed
overnight, washed with cold PBS and submerged in 30% sucrose
before embedding in 0.C.T medium. Brains were kept frozen
at —80 °C until sectioning. 10 pum-thick coronal sections were ac-
quired from the paraventricular nucleus of the hypothalamus (PVH) to
the caudal ARH (Allen Brain Atlas coordinates: —0.08 to —2.0 mm
from bregma). For ARH immunohistochemistry, sections from the
medial ARH area were incubated with rabbit anti-c-Fos (1:500, Cal-
biochem, #PC38 or 1:500, Cell Signaling # 2250) or rabbit anti-
phospho-STAT3 (pSTAT3) (1:500, Cell Signaling Technology, #9131)
[30], followed by a goat anti-rabbit-Cy3 secondary antibody (1:500,
Jackson ImmunoResearch Laboratories, #115-165-205), and nuclear
staining with DAPI (1:500). An additional antigen retrieval step was
performed before pSTAT3 staining; slides were incubated in 1% NaOH,
1% H,0, for 20 min before primary antibody incubation. Digital images
were captured using a Nikon Eclipse 80i equipped with a Retiga EXi
camera and X-Cite 120 fluorescent illumination system. Cell counts
were performed using Adobe Photoshop CS5, and experimenters were
blinded to the experimental groups. Npy-GFP™, c-Fos™ and pSTAT3™
cells were only counted if they colocalized with a DAPI signal from at
least 12—18 hemisections per mouse.

2.3. Quantification of fibers in the PVH

Sections were incubated with o.-AgRP [36] (1:500, Phoenix Pharma-
ceuticals #H0035-57) or a.-melanocyte stimulating hormone (a.-MSH)
(1:1000 rabbit A 2-7-83, kindly provided by Sharon Wardlaw). Fluo-
rescent images were captured from 8 to 12 sections per mouse, and
the Fiji version of the ImageJ program was used for quantitative an-
alyses of immunoreactive AgRP or a-MSH fibers in the PVH. Briefly, all
images were taking using the same settings and adjusted with same
threshold to eliminate background. Images were binarized and the
percent of the total area that contained fluorescent signals >2 pixels2
was calculated.

2.4. Leptin-induced suppression of food intake

Mice were isolated at P25 and daily food intake and body weight were
measured until P29 (Baseline). At P29, food was removed at lights out,
and, the next morning, mice were injected with 0.9% saline or leptin
(4 mg/kg, i.p.) and provided with ad libitum access to food. Food intake
and body weight changes were measured after 24 h.

2.5. Quantitative expression analysis

Brains from 4 to 6 animals per group and age were extracted and
maintained in cold artificial cerebrospinal fluid (aCSF). Brains were
sectioned in 300 um coronal slices in a vibratome (Leica, VT11200).
Sections containing Npy-GFP™ fluorescence in the ARH were carefully
microdissected under a fluorescent scope, using a scalpel to cut a
triangular area encompassing the GFP™ neurons from both sides of the
ARH, while the median eminence was discarded. Following mRNA
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extraction (RNeasy Microkit; Quiagen, #74004), 500 ng of RNA was
transcribed to cDNA with random hexamers (First Strand Transcription
Kit, Roche) and was assayed by quantitative PCR (LightCycler 480
SYBRGreen | Master, Roche). Levels of expression were calculated by
the 2AACt method, using Rp/p0 gene expression as a housekeeping
gene. For calculations between different time-points in control
offspring, expression of each gene was related to AgRP expression
within each group and then normalized according to the figure legend.
The following primers were designed: SURT: Forward 5’- CAGCGT-
CAGCGAATCAGTGTA-3’, reverse 5'- TGCATTAGGTGGTCACTCAGATG-
3’; Sur2, forward 5- GGAGACCAAACTGAAATCGG-3/, reverse 5’-
TGCGTCACAAGAACAACCG-3'; Kir6.1, forward 5'- AGGCACCATGGA-
GAAGAGTC-3', reverse 5'- TGCGTCACAAGAACAACCG-3'; Kir6.2, for-
ward 5- GGAGCCTGTACCGGGTTATT-3/, reverse 5-
AAACCAGTCCCGAGCTGAG-3'; AgRP 5'- GGCCTCAAG AAGACAACTGC-
3, reverse 5- TGCGACTACAGAGGTTCGTG-3'; Pomc, forward 5’-
GTGCCAGGACCTCACCA-3’, reverse 5'- CAGCGAGAGGTCGAGTTTG-3';
Rplp0, forward 5'- GAGACTGAGTACACCTTCCCAC-3', reverse 5'-
ATGCAGATGGATCAGCCAGG-3'.

