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Major advances in various disciplines of basic sciences including embryology, molecular 
and cell biology, genetics, and nanotechnology, as well as stem cell biology have 
opened new horizons for regenerative therapy. The unique characteristics of stem 
cells prompt a sound understanding for their use in modern regenerative therapies. 
This review article discusses stem cells, developmental stages of the eye field, eye 
field transcriptional factors, and endogenous and exogenous sources of stem cells. 
Recent studies and challenges in the application of stem cells for retinal pigment 
epithelial degeneration models will be summarized followed by obstacles facing 
regenerative therapy.
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INTRODUCTION

Regenerative medicine intends to provide 
therapies for severe injuries or chronic diseases 
in which endogenous repair does not sufficiently 
restore the damaged tissue. These include 
congestive heart failure, osteoporosis, spinal 
cord injuries, Alzheimer’s and Parkinson‘s 
diseases, age-related macular degeneration, 
and retinitis pigmentosa.1 

Age-related macular degeneration (AMD) 
affects 10% to 20% of individuals over 65 years 
of age and is the leading cause of severe visual 
impairment in the elderly in industrialized 
nations. There are many senescent changes in 
the normal pigment epithelium including a 
decrease in retinal pigment epithelium (RPE) 
density, a clinically observed decrease in 
the pigmented appearance of RPE cells, and 
the accumulation of lipofuscin within RPE 
cells.2 In AMD, initial morphologic changes 
are associated with the formation of drusen 
and other deposits on Bruch’s membrane. 

Subsequently, RPE cell loss occurs, presumably 
via apoptosis associated with loss of cell 
attachment.3 Regenerative medicine aims to 
restore RPE cells before irreversible atrophy 
of foveal photoreceptors occurs.

Hereditary retinal degenerations are one 
of the major causes of blindness. This group 
of disorders includes retinitis pigmentosa 
(RP) which occurs at an incidence of 1 in 2000 
individuals.4 The progressive loss of vision 
in RP is due to mutations in more than 100 
identified genes which affect different cellular 
compartments in the photoreceptor cells 
(PRCs) or the underlying RPE.5 Treatment of 
these conditions and many other degenerative 
disorders is the goal of regenerative therapy.

Approaches to Regenerative 
Therapy

Approaches to regeneration which have been 
pursued include the following:

1.	 Promotion of endogenous regeneration 
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via use of growth factors. 
2.	 Exogenous delivery of living cells of 

allogenic and/or autologous origin, 
particularly stem cells because of their 
plasticity and capacity for self-renewal.

3.	 Integration of the above concepts to reach 
the goal of successful transplantation 
and development of cells.1 

stem cells

Stem cells have attracted considerable attention, 
not only as a means of understanding metazoan 
development, but also as potential therapeutic 
agents for a spectrum of currently untreatable 
diseases.6 A stem cell is an unspecialized cell 
that can both self-renew (reproduce itself) 
and differentiate into functional phenotypes. 
Stem cells may originate from embryonic, fetal, 
or adult tissue and are broadly categorized 
accordingly. Embryonic stem cells (ESCs) are 
commonly derived from the inner cell mass of 
the blastocyst, an early (4 to 5 days) stage of 
the embryo. Embryonic germ cells (EGCs) are 
isolated from the gonadal ridge of a 5 to 10 
week fetus. EGCs are derived from primordial 
germ cells, which ultimately give rise to eggs 
or sperms in the adult. Adult stem cells differ 
from ESCs and EGCs in that they are found in 
tissues after birth, and to date, have been found 
to differentiate into a narrower range of cell 
types, primarily demonstrating phenotypes of 
the originating tissue.7 Although the potential 
for self-renewal is a basic characteristic of these 
cells, but their ultimate differentiation into 
functional cells of the damaged organ, is more 
important. In other words, the main focus of 
regenerative research is on the optimal time 
for transplantation, in which the cells not only 
have the benefits of self-renewal, but also the 
best capacity to reach designated differentiation 
and bypass the untoward aspects of teratoma 
formation.

Ocular Developmental Cues 

A number of transcription factors begin to 
express early in the embryonic phase of 
development, these factors mark the region 

which is going to constitute the future eyes 
and are called the eye field transcription factors 
(EFTF). The EFTFs that are expressed early 
in eye field include Rx, Pax6, Six3, Lhx2, and 
Optx2 (Six6).8

The eye field forms late in gastrulation, it 
takes shape at the anterior end of the neural 
plate in the diencephalic region of the forebrain. 
The eye field initially extends across the 
midline as a single domain. This single field 
is subsequently split into two lateral domains 
due to the repression of EFTFs by the Sonic 
hedgehog homolog (SHH), which is released 
from the prechordal mesoderm at the midline.9 

Sonic  hedgehog  i s  an  ex t race l lu lar 
glycoprotein important in several other inductive 
events throughout the embryonic phase. The 
EFTFs are essential for eye development; 
mutations in each of these genes are associated 
with either anophthalmia or microphthalmia.10 

