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Simple Summary: The recent advancement in high-throughput sequencing has become indispensable
for immune-genomics and profiling the T- and B-cell receptor repertoires. Immune repertoire
sequencing (IR-seq) and whole transcriptome sequencing (WTS) can be implemented to investigate
and quantitatively characterize the complex pattern of the CDR3 region. We conducted T-cell
diversity analysis result comparisons of these sequencing methods and suggest an intuitive approach
to discriminate reliable TCR sequences and clonotype patterns from capturing errors. Although
bulk-RNA sequencing is commonly used for cancer analysis, we confirmed capturing highly enriched
TCR transcripts with IR-seq is more reliable for accurate immune repertoire discovery, and singleton
read filtering criteria should be applied to capture true clonotypes from error-prone sequencing data.
The use of such well-established data and analytical methodologies can broaden understanding of
antigen specificity in immunity and enabling efficient therapeutic antibody finding.

Abstract: Analysis of the T-cell receptor (TCR) repertoire is essential to characterize the extensive
collections of T-cell populations with recognizing antigens in cancer research, and whole transcriptome
sequencing (WTS) and immune repertoire sequencing (IR-seq) are commonly used for this measure.
To date, no standard read filtering method for IR measurement has been presented. We assessed
the diversity of the TCR repertoire results from the paired WTS and IR-seq data of 31 multiple
myeloma (MM) patients. To invent an adequate read filtering strategy for IR analysis, we conducted
comparisons with WTS results. First, our analyses for determining an optimal threshold for selecting
clonotypes showed that the clonotypes supported by a single read largely affected the shared
clonotypes and manifested distinct patterns of mapping qualities, unlike clonotypes with multiple
reads. Second, although IR-seq could reflect a wider TCR region with a higher capture rate than WTS,
an adequate comparison with the removal of unwanted bias from potential sequencing errors was
possible only after applying our read filtering strategy. As a result, we suggest that TCR repertoire
analysis be carried out through IR-seq to produce reliable and accurate results, along with the removal
of single-read clonotypes, to conduct immune research in cancer using high-throughput sequencing.

Keywords: T-cell receptor; immune repertoire; immune repertoire sequencing; whole transcriptome
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1. Introduction

The most important function of the immune system is to recognize antigens, defend by increasing
the number of immune cells that make antibodies and kill external pathogens such as bacteria and
viruses [1]. In particular, the function of the adaptive immune system is important because disease
occurs when our immune system halts the recognition of external pathogens or reacts excessively [2,3].
T-cell receptors (TCRs), which are located on the surface of T-cells and selectively recognize major
histocompatibility complexes on the surface of antigen-presenting cells [4,5], accelerate T-cell responses
and rapidly provoke immune responses by secreting cytokines [6]. Diversity and flexibility are
essential for these TCRs to respond to extremely diverse antigens, and these are determined by
random rearrangements of VDJ genes during the development of T-cells to produce a variety of
complementarity-determining region (CDR) sequences for each clone [7].

To understand the complex TCR diversity, researchers have previously used Southern blot
hybridization or PCR analysis [8,9], but with the rapid development of next-generation sequencing
(NGS), high-throughput analysis of the immune system has been realized by implementing the analyses
of T- and B-cell-specific repertoires at the sequence level, represented as clonotypes [10,11]. Here,
two major NGS-based methods have been used to identify CDR sequences that determine unique
clonotypes [12,13]. One is immune repertoire sequencing (IR-seq), a deep sequencing method in
which gDNA or RNA is amplified to perform extensive TCR profiling to elucidate the entire immune
system [11,14]. IR-seq enables the quantification of each CDR3 sequence in unprecedented depth and
accuracy within any sample of interest [12,15]. The other is RNA-bulk sequencing, which is used for
transcriptional landscape analysis of human genomes [16]. RNA-seq has the advantage of being able
to perform a variety of analyses, including immune cell studies, without wasting additional tissue
at a much lower price than IR-seq [17,18]. Owing to the cost performance, many researchers have
conducted RNA-seq to perform both transcriptomic and IR analyses at no extra cost.