2.6. Electrophysiology

All recordings were performed in Npy-GFP™ neurons in the ARH from
P30—33. Coronal slices containing ARH were prepared as previously
described [30]. Briefly, brain slices (300 pM) containing ARH were
maintained with constant flow (1—2 ml/min) of artificial cerebrospinal
fluid (aCSF) containing (in mM): 124 NaCl, 5 KCl, 2.6 NaH,PQg4, 1
MgSO0,, 1 CaCl,, 26 NaHCO3, 10 Hepes, 10 glucose; oxygenated (95%
0o, 5% C0,) osmolarity ~305 Osm at 32—33 °C. Inhibitory post-
synaptic currents (IPSCs) were recorded with a cesium chloride based
solution containing (in mM): 140 CsCl, 5 MgCl,, 1 BAPTA, 5 ATP, 0.3
GTP, pH~ 7.35 with CSOH, osmolarity ~295 mosM. The N-methyl-p-
aspartate (NMDA) receptor  antagonist  (DL)-2-amino-5-
phosphonovaleric acid (APV) (50 puM) and the o-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA) receptor antagonist CNQX
(10 uM) were added to the bath to isolate inhibitory postsynaptic
currents (IPSCs). Tetrodotoxin (TTX) (1 M) was added to the bath to
isolate miniature inhibitory postsynaptic currents (mIPSCs). Excitatory
postsynaptic currents (EPSCs) were recorded with a cesium-
methanesulfonate based solution (in mM): 125 CsMeS03, 10 CsCl, 5
NaCl, 2 MgCl,, 10 HEPES, 1 EGTA, 5 ATP, 0.3 GTP, pH~7.35 with
CSOH, osmolarity ~295 Osm. Bicuculline (5 uM) was added to the
bath to block IPSCs. TTX (1 puM) was added to the bath to isolate
miniature excitatory postsynaptic currents (mEPSCs). Both IPSCs and
EPSCs were recording at holding potential of —60 mV in whole-cell
patch clamp mode and pipettes have a resistance of 2—4 QM. Se-
ries resistance values were generally <20 MQ during the experi-
ments. Data analysis was performed using Clampfit 10 and only
synaptic events >5 pA were analyzed.

For current clamp experiments, microelectrodes had resistances of 3—
5 QM and were filled with an internal solution containing (in mM):
125 K-gluconate, 2 KCI, 10 EGTA, 5 HEPES, 1 ATP, 0.3 GTP; pH~7.25
with KOH, osmolarity ~295 mosM. The liquid junction potential
of —5 mV was corrected in the analysis. TTX (1 uM) and bicuculline
(5 uM) were used to block presynaptic inputs. Data acquisition was
performed using a multiclamp 700B amplifier (Molecular Devices,
Sunnyvale, CA). Data were sampled at 20 KHz using a computer
interface Digidata 1322 and pClamp 9.2 software (Molecular Devices).

2.7. Statistical analysis

Data are presented as mean =+ standard error of the mean (s.e.m) per
experimental condition, age and litter group. Experiments were
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replicated using at least 3 different litters at the indicated time points.
Significance was tested using Prism 5.0 software (Graphpad Software
Inc). Normality tests were conducted (Kolmogorov—Smirnov test) and
unpaired t-test, one-way and two-way ANOVA followed by Bonferroni
post hoc test were used, with P < 0.05 considered as statistically
significant. For data that did not meet the normal distribution, Mann—
Whitney test was used for further analysis (Figure 3C).

3. RESULTS

3.1. Model to study catch-up growth following moderate postnatal
undernutrition

Several different strategies involving reductions in maternal and/or
offspring access to nutrition have been used to study the conse-
quences of developmental exposure to UN. We studied postnatal un-
dernutrition caused by increasing the litter size from 8 to 12 pups,
because this model is consistently associated with effects on NAG
neurons [23—25,37]. We found that body weights of LL pups diverged
from controls at P7, reaching statistical significance at P13 (Figure 1A;
n = 6 litters; F1 11y = 52.10, p < 0.05 CTL vs. LL, two-way ANOVA
plus Bonferroni post hoc test). At weaning LL offspring were 13%
lighter than controls (Figure 1B; n = 15—21 animals, 6—8 litters,
te7) = 3.02, p < 0.05, unpaired t-test), which was accompanied by a
20% reduction in adiposity and an 8% reduction in naso-anal length
(Figure 1C,D; t2g) = 5.59 and tpg) = 6.91, p < 0.01, unpaired ftest,
respectively). However, all of these parameters were normalized by
P45 (Figure 1B—D; p > 0.05, unpaired #-test).

3.2. Delayed onset of homeostatic feeding regulation in LL
offspring

We first considered whether catch-up growth in post-weaning LL
offspring is associated with a failure to appropriately develop ho-
meostatic negative feedback to circuits regulating food intake at 4
weeks of age [21,27]. To this end, we assessed the extent to which
peripheral injections of leptin (4 mg/kg, i.p.) vs. saline suppressed
food intake after an overnight fast at P30. Leptin reduced fasting-
induced food intake by 36.5% in controls (Figure 2; 2.0 + 0.3 sa-
line vs. 1.3 + 0.2 leptin; n = 4—5 animals per condition, 4—5 litters
to5) = 2.21 p = 0.04, unpaired t-test), while its effect in LL offspring
was not significantly different from saline (Figure 2; 1.6 + 0.2 saline
vs. 1.4 £ 0.2 leptin; tp5) = 0.214, p = 0.8, unpaired f-test). As LL
offspring reached the body weight and adiposity of controls at P45,
we next examined whether the end of the catch-up growth period is
accompanied by the onset of homeostatic regulation of food intake.
We found that leptin suppressed fasting-induced re-feeding to a
similar degree in both control and LL offspring (Figure 2;
39.3% =+ 4.7 vs. saline, controls, and 33.8% =4 11.5 vs. saline, LL;
te1) = 2.5, p = 0.042 and tpy = 2.36, p = 0.027, respectively;
unpaired t-test).