Rx

Prior to development of the eye field, the 
anterior nervous system becomes distinct from 
the posterior. The Otx2 transcription factor (a 
member of the orthodenticle family) is critical 
in the control of this distinction.11 Among the 
first, if not precisely the first, transcription 
factors to define the eye field is Rx/Rax, a 
paired-like homeobox transcription factor. Rx 
expression begins in areas that will give rise 
to the ventral forebrain and optic vesicles. 
Once the optic vesicles form, Rx expression is 
restricted to the ventral diencephalon and the 
optic vesicles, and is eventually restricted to 
the developing retina.12 

Homozygous null mutations of the Rx 
gene in mice result in anophthalmia, with no 
eye development after the optic vesicle stage.13 
The region also lacks other EFTFs such as Pax6 
and Six3, indicating that Rx may also play 
a role in inducing these genes.14 A similar 
anophthalmia phenotype was observed in loss 
of function experiments on Xenopus embryos 
using morpholino oligonucleotides against the 
Xenopus homolog to Rx.15

Overexpression of Rx in Xenopus embryos 
results in hyperproliferation of the neural retina 
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and RPE, as well as formation of ectopic retinal 
tissue.13 A mutation in the Rx gene in humans 
has also been identified in a patient suffering 
from anophthalmia and sclerocornea.16

Pax6

The most well studied EFTF is Pax6. It has been 
proposed that Pax6 is the master regulatory 
gene in eye development. It belongs to the 
family of paired box homeodomain genes 
and has been highly conserved across species. 
Pax6 is expressed in the anterior neural plate 
at the end of gastrulation and then becomes 
restricted to the region of the optic vesicle as 
well as the lens ectoderm. Its expression persists 
throughout optic development and ultimately 
into adult animals in ganglion, horizontal, and 
amacrine cells.17-18 

Mutations in Pax6  result in a variety 
of phenotypes, depending on gene dosage. 
Homozygous mutations causing a complete loss 
of Pax6 expression result in anophthalmia in 
mice and rats.19,17 Pax6 mutant mouse embryos 
have normal Rx expression, suggesting that 
Pax6 is downstream of Rx.14 Misexpression 
studies with Pax6 have been carried out in 
Drosophila20 and Xenopus21 and have shown to 
induce ectopic eye tissue. Overexpression of 
Pax6 in Xenopus results in multiple ectopic eyes 
along the dorsal central nervous system (CNS) 
along with ectopic expression of other EFTFs 
including Rx in these areas. This finding suggests 
that Pax6 plays a role in the induction of Rx.8 
The ectopic eyes display similar morphology 
to the normal eye having both a neural retina 
and a lens. Loss of function studies, as well as 
misexpression studies, lend support to the idea 
that Pax6 is a master regulatory gene during 
eye development.

Lhx2

Lhx2 is an EFTF that belongs to the family of 
Lim-homeodomain genes. It is expressed in 
the optic vesicles just before the completion 
of gastrulation.22-23 

Lhx2 null mutants fail to form eyes.23 
Developmentally, eye formation gets stalled at 

the optic vesicle stage and the optic cup and 
lens do not form. Analysis of Pax6 expression 
in these mice shows a normal pattern of 
Pax6 in the optic vesicle, and so Lhx2 may lie 
downstream of Pax6. Overexpression of Lhx2 
in Xenopus embryos results in large eyes as 
well as ectopic retinal tissue.24 

Six3

Six3 belongs to the Six-homeodomain family 
of genes. Six3 appears in the region of the 
presumptive eye field around the same time 
as Pax6.25-27 

Six3 inactivation in Medaka fish has been 
shown to result in anophthalmia and forebrain 
agenesis.28 Misexpression of Six3 in Medaka 
fish results in multiple eye-like structures 
that express other EFTFs29, while in zebrafish 
it results in enlargement of the optic stalk.30 

Optx2

Optx2 (Six6, Six9) also belongs to the Six-
homeodomain family of genes and is expressed 
from the optic vesicle stage.31-34 Misexpression 
studies carried out with Optx2 in Xenopus 
embryos result in large expansion of the retinal 
domain as well as hyperproliferation of cultured 
retinal progenitors transfected with XOptx2.35-36 

Wnt Signalling

Wnt signalling has a key role in early embryonic 
patterning through the regulation of cell fate 
decisions, tissue polarity, and cell movements. 
In the nervous system, Wnt signalling also 
regulates neuronal connectivity by controlling 
axonal path finding and remodelling, dendrite 
morphogenesis, and synapse formation (Fig. 1).