There have been a number of studies that compared and grasped a similar degree of TCR
clones extracted from RNA-seq and IR-seq [13,19,20]. However, those studies were not conducted to
determine whether it is informative enough to selectively extract the actual CDR3 sequence among
all transcriptome sequences to identify the potential repertoires. According to previous literature,
RNA-seq-based TCR profiling is limited in detecting a wide range of TCR regions since it infers the
results by extracting only CDR3 regions belonging to a portion of the entire transcript [20]. Moreover,
due to their low abundance, capturing the mostly highly enriched TCR transcripts could be a more
reliable but incomplete estimation of TCR repertoires from other random reads [13,20]. However, no
appropriate quality control approach for IR-seq has been proposed, which limits the credibility of the
immune repertoire estimated from extensively complex IR-seq reads.

In this study, we conducted a systematic comparison of T-cell diversity analysis results to
determine how accurately paired RNA-seq and IR-seq describe the immune repertoire and specify the
absence of a systematic impediment associated with capturing the complex pattern of the CDR3 region.
For the analysis, specimens from multiple myeloma (MM) patients with abnormally differentiated or
proliferated plasma cells, leukocytes responsible for the immune system in bone marrow (BM), were
used. Following classification with the CD138 marker, paired RNA-seq and IR-seq were performed on
each sample to examine the characteristics of the immune system of MM patients at the patient level.
In particular, we present an intuitive approach for reducing putative errors associated with IR-seq to
increase the accuracy of the estimated immune repertoire. This led us to assess T-cell clonality and the
results of both sequencing methods and quality controls.

2. Results

2.1. Study Population and Basic Characteristics of TCR Sequences

From the immune milieu portion of BM samples from 31 patients with newly diagnosed MM,
we performed both IR-seq using Immunoverse [21] from ArcherDX (Boulder, CO, USA) and RNA-seq
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on each sample (Figure 1A). Here, only immune cells from the BM of the patients were isolated and
analyzed through classification with the myeloma marker CD138. The clinical characteristics of the
MM patients are listed in Table 1. Of 31 newly diagnosed MM patients, 17 were males and 14 were
females. The mean age of the total cohort was 65.9 years (range 47–80), and the average CD138 negative
rate was 0.75 after magnetic-activated cell sorting. Eight (25.8%) patients were classified as R-ISS I
based on the revised international staging system for myeloma; 16 (51.6%) as R-ISS II; and 7 (22.6%) as
R-ISS III.

The sequencing characteristics (e.g., total mapped reads to human reference genome with bulk
RNA-seq using STAR alignment, TCR region mapped reads and number of unique TCR clonotypes)
shown in Table 2 suggest that the coverage depth of each CDR3 was captured at high rates with IR-seq,
which agrees with our expectation, and more diversified amino acid (AA) clonotypes were detected
than those detected with RNA-seq. While the numbers of TCR region mapped reads from IR-seq
ranged from 4,050,594 to 10,274,849, those from RNA-seq ranged from only 85 to 1273 of 222,816 to
230,246 total reads. Similarly, the number of unique clonotypes from IR-seq was 9,932,683, which was
exceedingly higher than that from RNA-seq (11,616 unique clonotypes). Few clonotypes derived from
the same AA sequences spanned multiple different nucleotide TCR sequences within a donor, with the
majority of clonotypes belonging to a single time point in both sequencing types but more frequently in
IR-seq. Based on the previous findings that IR-seq provides an accurate measure of TCR diversity [22]
and the results from our data, we assumed the TCR sequencing results as a set of true signals and
compared them with the repertoire of RNA-seq results in each sample.

Table 1. Clinical characteristics of patients with multiple myeloma (MM).

Clinical Characteristics

N = 31 N (%)

Sample N 31
Gender

Male 17 (54.8)
Female 14 (45.2)

Median Age (Years)
≤65 13 (41.9)
>65 18 (58.1)

Average CD138 (-) rate (range) 0.75 (0.1–22.4)
Heavy Chain Isotype

lgG 21 (67.7)
lgA 6 (19.4)
lgM NA
lgD NA
LCD 1 (3.2)

Light Chain Isotype
Kappa 17 (54.8)

Lambda 11 (35.5)
R-ISS

I 8 (25.8)
II 16 (51.6)
III 7 (22.6)