3.3. Failure of leptin to suppress feeding in LL offspring is not due
to hard-wired deficits in NAG neuronal circuitry

We next explored whether leptin’s failure to affect fasting-induced food
intake in P30 LL offspring might be due to structural impairments in
NAG neuronal circuits, which are activated by fasting and inhibited by
leptin [38—41]. We first determined whether the number of NAG
neurons in the ARH is impacted by postnatal UN. We found that there
was a transient reduction in the number of ARH neurons expressing an
Npy-GFP reporter [35] in LL offspring at P15, but there was no dif-
ference in the size of the NAG neuronal population from P20 onward
(Figure 3A; n = 4—6 mice per group from 4 to 5 different litters;
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Figure 1: Catch-up growth following postnatal undernutrition. (A) Body weight across the lactation period in pups from control litters (CTL, circles on a black line) vs. large
litters (LL, triangles on a blue line); n = 6 litters per group; *p < 0.05, ANOVA followed by Bonferroni post-hoc test. (B) Body weight, (C) adiposity and (D) naso-anal length at
postnatal day 21, 30 and 45 from control (CTL, black bars) and undernourished mice (LL, blue bars). Data are presented as mean =+ s.e.m.; n = 15—21 mice from 6 to 8 litters;

*p < 0.05, **p < 0.01, unpaired t-test.
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Figure 2: The onset of leptin’s effect on food intake is delayed by postnatal
undernutrition. Fasting-induced hyperphagia was assessed by calculating the in-
crease in food intake (A food intake) following an overnight fast over baseline levels of
intake measured on the previous day. The impact of saline (light colored bars) vs. leptin
(4 mg/kg, i.p.; dark colored bars) on fasting-induced hyperphagia in mice from control
litters (CTL, black bars) vs. large litters (LL, blue bars) at P30 and P45 was compared.
Data are presented as mean + s.e.m.; n = 4—5 mice per condition, 4—5 different
litters tested at each age and group; *p < 0.05, unpaired t-test.

Fu,5 = 1.6, p > 0.05, except P15: p < 0.05. Two-way ANOVA fol-
lowed by Bonferroni post hoc test).

Next we examined whether insensitivity of LL offspring to leptin’s ef-
fects on food intake is also reflected in reductions in another leptin-
mediated process — axonal outgrowth to the PVH [28,29], a down-
stream mediator of NAG neuronal effects on feeding behavior [42,43].
We observed a 56% increase in the density of AgRP-immunoreactive
fibers in the PVH of LL offspring at P30 (Figure 3B,C; 1.35 & 0.13%
control vs. 2.12 + .21% LL; n = 12—16 sections, 4 animals,

p < 0.001, Mann—Whitney test). In contrast, we did not detect a
difference in PVH innervation by fibers expressing a.-MSH, a marker of
projections from an intermingled population of ARH neurons that ex-
presses pro-opiomelanocortin (POMC) (Figure 3C; p = 0.096; Mann—
Whitney test). Thus, our findings argue against the hypothesis that
deficits in leptin’s effects on food intake are caused by structural
defects in NAG neuronal circuitry.

3.4. Altered leptin responsiveness in NAG neurons of LL offspring
As leptin promotes axonal outgrowth from NAG neurons [24,28,29] and
NAG neuronal projections were increased in LL offspring at P30
(Figure 3C), it raised the possibility that leptin sensitivity was not
diminished by undernutrition. To confirm our suspicion, we evaluated
the impact of postnatal UN on the number of NAG neurons that respond
to a peripheral leptin injection by activating the STAT3 signaling
cascade [44]. To this end, we assessed the number of Npy-GFP™
neurons that were pSTAT3-immunoreactive after treatment with saline
or leptin (4 mg/kg, i.p.) from P15 through P45 (Figure 4A). We did not
detect any differences between the number of pSTAT3" Npy-GFP™
neurons in control vs. LL offspring following an injection of saline or
leptin (Figure 4B; n = 6—12 hemisections, 4—6 animals per group,
4-75 litters; Fy 30 = 0.79, p > 0.05, two-way ANOVA followed by
Bonferroni post hoc test) at any point during development.

Since the total size of the leptin-sensing NAG neuronal population was
not impacted by LL, we next considered whether responses to leptin
might be altered at the intracellular level. We previously discovered
that there is a subset of immature NAG neurons that is activated by
leptin in the postnatal period [30]. The disappearance of this sub-
population in the post-weaning period coincides with the onset on
homeostatic regulation of feeding at P28 [27,30]. To evaluate the
impact of postnatal UN on the subpopulation of leptin-activated NAG
neurons, we used c-Fos immunoreactivity as a surrogate measure of
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Figure 3: AgRP projections to the PVH are increased in pups exposed to post-
natal undernutrition. (A) Total number of Npy-GFP™ cells in arcuate sections from
control (CTL, black bars) and postnatally undernourished (LL, blue bars) mice from P15
to P45. Data are presented as mean + s.e.m cell number/hemisection; n = 6—12
hemisections per mouse, 4—6 mice per group and treatment, 4—5 different litters;
*p < 0.05 CTL vs LL, two-way ANOVA followed by Bonferroni post hoc test. (B)
Representative images and (C) quantification of ARP™ and o-MSH™ fibers in the PVH
from control (black bars) and LL (blue bars) mice at P30—35. Data are presented as the
mean =+ s.e.m of % area occupied by AgRP™/a-MSH™ fibers. n = 8—12 PVH hem-
isections per mouse, n = 3—4 mice from 3 litters; *p < 0.05 CTL vs. LL, Mann—
Whitey test. Scale bar = 100 um.