Although a considerable amount has been 
learned about the role of EFTFs in ocular 
development, little is known about the factors 
that control their expression. Recently, a few 
investigators have looked into the role of Wnt 
signaling in the initiation and regulation of the 
eye fields.37-38 Wnt proteins and their receptors 
which belong to both the canonical β-catenin 
pathway and the non-canonical pathways are 
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expressed at the site of the prospective eye 
field. Wnt-1 or Wnt-8b, which are known to 
activate the canonical Wnt-β-catenin, can cause 
suppression of Rx and Six3 expression when 
overexpressed in Xenopus embryos. On the 

other hand, Wnt-11, which works through the 
non-canonical pathway, results in larger eyes 
in Xenopus when overexpressed.38

Misexpression of the Frizzled-3 (Fz-3) 
Wnt receptor in Xenopus results in formation 
of multiple ectopic eyes. Fz-3 is believed to 
preferentially activate the non-canonical Wnt 
pathway.37 Wnt-4, which probably acts through 
the Fz-3 receptor, is required for Xenopus eye 
formation39 by activating EAF2 which in turn 
regulates Rx expression in Xenopus. Loss of 
EAF2 function results in loss of the eyes, while 
loss of Wnt-4 function can be rescued by EAF2 
misexpression in frogs. Cell–cell signaling is also 
critical for movement of eye field precursors 
to the correct locations prior to activation of 
EFTFs. In Xenopus, all cells destined to form 
the eye field accumulate together through 
ephrin-B1 signaling. This can be inhibited by 
fibroblast growth factors (FGFs); activated FGF 
receptors modulate the activity of ephrin-B by 
phosphorylating their intracellular domain.40 
Thus,  activating FGF signaling prior to 
gastrulation prevents cell movement and eye 
field formation, whereas inhibiting FGF results 
in expansion of the primordial eye size.

W n t - 3 a ,  i n  c o m b i n a t i o n  w i t h  b o n e 
morphogenetic proteins and Sonic hedgehog, 
induces differentiation of ESCs into interneurons. 
These studies raise the exciting possibility that 
manipulation of Wnt signaling could provide the 
means for stem cell expansion or differentiation. 
Low molecular weight inhibitors of glycogen 
synthase kinase-3β mimic these effects and 
similarly promote the proliferation of Muller 
glia-derived progenitors.41 The degree of 
degeneration affects the effectiveness of this 
approach because retinas already exhibiting 
advanced retinal degeneration do not regenerate 
with such treatment.

Endogenous Regeneration

Neuronal progenitors with retinal potential as 
adult stem cell types reside in:

1.	 Ciliary body epithelium.42

2.	 Iris pigment epithelium.43 
3.	 The peripheral margin of the postnatal 

retina.44

Figure 1. WNT signaling pathways. Segment polarity 
protein, disheveled homolog Dvl-1, is a protein that 
is encoded by the DVL1 gene in humans. DVL1, the 
human homolog of the Drosophila disheveled gene (Dsh) 
encodes a cytoplasmic phosphoprotein that regulates 
cell proliferation, acting as a transducer molecule for 
developmental processes, including segmentation and 
neuroblast specification. Rac is a subfamily of the Rho 
family of GTPases, small (~21 kDa) signaling G proteins. 
Protein kinase C (PKC) is an enzyme that modifies 
other proteins by chemically adding phosphate groups 
(phosphorylation). Phosphorylation usually results 
in a functional change of the target protein (substrate) 
by changing enzyme activity, cellular location, or 
association with other proteins. JNK is a family of stress-
activated protein kinase enzymes that is under intensive 
study. JNK family members are involved in diverse 
phenomena, but the focus of research until now has been 
the involvement of JNK in apoptosis. A great number of 
JNK substrates play major roles in cell death.
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For many decades, it was believed that 
neurons in the adult mammalian central nervous 
system could not regenerate after injury, as 
postulated by Ramon y Cajal45 in 1913.

The question of whether adult derivatives 
of mammalian retinal neuroepithelium harbor 
cells with stem cell properties was recently 
addressed. Two laboratories showed that in the 
adult mammalian eye, the ciliary epithelium 
but not the neural retina, contains neural 
progenitors.46,47 The hypothesis that neural 
stem cell progenitors are present in the adult 
ciliary epithelium was based on a well-known 
observation that an analogous region in adult 
fish and frogs, called the ciliary marginal 
zone (CMZ), harbors neural progenitors.48-50 
Neural progenitors have also been identified 
in the CMZ of postnatal chickens.51 In addition 
to progenitors in the CMZ, there is evidence 
that two separate progenitor populations are 
present in the neural retina of adult fish and 
that these progenitors participate in normal 
growth and/or regeneration of the retina in 
response to injury.52 In vivo labeling analysis 
with bromodeoxyuridine (BrdU) shows that 
the pigmented portion of the ciliary body in 
adult rats contains cells with proliferative 
potential.47 Indeed, when cultured in the 
presence of epidermal growth factor (EGF) and/
or FGF2, these cells proliferate and give rise to 
neurospheres containing nestin-positive cells, 
resembling those generated by embryonic retinal 
progenitors. These cells are multipotent and 
can differentiate along neuronal and glial lines. 
Unlike embryonic retinal progenitors, these cells 
can self-renew, because they clonally generate 
neurospheres. Therefore, they fulfill the basic 
criteria of stem cells. These cells express the 
retinal progenitor markers Chx10, Rx, and Pax6, 
which suggests that they possess retina-specific 
properties and can differentiate into retinal cells 
when exposed to a conducive environment.47 
The ability of these cells to self-renew, their 
plasticity, and their potential to express retinal 
phenotypes suggest the possibility that they 
represent a residual population of retinal 
stem cells. However, because these cells are 
derived from pigmented ciliary epithelium, 
there is a possibility that they acquire stem 