Fish Results
p53 deletion 4 (12.9)
p16 deletion 3 (9.7)

lgH rearrangement 10 (32.3)
1q trisomy 9 (29)

RB1 deletion 9 (29)
t (14; 16) 1 (3.2)

t (4; 14) 4 (12.9)
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Figure 1. T-cell repertoire distributions in MM patients. (A) Study scheme of the procedure applied for TCR repertoire analysis. Bone marrow from MM patients 
was subjected to MACS with the CD138 marker, and RNAs from CD138- cells were extracted for whole-transcriptome and TCR repertoire sequencing. (B) 
Distribution of total read counts and (C) the number of total clonotypes detected from each sample from both bulk RNA-seq and IR-seq are shown. (D) The 
percentage of shared TCR amino acid clonotypes. The total TCR repertoire from IR-seq is represented in blue bars, while the percentage of shared clonotypes, 
which were also detected from bulk RNA-seq, is represented in orange bars.  

Table 2. Diversity of TCR repertoires from RNA-seq (left) and IR-seq (right). 

mm_# 
RNA Sequencing Results Immunoverse Results 

STAR Mapped 
Reads 

Total Read 
Counts 

Total Unique 
Clonotypes 

Singleton 
Reads 

Total Read 
Counts 

Total Unique 
Clonotypes 

Singleton 
Reads 

MM_1 54,357,923 820 431 299 4,050,594 90,068 63,126 
MM_10 48,374,912 826 504 403 7,293,770 250,572 199,844 

Figure 1. T-cell repertoire distributions in MM patients. (A) Study scheme of the procedure applied for TCR repertoire analysis. Bone marrow from MM patients was
subjected to MACS with the CD138 marker, and RNAs from CD138− cells were extracted for whole-transcriptome and TCR repertoire sequencing. (B) Distribution of
total read counts and (C) the number of total clonotypes detected from each sample from both bulk RNA-seq and IR-seq are shown. (D) The percentage of shared TCR
amino acid clonotypes. The total TCR repertoire from IR-seq is represented in blue bars, while the percentage of shared clonotypes, which were also detected from
bulk RNA-seq, is represented in orange bars.
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Table 2. Diversity of TCR repertoires from RNA-seq (left) and IR-seq (right).

mm_#
RNA Sequencing Results Immunoverse Results

STAR Mapped
Reads

Total Read
Counts

Total Unique
Clonotypes Singleton Reads Total Read

Counts
Total Unique
Clonotypes Singleton Reads

MM_1 54,357,923 820 431 299 4,050,594 90,068 63,126
MM_10 48,374,912 826 504 403 7,293,770 250,572 199,844
MM_19 56,698,751 819 331 250 10,073,447 275,520 252,410
MM_29 59,981,954 85 65 54 7,761,188 272,594 272,079
MM_31 51,623,766 659 331 241 8,120,860 403,438 373,784
MM_34 48,536,509 1245 809 649 8,836,571 821,579 688,017
MM_35 49,161,059 1195 883 697 8,039,194 423,108 366,790
MM_36 43,189,398 652 416 323 9,918,279 555,803 521,536
MM_37 52,095,895 827 613 510 6,500,208 487,124 425,707
MM_38 49,316,301 258 165 124 8,195,923 408,764 378,106
MM_39 48,288,693 716 412 338 9,833,228 431,722 396,254
MM_4 34,559,031 615 451 348 8,126,107 602,704 557,693
MM_40 45,488,936 499 289 198 9,963,987 127,280 105,512
MM_41 42,258,878 202 104 71 8,761,312 90,503 86,489
MM_42 45,563,654 340 120 78 7,180,034 91,962 78,633
MM_44 53,663,728 693 470 371 8,595,247 281,018 200,700
MM_46 47,093,079 408 118 72 8,958,694 360,441 348,835
MM_47 46,913,279 477 299 237 10,274,849 254,130 202,285
MM_48 45,465,437 933 403 308 9,565,796 559,857 501,017
MM_49 50,302,951 628 300 215 9,402,588 416,450 381,187
MM_5 46,521,960 248 141 97 7,732,378 347,955 345,460
MM_50 41,180,449 392 304 250 7,324,348 176,306 126,269
MM_6 52,868,514 1177 879 712 10,053,037 1,007,123 866,380
MM_61 41,841,298 136 71 54 4,765,448 96,738 91,318
MM_66 37,559,665 503 346 259 7,836,149 205,940 163,488
MM_67 41,723,673 904 329 213 6,478,122 129,689 99,656
MM_68 45,666,045 495 313 209 9,016,842 203,599 146,692
MM_7 57,602,270 1273 912 718 9,700,140 749,213 664,845
MM_70 36,073,087 447 267 199 7,430,562 210,866 154,254
MM_71 47,691,240 1158 591 412 8,943,282 204,495 141,742
MM_72 38,540,649 306 203 156 6,900,306 135,644 114,276
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2.2. TCR Repertoire Diversity in MM Samples from IR-seq and RNA-seq