neuronal activation in response to peripheral injections of leptin, as
compared to saline-injected controls (Figure 4A). At P15, when the
number of c-Fos*Npy-GFP™ is maximal, we did not observe any dif-
ference between LL and control offspring (Figure 4B; F1 3 = 0.5341,
p > 0.05; two-way ANOVA followed by Bonferroni post hoc test). In
controls, number of leptin-induced c-Fos™Npy-GFP™ neurons steadily
declined after P21, so that by P30—35, it was the same as saline-
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injected controls (Figure 4B; F13 = 9.44, p > 0.05 at P30 and
P45). This process was delayed by UN so that leptin-induced c-
Fos™Npy-GFP™ neurons were still detected at P30—35 (Figure 4B;
4.9 + 2.3 control vs. 8.9 4= 0.4 LL; F(y 3y = 24.95, p < 0.05), but were
absent by P45 (Figure 4B; p > 0.05), coincident with the end of the
catch-up growth phase (Figure 1) and the onset of leptin’s effects on
food intake (Figure 2).

The progressive loss of c-Fos™ Npy-GFP™ neurons in the post-weaning
period occurs during a period of increased inhibitory inputs to NAG
neurons and the maturation of electrophysiological properties of NAG
neurons [30,45]. Thus we evaluated whether impacts of UN on either
of these parameters might contribute to the delay in the development
of homeostatic regulation of feeding in LL offspring. To this end, we
recorded IPSCs and EPSCs in Npy-GFP' neurons at P30—33.
Consistent with our hypothesis, we found that the frequency of IPSCs
was decreased by 42% in NAG neurons from LL offspring as compared
to controls (Figure 5A,B; IPSCs: 0.92 =+ 0.1 control vs. 0.53 + 0.1 LL;
n = 17, 12 animals, {15 = 2.2, p < 0.05, unpaired ftest). This
reduction was still observed when action potentials from presynaptic
neurons were blocked with TTX (1 pM) (Figure 5A,B; mIPSCs:
0.63 £ 0.1 control vs. 0.29 £ 0.06 LL; n = 15, 12 animals, t13) = 2.3,
p < 0.05, unpaired t-test). There was no difference in the amplitude of
any postsynaptic currents (data not shown).

We found that EPSCs and mEPSCs were also diminished in LL
offspring; however, these differences only reached significance in TTX-
treated slices (Figure 5C,D; EPSCs: 0.68 + 0.1 control vs. 0.37 & 0.07
LL; mEPSCs: 0.59 =+ 0.1 control vs. 0.23 + 0.03 LL; n = 15, 12
animals, t43) = 2.3, p = 0.07 and p < 0.05, respectively; unpaired
test). In addition, we observed that the frequency of excitatory currents
in NAG neurons was significantly reduced by exposure to TTX,
consistent with the idea that most excitatory postsynaptic currents in
NAG neurons are generated by spontaneous vesicular fusion in con-
trols [45—47], but from presynaptic action potentials in LL offspring. In
summary, as we observed that excitatory and inhibitory postsynaptic
currents are reduced to a similar degree in NAG neurons of LL
offspring, leptin’s failure to suppress feeding is not likely caused by
changes in the balance of excitatory and inhibitory inputs onto NAG
neurons.

3.5. Postnatal UN delays the onset of Karp channel subunit
expression and the maturation of electrophysiological properties of
NAG neurons