cell properties in vitro by reprogramming or 
de-differentiation. Similar mechanisms have 
been invoked to explain the conversion of 
oligodendrocytic progenitors into neural stem 
cells.53 Investigation of these possibilities will be 
helped by prospective identification of neural 
stem cells, instead of characterizing them in 
response to mitogens.

Muller glial cells have also been demonstrated 
to possess retinal progenitor properties in the 
adult retina.41 The possibility that Muller glia 
might be an endogenous regenerative source 
was first raised by experiments in goldfish, in 
which laser damage elicited proliferation of 
Muller glia and concomitant replacement of 
damaged cone photoreceptors.54 Muller glia in 
avian retinae have also been reported to possess 
regenerative capacity.55 Moreover, several 
lines of evidence support a close relationship 
between Muller glia and retinal progenitors.56

Studies indicate that Muller glia proliferate 
and de-differentiate into retinal progenitors in 
response to retinal damage and then migrate 
and differentiate into retinal neurons. After 
proliferation in response to retinal damage, 
BrdU-labeled cells migrate into the retinal 
neuron-specific layer and differentiate into cells 
positive for retinal neuron-specific markers 
such as rhodopsin (rod photoreceptors) and 
PKCa (rod bipolar cells). The Muller glia-
derived progenitors appear to differentiate into 
the type of cell that was damaged, evidenced 
by the fact that Muller glia mainly generate 
photoreceptors in the photoreceptor–damaged 
retina. Exogenous application of retinoic acid 
and Sonic hedgehog induces photoreceptor 
differentiation from Muller glia-derived 
progenitors, similar to that observed with 
retinal progenitors during eye development.57 

In retinal regeneration, the differentiation 
of Muller glia-derived progenitors can be 
regulated by both intrinsic and extrinsic factors, 
similar to what has been observed with retinal 
progenitors during eye development.58

Growth factors and neurotrophins such as 
FGF259, nerve growth factor (NGF)60, ciliary 
neurotrophic factor (CNTF)61 and brain derived 
neurotrophic factor (BDNF)62 can significantly 
slow the process of cell death in animal models 
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of retinal degeneration. Because growth factors 
and neurotrophins usually have short half-lives, 
sustained delivery of these factors is needed 
to promote long-term rescue from cell death 
in the retina.63

Rod photoreceptor development is promoted 
by bFGF (FGF2), Sonic hedgehog, taurine, and 
laminin beta 2.64 CNTF and leukemia inhibitory 
factor (LIF) appear to inhibit rod differentiation 
by driving cells destined to be rods toward a 
bipolar neuron phenotype.65 In vitro studies 
in chick retinae suggest that CNTF may play 
a transient role in photoreceptor development 
by increasing the number of opsin-expressing 
cells.66 Glial-cell-line-derived neurotrophic 
factor (GDNF) may also play a role in regulating 
photoreceptor development.67 

A phase 1 trial with GDNF and CNTF in 
patients with retinitis pigmentosa, indicated 
that CNTF is safe for the human retina, even 
with severely compromised photoreceptors, 
and may promote visual improvement.68

Exogenous delivery of stem cells 

Stem cells are of interest because of their 
plasticity and capacity to self-renew, as well as 
to give rise to specialized cell types. Stem cells 
remain uncommitted and self-renewable until 
they receive a signal to develop into distinct 
cell types.69 Adult stem cells, which may have 
actually derived from fetal, neonatal, or truly 
adult tissue, show varying degrees of restriction 
to particular lineages.70 

ESCs and EGCs appear very similar 
and are likely to have comparable medical 
applications. In fact, a recent report indicates 
that ESCs, which are derived from the inner cell 
mass of early embryos, most closely resemble 
EGCs.71 Therefore, we will use the term ECS to 
collectively refer to both cell types throughout 
the remainder of the review.

ESCs apparently can self-renew in cultures 
without limit,  although the mechanisms 
underlying this capacity are not yet fully 
understood.72,73 Established ESC lines may 
display some genomic instability. Furthermore, 
ESCs are broadly pluripotent.74‑77 This great 
degree of plasticity represents both a strong 

advantage and a significant potential limitation 
to the use of ESCs in regenerative medicine. The 
limitation is that a major remaining challenge 
would be to direct this efficient production to 
pure populations of specifically desired cell 
types.78

In the following section, we will review 
recent  s tudies  that  concern  chal lenges 
s u r r o u n d i n g  e x o g e n o u s  d e l i v e r y  a n d 
transplantation of stem cells.