As we previously discovered that the switch to leptin-induced hy-
perpolarization in the peri-weaning period coincided with onset of
Katp channel subunit expression, we asked whether these processes
are impacted by postnatal UN. First we performed quantitative PCR
on microdissected Npy-GFP™ tissue from P15 to P45 in control
offspring to characterize the temporal pattern of the expression of
genes encoding the two pore-forming subunits — Kir6.1 (also known
as Kcnj8) and Kir6.2 (also known as Kcnj11) — and two sulfonylurea
receptor regulatory subunits — SURT (also known as Abcc8) and Sur2
(also known as Abcc9). Consistent with our previous results [30],
expression of all four subunits was barely detectable at P15-20
Figure 6A,C; n = 4 samples, 4—6 mice from independent litters;
p = 0.029 (SURT), 0.0005 (Sur2), 0.908 (Kir6.1) and 0.004 (Kir6.2);
One-way ANOVA for temporal analysis, followed by Bonferroni post
hoc test). By P45, we observed robust expression of SUR7, Sur2 and
Kir6.2, while Kir6.1 expression remained low throughout the entire
period (Figure 6A,C). We found differences in the timing of subunit
expression upregulation; Sur2 reached maximal levels at P30
(Figure 6A; p < 0.01 P15 vs. P30 and vs. P45), while SURT and
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Kir6.2 expression continued to increase between P30 and P45 Next we evaluated the impact of postnatal UN on the expression of
(Figure 6A,C; p < 0.05 P15 vs. P30; p < 0.01 P15 vs. P45). Due to  genes encoding Katp channel subunits at P30, when all leptin-
these temporal differences, Sur2 expression is 5.5-fold higher than  responsive NAG neurons are hyperpolarized [30]. We found that the
SURT1 at P30, while they are expressed at similar levels at P45  expression of Sur2, Kir6.1 and Kir6.2 was markedly reduced in LL as
(Figure 6B; n = 4 samples, 4—6 mice from independent litters, compared to controls (Figure 7A; 90.1% =+ 2.7, 81.6% + 3.9 and
e = 3.14, p=0.019 at P30; tg) = 1.16, p = 0.27 at P45; unpaired ~ 70.1% =+ 4.4 lower than controls, respectively; n = 4 samples, 4—6
ttest). On the other hand, Kir6.2 is the principal pore-forming mice from independent litters. t7) = 2.735, p = 0.0291; tg = 2.80,
subunit in the mediobasal hypothalamus, as Kir6.7 is not p = 0.03; t7 = 2.735, p = 0.0291, respectively; unpaired t-test),
expressed (Figure 6D; t4) = 4.14, p = 0.014 for P30; tg = 2.7, consistent with persistence of a leptin-induced c-Fos™ subset of NAG

p = 0.017 for P45, unpaired t-test). neurons (Figure 4B). However, expression of SUR1, Agrp, Npy and
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Figure 5: Presynaptic tone is reduced in Npy-GFP neurons by exposure to postnatal undernutrition. (A) Representative traces from measurements of IPSCs and mIPSCs in
Npy-GFP™ neurons from offspring of control litters and large litters at P30—33. (B) The mean frequency of IPSCs and mIPSCs in Njpy-GFP™ neurons from offspring of control litters
(CTL, black bars) vs. large litters (LL, blue bars) at P30—33. *p < 0.05, unpaired t-test. (C) Representative traces from measurements of EPSCs and mEPSCs in Njpy-GFP™ neurons
from offspring of control litters and large litters (LL) at P30—33. (D) The mean frequency of EPSCs and mEPSCs in Npy-GFP™ neurons from offspring of control litters (CTL, black
bars, n = 9 cells, 6 animals) vs. large litters (LL, blue bars, n = 7 cells, 6 animals) at P30—33. *p < 0.05, unpaired t-test.
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*p < 0.05 and **p < 0.01, unpaired ttest.

Pomc was not altered at either age (Figure 7B and data not shown;
SURT: t5y = 2.05, p = 0.09 at P30; tg) = 1.25, p = 0.24 at P45;
unpaired t-test). By P45 we found that LL offspring expressed normal
levels of Sur2, Kir6.1 and Kir6.2 (Figure 7A; tg) = 0.53, p = 0.6;
tg) = 0.16, p = 0.87; tg9) = 0.77, p = 0.46, respectively; unpaired -
test), concomitant with the onset of leptin-induced suppression of food
intake (Figure 2).

We next confirmed that impact of postnatal UN on Karp channel
subunit expression at P30 is reflected in the electrophysiological
properties of NAG neurons in acute brain slices. To this end, we
performed current clamp recordings in control and LL slices in the
presence of the SUR1 agonist diazoxide (50 pM) or the SUR2 agonist
pinacidil (50 pM). To exclude possible contributions from inhibitory
presynaptic inputs [45,47], we also evaluated the effects of diazoxide
and pinacidil in the presence of the sodium channel blocker TTX and
the GABAa receptor blocker bicuculline. As reported previously
[30,48], treating acute slices with 50 pM of the SUR1 agonist
diazoxide caused membrane hyperpolarization of  Npy-
GFP + neurons from controls (Figure 7C; —57 =+ 1.7 mV baseline
vs. —66 £+ 1.9 mV diazoxide; n = 7 cells, 5 animals, t7) = 13.4,
p < 0.0001; paired t-test), which was diminished, but still detect-
able, when presynaptic inputs were blocked with bicuculline and TTX
(Figure 7D; —53 + 1.4 mV baseline vs. —62 + 2 mV
diazoxide + TTX + bicuculine; n = 8 cells, 6 animals, F.7,
12.5) = 25.8, p < 0.001; RMP vs. TTX -+ bicuculline + diazoxide
qn = 87, p < 001, TIX <+ Dbicuculline vs.
TTX + bicuculline + diazoxide q) = 7.6, p < 0.01; ANOVA with post
hoc Tukey’s shows significant changes in the membrane potential by
diazoxide in the presence of presynaptic blockers). In the absence of
presynaptic blockers, diazoxide hyperpolarized NAG neurons in LL
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mice to a similar degree as controls (Figure 7C; n = 7 cells, 7 ani-
mals, tg) = 3.8, p < 0.01, paired ftest). However, diazoxide-
mediated effects in NAG neurons were decreased in LL mice in the
presence of TTX and bicuculline (Figure 7D; —10 mV in controls
to —3 mVin LL; n = 6 cells, 6 animals, F ¢, 8.4 = 6.8, p < 0.001,
RMP vs. TTX + bicuculline + diazoxide qs = 5, p < 0.01;
TTX + bicuculline vs. TTX 4 bicuculline + diazoxide qis) = 5.1,
p < 0.01; ANOVA with post hoc Tukey’s shows significant changes in
the membrane potential by diazoxide in the presence of presynaptic
blockers). Together, these observations support the idea that the
modest reduction in SUR1-containing Katp channel in LL offspring is
largely mediated through direct effects on NAG neurons.

Postnatal UN had a pronounced effect on the electrophysiological
response of NAG neurons to a SUR2 agonist, which paralleled the
dramatic reduction in Sur2 expression at P30 (Figure 7A). Treatment of
acute brain slices from controls with 50 pum of the SUR2 agonist
pinacidil [49] caused a robust membrane hyperpolarization
(Figure 7E; —50 + 1.5 mV baseline vs. —59 4 1.7 mV pinacidil; n =7
cells, 5 animals, tg = 5.9, p < 0.01; paired #test), which was
diminished somewhat when recordings were performed in the pres-
ence of presynaptic blockers (Figure 7F; —49 £ 2 mV baseline
vs. —55 + 2 mV pinacidil + TTX + bicuculine; n = 5 cells, 4 animals,
Fi.1, 45 = 13.3, p < 0.05, RMP vs. TTX + bicuculline + pinadicil
0 = 3.8, p < 0.05; ANOVA with post hoc Tukey’s shows significant
changes in the membrane potential by pinadicil in the presence of
presynaptic blockers). In slices from LL offspring, the effect of pinacidil
alone to hyperpolarize NAG neurons was  reduced
(Figure 7E; —50 + 2 mV baseline vs. —55 4+ 2 mV pinacidil; n = 7
cells, 6 animals, p = 0.1072). The response to pinacidil in LL offspring
was completely abrogated when recordings were performed in the
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presence of TTX and bicuculline (Figure 7F; —49 + 1 mV baseline 4. DISCUSSION

vs. —48 + 1 mV pinacidil + TTX + bicuculine; n = 7 cells, 7 animals,

p > 0.05). These findings are consistent with the idea that postnatal We previously found that the maturation of the electrophysiological
UN reduces the activity of SUR2-containing Karp channels through properties of NAG neurons coincides with the onset of homeostatic
direct and effects on NAG neurons and indirect effects on their pre-  regulation of food intake in the fifth week of life [27,50] and hypoth-

synaptic inputs. esized that the delayed maturation could help to promote food intake
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Figure 7: Onset of the expression and function of Karp channels is delayed by exposure to postnatal undernutrition. (A) Relative expression of genes encoding Karp
channel subunits and (B) neuropeptides in the ARH region of offspring of large litters (LL, blue bars) as compared to control litters (CTL, black bars) at P30 and P45. n = 4 samples
per age and group, 4—6 mice per sample; **p < 0.01 CTL vs. LL, unpaired t-test. (C—F) Representative traces and average changes in membrane potential in Npy-GFP™ neurons
in acute slices from P30—35 treated with SUR1 (C, D) or SUR2 (E, F) agonists in the absence (C, E) or presence (D, F) of presynaptic blockers (TTX 1 tM + bicuculine 5 uM). Data
from control litters are shown on the left (grey bars) and LL litters on the right (blue bars). (C) SUR1 response to 50 uM diazoxide treatment in control (n = 7 cells from 5 animals)
and LL offspring (n = 7 cells from 7 animals). (D) Response to 50 1M diazoxide in the presence of presynaptic blockers (n = 8 cells from 6 CTL animals and n = 6 cells from 6 LL
animals). (E) SUR2 response to 50 pM pinacidil in control (n = 7 cells from 5 animals) and LL offspring (n = 7 cells from 6 animals). (F) Response to 50 uM pinacidil in the
presence of presynaptic blockers in control (n = 5 cells from 4 animals) and LL offspring (n = 7 cells from 7 animals). Results are shown as mean + s.e.m. *p < 0.05,
***p < 0.001, ***p < 0.0001, paired ttest and ANOVA followed by Bonferroni post hoc test.
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needed to support rapid growth in the immediate post-weaning period.
We tested this hypothesis by studying LL offspring, which have
reduced body weight at weaning, and thus need to promote growth for
a longer period than controls. We found that LL caused a delay in the
switch in leptin responsiveness of NAG neurons from excitatory to
inhibitory, as evidenced by the persistence of leptin-induced c-Fos
immunoreactive NAG neurons (Figure 4B), increased density of
AgRP + projections in the PVH (Figure 3B,C) and a diminished ability of
leptin to suppress fasting-induced food intake at P30 (Figure 2B). Our
discovery, that the appearance of functional Karp channels and the
establishment of presynaptic inhibitory inputs after weaning are sup-
pressed by postnatal UN, provides a mechanism whereby the matu-
ration of homeostatic signals that provide negative feedback to
orexigenic circuits is delayed until growth has caught up to controls.