Lund and colleagues80 conducted a study 
to show if embryonic stem cell derived RPE 
cells, in vivo can rescue vision in dystrophic 
Royal College of Surgeons (RCS) rats. Fifteen 
human embryonic stem cell (hESC) lines were 
derived from human frozen blastocysts or 
cleaved embryos that were donated by couples 
who had completed their fertility treatment. 
Human ESCs were cultured and allowed to 
spontaneously differentiate; this resulted in 
appearance of RPE clusters over the course of 6 
to 8 weeks, from which hESC-derived RPE cells 
were isolated and subcultured. Dystrophic RCS 
rats which had undergone immune suppression, 
received injections of hESC-derived RPE cells 
into the subretinal space, between the RPE and 
photoreceptor layers on postnatal day 21, at an 
age when photoreceptor degeneration had yet to 
develop. Electroretinography (ERG) responses 
were tested on postnatal days 60 and 90. By 60 

Cell Type                                     Developmental Capacity

Totipotent stem cell       Can form all lineages of the 
organism (e.g., placenta)

Pluripotent stem cell          Can form all lineages of the body 
(e.g., embryonic stem cells)

Multipotent stem cell            Can form multiple cell types of one 
lineage (e.g., retinal progenitor 
cells)

Reprogrammed cell       Nuclear transfer, cell fusion, or 
genetic manipulation to create a 
pluripotent cell

Immature post-mitotic 
rod precursor    

Can form rod photoreceptors

Fetal retinal pigment 
epithelium sheets    

Includes rods, cones, and other 
differentiated retinal neurons as 
well as Muller cells

Table 1. Potential sources of cells for photoreceptor and 
RPE replacement

From “Zarbin MA. Retinal pigment epithelium-retina 
transplantation for retinal degenerative disease. Am J 
Ophthalmol 2008:146:151-153.”79
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days, the hESC-derived RPE grafted animals 
achieved significantly better ERG responses than 
untreated and sham-injected animals. For the 
optomotor test, which provided a measure of 
spatial acuity, in sham treated rats, a threshold 
response of 0.29±0.03 cycle/degrees (c/d) 
was recorded on day 100; untreated animals 
revealed a figure of 0.21±0.03 c/d. By contrast, 
the cell-grafted rats demonstrated levels of 
0.42±0.03 c/d, significantly better than sham 
injected rats. Anatomical examination showed 
photoreceptor rescue, 5 to 7 cells deep in the 
outer nuclear layer (ONL). The ONL was 10 
to 12 cells in nondystrophic rats, while in 
dystrophic rats this layer was reduced to one 
cell deep on day 100. Improvement in visual 
performance was 100% better than untreated 
controls (spatial acuity was approximately 70% 
that of normal nondystrophic rats) without 
evidence of untoward pathology.

In another study81,  the same authors 
attempted to determine whether transplantation 
of the human retinal pigment epithelial cell line, 
ARPE-19, to the subretinal space of dystrophic 
RCS rats could still be effective in later stages 
of RPE degeneration, as late as postnatal day 
60, when degeneration of RPEs had already 
advanced. The late grafts preserved both 
spatial frequency and threshold responses 
compared to the control group and delayed 
photoreceptor degeneration. There were two 
to three layers of rescued photoreceptors even 
on postnatal day 150 (P150), compared with a 
single scattered layer in sham and untreated 
control retinas. In conclusion, the study showed 
RPE cell line transplants delivered later in the 
course of degeneration can preserve not only 
the photoreceptors and inner retinal lamination, 
but also visual function, in dystrophic RCS 
rats. However, early intervention may achieve 
better rescue. 

The same authors82 investigated the effect of 
human cortical neural progenitor cells (hNPC), 
on sustaining long-term vision for at least 70 
days after injection into the subretinal space 
in a rat model of photoreceptor degeneration. 
For donor cells to be appropriate for a clinical 
setting, they should be human derived, effective 
in reversing or slowing the degenerative events, 