4.1. Maturation of inhibitory systems for NAG neurons in the peri-
weaning period

NAG neurons provide an important source of information about
metabolic and nutritional status to feeding circuits. Activation of these
neurons by neuronal and humoral signals of negative energy balance
increases orexigenic drive [19,20]. Conversely, signals of the energy
replete state, such as leptin, inhibit fasting-induced increases in the
actions of adult NAG neurons [34,41,46,51]. While the field initially
focused on direct action of metabolic signals such as ghrelin and leptin
on NAG neuronal activity, there is a growing appreciation that modu-
lation of presynaptic excitatory transmission is an important mecha-
nism for regulating NAG neuronal activity [52,53].

NAG neuronal differentiation and maturation spans gestational, lacta-
tional and peri-weaning periods [54]. The acquisition of a NAG pep-
tidergic identity starts at E14 and extends through P25 [30,55]. Lepr
expression in NAG neurons begins several days after birth and pro-
gressively increases across lactation [30]. Leptin depolarizes NAG
neurons in the second postnatal week [30], which likely underlies its
neurotrophic effects at this developmental stage [28,29]. The activity of
NAG neurons during lactation is also promoted by excitatory inputs
from other neurons, which reach mature levels by P13—15 [45].
Neuronal and humoral systems that inhibit NAG neurons do not
develop until after weaning. Inhibitory synaptic inputs to NAG neurons
increase across the peri-weaning period and reach mature levels in the
fifth week of life [30,45]. Katp channel subunit expression is initiated in
the peri-weaning period, after which leptin only inhibits NAG neurons
[30]. Kir6.2 is the predominant inward rectifying subunit expressed in
the mediobasal hypothalamus throughout the post-weaning period
Figure 6D and [56,57]. SUR2-containing Karp channels appear to
develop before SUR1-containing channels (Figure 6A,B), but electro-
physiological recordings provide evidence that both types are active in
NAG neurons by P30 (Figure 7D—F). Studies to determine whether
SUR1-and SUR2-containing Karp channels are co-expressed in the
same neuron, or whether they mark distinct subpopulations of NAG
neurons is an important area for future research.

4.2. Impact of postnatal undernutrition on the formation of NAG
neuronal circuits

While the number of Npy-GFP™ neurons in controls reached adult-like
levels by P15, this did not occur until weaning in LL offspring
(Figure 3A). We did not detect significant apoptosis in Npy-GFP™
neurons in this period (A.J.D.S. and L.M.Z., data not shown). Thus, the
transient difference in the size of the Npy-GFP™ population is likely due
to effects in LL pups. Since litter size manipulations are too late to
impact the main period of NAG neurogenesis during gestation [55],
reductions in the size of the Npy-GFP™ population in LL pups at P15
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likely reflect a delay in the acquisition of an NPYergic identity in a
subset of ARH neurons.

Undernutrition due to maternal caloric restriction [24,31,32,58] or LL
rearing [25,59] leads to reduced serum leptin in pups during lactation,
a period when leptin normally acts to promote axonal outgrowth from
NAG neurons [28,29]. The density of NPY/AgRP fibers in the PVH of
undernourished pups is initially lower in the first two weeks of life
[58,60] but attains the level of controls by weaning [58]. Consistent
with our observation that AgRP fiber density was higher in the PVH of
LL pups at P28 (Figure 3B,C), studies that evaluated NPY/AgRP
immunoreactivity in the PVH in the post-weaning period found that
fiber density was the same [58] or increased [23—25]) in under-
nourished offspring. The transient decrease in PVH projections in the
early postnatal period could reflect a developmental delay in the
maturation of some NAG neurons, as defined by the acquisition of an
NPYergic identity (Figure 3A). It is also possible that reduced leptin
impairs outgrowth from differentiated NAG neurons that project to pre-
autonomic neurons in the PVH [29]. We hypothesize that persistent
activation of NAG neurons by leptin in LL pups in the peri-weaning
period, albeit at lower levels, promotes the accumulation of AgRP™
fibers in the PVH. Determining whether increased AgRP™ fiber density
is a result of modest effects on the entire NAG population, or an
outsized impact on a discrete subpopulation is an important area for
future research.

4.3. Postnatal undernutrition delays the maturation of pre- and
postsynaptic inhibitory systems in NAG neurons

The impact of postnatal UN on Karp channel subunit expression at P30
was dramatic — Sur2 and Kir6.2 expression were reduced by 90% and
70% respectively (Figure 7A) and pinacidil failed to elicit a direct
electrophysiological response in NAG neurons (Figure 7F). The
observation that reductions in pinacidil-induced hyperpolarization of
NAG neurons from LL offspring were pronounced when recordings
were performed in the presence of TTX and bicuculline (Figure 7E,F)
supports the idea that that NAG neurons are preferentially sensitive to
the impacts of postnatal UN.

The effect on SUR1 was more modest — the 20% decrease detected
by PCR was not significant (Figure 7A). The electrophysiological
response to diazoxide was not altered in LL offspring when recordings
were performed in the absence of TTX and bicuculline (Figure 7C), but
was reduced in their presence (Figure 7D), consistent with the idea
that the main effect of postnatal UN on SUR1-containing channels is
mediated directly on NAG neurons, as is the case for SUR2-containing
channels. The discrepancy between our PCR-based expression studies
and electrophysiological recordings could be explained by SUR1
expression in non-NAG neurons that are included in the microdissected
ARH region [61]. The modest impact of LL on SURT expression is also
consistent with observations that regulation of hepatic glucose pro-
duction, an important function of ARH SUR1-containing Katp channels
[62,63], is not impaired in LL offspring [25].

In addition to direct impacts on intrinsic firing properties, postnatal UN
also influenced synaptic inputs to NAG neurons. Both excitatory and
inhibitory inputs were decreased in LL offspring (Figure 5). Inhibitory
currents were reduced by similar degree whether recordings were
performed in the presence or absence of TTX (Figure 5A,B), consistent
with a broad-based effect. In contrast, the impact of LL on excitatory
currents was more pronounced in recordings that blocked presynaptic
action potentials (Figure 5C,D). The very low frequency of mEPSCs
(<0.2 Hz) in NAG neurons from LL offspring supports the idea that
most excitatory signals are transmitted via inputs from action poten-
tials (Figure 5G,D).
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The timing of the maturation of pre- and postsynaptic inhibitory
systems in NAG neurons is closely linked to the onset of homeo-
static regulation of food intake in control and LL offspring (this paper
and [30,45]). In theory, deficits in intrinsic (Figure 7) and/or extrinsic
(Figure 5) inhibitory signals to NAG neurons could contribute to the
failure of leptin to suppress food intake at P30 in LL offspring
(Figure 2). Evidence that impacts of leptin on food intake are pri-
marily mediated through effects on presynaptic GABAergic neurons
[47] supports the idea that delays in the establishment of inhibitory
inputs are responsible for deficits in homeostatic regulation of
feeding circuits in UN offspring. Though leptin-induced hyperpo-
larization of NAG neurons via Karp channel activation may not be the
primary mechanism for food intake suppression in the post-weaning
period, it likely marks the terminal differentiation of NAG neurons
and the end of leptin’s trophic actions on axonal outgrowth. While
“developmental delay” normally has negative connotations, sup-
pression of Karp channel expression due to postnatal UN may be
beneficial if it extends the window during which the normal
developmental program can be reinstated and homeostatic regu-
lation of feeding restored.

4.4. Maturation of inhibitory systems for NAG neurons is linked to
growth

Because inhibitory systems for NAG neurons do not fully mature until
the post-weaning period [30,45], signals that stimulate feeding circuits
during lactation are largely unopposed [64]. In theory, delaying the
onset of leptin-mediated inhibition of NAG neurons could promote food
intake needed to support catch-up growth in LL offspring. However, as
studies in ob/ob mice provide compelling evidence that leptin signals
per se are not required for catch-up growth [65], other factors must be
involved. In theory, delays in Karp channel expression and/or reduced
inhibitory inputs could limit the ability of other homeostatic signals (i.e.
glucose and insulin) or neuronal circuits to suppress the orexigenic
actions of NAG neurons. However, it is also possible that increased
NAG neuronal activity is not necessary for catch-up growth. The
elucidation of factors and circuits regulating catch-up growth is an
important area for future research.

We previously reported that the initiation of Karp channel subunit
expression, the switch in leptin’s effect on NAG neurons, and the
ingrowth of inhibitory inputs to NAG neurons coincided with the
development of homeostatic feedback to feeding circuits. Here we
found that this close relationship is maintained even when the matu-
ration of NAG neurons is delayed by postnatal UN. The observation that
Katp channel expression is initiated at the point when body weight and
adiposity of LL offspring attained the levels exhibited by controls at
weaning raises the possibility that a critical threshold of growth- or fat-
related signal(s) might be required to initiate the final stages of the
maturation of pre- and postsynaptic inhibitory systems for NAG
neurons.

4.5. Implications for other circuits impacted by UN

The idea that postnatal UN delays the maturation of circuits is not
unique to feeding, as it has been reported in the context of both
reproduction and cognition. Postnatal UN leads to impairments in the
development of hypothalamic circuits regulating reproduction and
delays in the onset of puberty [59,66]. Similarly, UN is associated with
deficits in cognitive function at weaning, which can be recovered
following catch-up growth [6,8]. There is evidence to support the
hypothesis that leptin acts a permissive signal for the maturation of
circuits regulating growth, puberty and cognitive development
[59,67—71]. As the maturation of hippocampal neurons in the peri-
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weaning period is associated with a switch in leptin’s effects on
excitatory synaptic transmission [72—75], it raises the possibility that
delayed cognitive development due to UN might be also be mediated
by effects on the acquisition of membrane properties of adult neurons.
If a common mechanism governs the maturation of circuits regulating
feeding, reproductive and cognitive behaviors, it could provide a means
to ensure that energetically-costly processes do not divert an organism
from growth when food supplies are scarce.

5. CONCLUSION

Elucidation of the mechanism responsible for the developmental delay
caused by undernutrition and the identification of signals that can
reinstate the normal maturation program are important areas for future
research. This knowledge could lead to the development of effective
strategies support the healthy growth and development of small for
gestational age babies.
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