readily renewable, not senescent, and effective 
over a long period of time. The same authors 
had demonstrated in a previous study that 
hNPCs rescued vision to near normal levels 
when injected into the subretinal space of RCS 
rats. Somewhat unexpectedly, transplanted 
hNPCs formed an RPE-like layer between 
photoreceptors and the host RPE layer and 
migrated into the retina. Given the potential for 
such cells to provide treatment for degenerative 
diseases throughout the central nervous system, 
including the retina, the authors felt it important 
to evaluate the long-term behavior of the 
transplanted cells and host response. Pigmented 
dystrophic RCS rats (n=15) received unilateral 
subretinal injections of hNPC on postnatal day 
21 (P21); control rats (n=10) received medium 
alone and were untreated. All animals were 
maintained on oral cyclosporine A. Function was 
monitored serially by measuring acuity (using 
an optomotor test) and luminance thresholds 
(recording from the superior colliculus) on 
P90, P150, and P280. Eyes were processed 
for histological assessment after functional 
tests. Acuity and luminance thresholds were 
significantly better in hNPC-treated animals than 
in controls (P<0.001) at all studied time points. 
Acuity was greater than 90%, 82%, and 37% of 
normal on P90, P150, and P270, respectively; 
whereas luminance thresholds in the area of 
best rescue remained similar throughout the 
study. Histological studies revealed substantial 
photoreceptor rescue, even up to P280, despite 
progressive deterioration in rod and cone 
morphology. Donor cells were still present on 
P280, and no sign of cell overgrowth was seen.

Limited clinical trials of retinal implantation 
have been underway since 1998. Between 
January 1, 1998 and January 1, 2001, a phase 
1 clinical trial83 was performed to demonstrate 
the safety of implanting freshly harvested layers 
of fetal retina together with its associated RPE. 
Results confirmed the safety of the procedure. 
Donor tissues were derived from human fetal 
eyes isolated from dead macerated fetuses after 
elective abortions at 10 to 15 weeks gestational 
age. Ten patients including six RP patients and 
four AMD patients, received retinal implants 
in one eye and were followed in a phase 2 
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trial84 conducted in a clinical practice setting. 
Visual acuity (VA) using the Early Treatment 
Diabetic Retinopathy Study chart (ETDRS) was 
the primary outcome measure. All implant 
recipients and 9 of 10 tissue donors were DNA 
typed. Seven patients (three RP, four AMD) 
showed improved ETDRS visual acuity scores. 
Three of these patients (one RP, two AMD) 
showed improvement in both eyes to the same 
extent. Vision in one RP patient remained the 
same, while vision in two RP patients decreased. 
One RP patient maintained an improvement in 
vision from 20/800 to 20/200 for more than five 
years; at the six year examination, vision was still 
maintained at 20/320 while the no-surgery eye 
had deteriorated to hand motions vision. Seven 
(70%) of 10 patients showed improved vision. 
This outcome provides clinical evidence of the 
safety and beneficial effect of retinal implants 
and corroborates results in animal models of 
retinal degeneration. However, at this time, it 
may not be advisable, based on the results of this 
study, to place fetal RPE-retina grafts under the 
fovea in patients with visual acuity of 20/20 to 
20/100.85 If visual improvement was the result 
of the transplant, it seems likely to have been 
largely via a so-called rescue mechanism. In 
principle, RPE-retina transplants can produce 
more than one neurotrophic substance, which 
may be an advantage of this approach.

Challenges Facing Replacement 
Therapy

Significant challenges of replacement therapy 
include the following:

1.	 Efficient tissue delivery.
2.	 Immune surveillance.
3.	 Maintenance of an appropriate state of 

differentiation by transplanted tissue. 
4.	 Integration of the transplant with the 

host and reestablishment of functional 
synaptic circuitry.

As mentioned before, there are a handful 
of sources for immortalized cell lines for 
efficient tissue delivery. In the case of RPE cell 
replacement therapy, these include ARPE-1986, 
sheets of adult RPE87, fetal RPE88, and RPE 
derived from human embryonic stem cells80. 

Although ESCs are potential donor cells for 
cell transplantation, the clinical application of 
these cells entails certain drawbacks including 
immune rejection. To overcome this problem, 
induced pluripotent stem cells (iPSCs) are an 
alternative source of donor cells.89 These ESC-
like cells are generated by reprogramming 
somatic cells through retroviral activation of 
ESC-specific factors such as the four factors 
Oct-3/4, Sox2, Klf4, and c-Myc. This approach 
provides the possibility of treating patients with 
their own iPSC-derived retinal cells, which may 
resolve the problem of immune rejection.90-92

Hirami et al89 investigated whether iPSCs 
can differentiate into retinal progenitors, RPE, 
and photoreceptors with the same procedure 
used for ESC differentiation. All experiments 
in this study were conducted using mouse 
Nanog-iPSC line iPS-MEF-Ng-20D-17 induced 
from mouse embryonic fibroblasts by retroviral 
transfection of Oct-3/4, Sox2, Klf4, and c-Myc, 
and human iPSC lines 201B6 and 201B7 induced 
from human dermal fibroblasts by transfection 
of OCT-3/4, SOX2, and KLF4. Treating iPSCs 
with Wnt and Nodal antagonists in a suspension 
culture induced the expression of retinal 
progenitor cell markers and generated RPE 
cells. Subsequently, treatment with retinoic 
acid and taurine, generated cells positive for 
photoreceptor markers in all but one human cell 
lines. The authors concluded that the efficiency 
of differentiation into RPE and photoreceptors 
from human iPSC cultures of cell lines 201B7 
and 253G1 was not different from that of 
human ESC cultures. Therefore, in addition 
to their similarity in pluripotency, retinal 
differentiation methods using specific factors 
for ESCs are also applicable to iPSCs, although 
further research will be required to determine 
the function of induced retinal cells. As for 
immune rejection, transplantation of patient-
specific cells will have several advantages over 
comparable differentiated ESCs and allogenic 
RPE transplantation, which may induce immune 
rejection of the graft tissue in the absence of 
systemic immune suppression.93 Moreover, 
macular translocation surgery or autologous 
RPE and choroid patch translocation incur 
the risk of serious surgical complications.94 
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Therefore, transplantation of RPE cells derived 
from patient-specific iPSCs may entail prominent 
advantages,89 however, the risk of tumor 
formation from contaminating undifferentiated 
cells has not yet been resolved, so maintenance 
of an appropriate state of differentiation by the 
transplanted tissue remains a main drawback in 
the field of regenerative therapy.95 One study 
reported that at least 0.6% of mouse iPSCs 
remained undifferentiated in cultures even 15 
days after differentiation89. Thus, to prevent 
tumor formation, establishment of purification 
methods will be necessary.

To show the protective effects of human 
iPSC-derived RPE cell transplantation in vivo, 
Carr et al96 designed a comprehensive study 
with both in vitro and in vivo aspects. They 
examined the potential of human iPSCs to 
differentiate into fully characterized RPE 
cells (iPSC-RPE). Furthermore they analyzed 
their functionality in vitro and in vivo after 
transplantation of iPSC-RPE cells into dystrophic 
RCS rat. The iPSCs derived from IMR-90 
human fetal lung fibroblast cell line97 were 
cultured in stem cell medium lacking bFGF to 
encourage spontaneous differentiation of cells. 
The proposed method produced an almost 
homogeneous population of iPSC-RPE cells 
at passage 2 in a 25 cm2 tissue culture flask 
with no evidence of cell multi-layering. The 
appearance of dome-shaped blisters suggested 
that fluid transport from apical to basal cell 
surfaces might be occurring. The appearance of 
RPE cell morphology was associated with the 
expression of a panel of classic RPE genes and 
proteins required for retinoid recycling (RPE65, 
LRAT, RLBP1), phagocytosis (FAK and MERTK), 
and melanogenesis (tyrosinase, PMEL17, and 
MITF). Cells also expressed the anti-neovascular 
agent/neurotrophic factors pigment epithelium-
derived factor (PEDF), and Krt8, an epithelial 
keratin associated with RPE cell proliferation.98 
The increase of RPE cell markers in iPSC-RPE 
was accompanied by down-regulation of iPSC 
reprogramming molecule Oct-4, and SOX2 and 
NANOG expression, indicative of differentiation 
away from the iPSC phenotype. Pax6, Otx2, 
and MITF, transcription factors involved in 
RPE cell development, were localized in the 

nucleus, whilst Rlbp1, Pmel17 and bestrophin-1 
were expressed cytoplasmically. Importantly, 
differentiated cells were negative for RPE cell 
de-differentiation markers Krt8 and Ki-67, 
markers of the active phase of the cell cycle, 
indicating that cells were no longer proliferative. 
They used phagocytosis assays to assess the 
functional potential of cells. The iPSC-RPE cells 
were able to phagocytose fluorescent labeled 
porcine photoreceptor outer segments (POS) 
in co-culture. The apical surfaces of the cells 
envelop the POS and internalized coated pits 
are seen after 3 hours co-culture, with end-stage 
lipid deposits observed after 12 hours. For in 
vivo assessment, after 20 hours of transplantation 
into the subretinal space of the eyes of RCS 
rats, they observed a layer of pigmented cells 
within the subretinal space, which were Ki-67 
negative. The origin of the cells was confirmed 
by staining with human-specific markers (HSM). 
At 8 days, iPSC-RPE was no longer present 
as a layer, but formed cell boluses. However, 
transplanted cells maintained expression of 
RPE markers such as Rlbp1 and Otx2, with 
only occasional cells positive for Ki-67. The in 
vivo expression of RPE65 was not detectable by 
immunocytochemistry. The pattern of staining 
displayed by transplanted iPSC-RPE cells in 
vivo was similar to that reported recently for 
hESC-RPE grafted into dystrophic RCS rat 
retinae.98 Importantly, akin to hESC-RPE in vivo, 
cells at the outside edge of the iPSC-RPE cell 
bolus could phagocytose photoreceptor outer 
segments from the RCS rat, as indicated by the 
presence of rhodopsin-positive photoreceptor 
material within the cellular membrane of iPSC-
RPE cells labeled with HSM. To assess visual 
function, they used the head-tracking response 
of RCS dystrophic rats 13 weeks after receiving 
subretinal iPSC-RPE transplantation in one eye 
only. Preservation of higher spatial frequency 
(0.5 c/d) monocular optokinetic head-tracking 
response was associated with the iPSC-RPE 
transplanted eye when compared with sham 
injected eyes and non-transplanted eyes. Even 
though the ONL was preserved 13 weeks post-
transplantation, there was little evidence of 
surviving iPSC-RPE cells within the subretinal 
space by this time. Occasional HSM-positive 
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material could be detected in the subretinal 
space, but the lack of a defined membrane and 
the absence of DAPI staining suggest that these 
cells were not viable. However, the investigators 
did find host cells positive for the monocyte/
macrophage marker CD68 within the subretinal 
graft site, which did not stain for HSM. At 
8 days, these cells had a clear appearance, 
and rhodopsin-positive material was found 
within the CD68 expressing cells. The absence 
of iPSC-RPE cells in the subretinal space at 
the time of functional assessment (13 weeks) 
indicates that the significant benefits observed 
could not be wholly attributed to donor cells. 
Although all animals were maintained on oral 
cyclosporin throughout the experiment, this 
was not sufficient to sustain iPSC-RPE cell 
survival. These findings are in agreement with 
previous studies that show that xenografts can 
be compromised88,99, even after triple immune 
suppression.100 Evidence suggests that loss of 
transplanted cells is associated with infiltration 
of the subretinal space by macrophages/
microglia. Large pigmented CD68-positive cells 
observed in the subretinal space at 13 weeks 
are likely to be macrophages/microglia filled 
with melanin from the transplanted human 
iPSC-RPE cells.101,102 The presence of rhodopsin 
within the macrophages/microglia could explain 
some of the behavioral and functional benefits 
observed, since clearance of outer segment debris 
by these cells in the subretinal space could 
also contribute to photoreceptor cell survival. 
This conclusion has previously been implied 
in a study which suggests that macrophage 
infiltration in response to the trauma of retinal 
detachment after saline injection, contributes to 
extend the longevity of photoreceptor cells in 
RCS rats.103 Importantly, the authors showed 
that the presence of pigmented cells within the 
subretinal space does not necessarily reflect the 
survival of transplanted cells. They suggested 
that correct identification of the origin of these 
cells (using human specific markers, which 
define cell membranes) is essential to distinguish 
viable donor cells from host inflammatory cells 
which have engulfed transplanted cells, and 
identification using pigmentation alone is not 
sufficient.

While this particular line of iPSC-RPE cells 
could not be used as direct therapy due to viral 
insertions of pluripotency genes, recent advances 
in iPSC reprogramming technology, including 
the use of small molecules104-106, piggyBac 
transposition107,108, non-integrating episomal 
vectors109, and manipulation of endogenous 
transcription factors110, should eliminate the 
risks associated with integration of stem cell 
genes into the genome.

At last, the most challenging and yet 
unresolved part,  is how to integrate the 
transplanted tissue within the host in the most 
effective manner and reestablish the functional 
synaptic circuitry within the tissue.

CONCLUSION

This  review presents  data  on what  has 
been achieved in the field of regenerative 
therapy in retinal diseases, a summary of the 
developmental literature, ongoing research on 
development of therapeutically useful ocular 
cell types (RPE cells and photoreceptors) and 
obstacles in the use of stem cells.

One of the most prominent achievements 
is the successful differentiation of iPSCs into 
RPE cells. The major benefit of using iPSCs to 
treat AMD is that a patient-specific therapy 
may help eliminate problems associated with 
immune rejection. The proof of concept for 
the therapeutic use of a patient’s own iPSC-
derived RPE lies in current clinical treatments 
for AMD. Although, iPSC-RPE may carry the 
same genetic defect responsible for AMD in the 
patient, the fact that these cells have not been 
diseased by age, like macular RPE, suggests that 
they could still be used as a viable therapeutic 
modality. iPSC therapy might also be useful in 
patients with genetic diseases, such as Leber’s 
congenital amaurosis where transplantation 
could be combined with gene therapy to correct 
the inherent genetic defects.96 

A major issue facing stem cell research, and 
retinal transplantation of stem cells in particular, 
is the question of functional integration of 
grafted cells. This issue incorporates the 
question of phenotypic maturation of stem 
cells, particularly into functional neurons and 
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photoreceptors, as well as the question of how 
surviving host circuits react to the presence of 
newly integrated donor cells. For instance, the 
possibility has frequently been expressed that 
such cells may integrate incorrectly. On the 
other hand, donor cells might successfully create 
new functional circuits, improve host signaling, 
or induce rescue effects. These possibilities 
should all be investigated in multiple settings 
since results tend to vary considerably between 
models.6

While much remains to be demonstrated, 
particularly in terms of potential visual benefits, 
retinal stem cell transplantation provides 
an exciting new strategy for treatment of 
degenerative retinal disease and offers hope 
that effective treatment may be within reach.
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