To identify the diversity of the TCR repertoire accurately, we first substantiated the CDR3 AA
sequences by mapping all reads to the TCR antibody references and the proportion of TCR genes for
each sequencing method.

First, the comparison suggested that RNA-seq showed a wide variety of both read counts and
clonotypes among samples, caused by sparsity, while IR-seq showed stable distributions (Figure 1B,C).
The TCR repertoire results obtained from RNA-seq are not only outspread in the range of minimum
and maximum values but also disparate within all samples. Previous reports [19] have shown that
extracting IRs from RNA-seq depends greatly on the length of the reads whether they are single- or
double-ended and only large clonotypes containing a significant number of T-cells can be quantified,
which explains our results extracted from RNA-seq are unstable per sample.

Second, we identified some patterns that suggested that RNA-seq was less efficient than IR-seq.
Although the total number of mapped reads from bulk RNA-seq data using STAR alignment did not
show a very large difference among samples (Figure S1), the distribution of reads mapped to the TCR
region from RNA-seq within all samples was atypical. In addition, the unique clonotypes extracted
from RNA-seq data were less than 0.001% of the total amount extracted from IR-seq data (Figure 1D).
In contrast to IR-seq, which sequences with efficient TCR library targets, RNA-seq can only read a
small portion using fragments randomly scattered throughout the whole transcriptome. Therefore,
assuming the characteristics and specific landscape of IRs using bulk RNA-seq data is not as efficient
as IR-seq, and there are various limitations.

Third, an investigation of TCR genes showed substantial differences between the sequencing
methods. The variable gene (V gene) usage of TCR in each patient, which was measured by relative
abundance against the richest gene’s abundance, is depicted in Figure S2A and the most abundant
TRBV genes were represented in Figure S2B to emphasize its differences between IR-seq and RNA-seq.
There were 16 statistically significant (Welch’s t-test p < 0.05) differences between the two sequencing
methods among all 50 V genes. Most of the genes (TRBV5-1, TRBV7-9, TRBV7-2, TRBV6-1, TRBV10-3,
TRBV7-3, TRBV18, TRBV15, TRBV10-1, TRBV11-3, TRBV11-1, TRBV4-2 and TRBV4-3), except for three
(TRBV24-1, TRBV25-1 and TRBV5-6), were highly expressed in IR-seq, but it was challenging to make
a clear distinction because of sample variation. The reason for this observation is that the distribution
of samples containing each V gene varied widely, and the difference among each sample was even
more pronounced with RNA-seq. Likewise, those of joining (J) genes manifested similar patterns, and
sample variation was more prominent in the RNA-seq results than in the IR-seq results (Figure S2C).
This result indicates that sample variation may indeed be due to clinical differences, as the immune
status is diversified depending on the patient group. However, the low resolution of RNA-seq reads
more likely represents the hassle associated with identifying the complex diversity of the TCR region,
which was successfully drawn from IR-seq. Therefore, we analyzed the total number of mapped reads
that confidently verified each clonotype.

2.3. Proper Read Filtering and Clonotype Abundances at the Single-Patient Level

With both sequencing methods, the read count distribution of TCR sequences pinpointed that
the majority of unique clonotypes was characterized by a single read. From IR-seq, clonotypes with
a single read were almost 3.5% of the total read count, and they denoted 81.9% of the clonotypes.
Likewise, RNA-seq denoted 74.6% of all clonotypes with a singleton, but their proportion in view
of read counts was 44.6%, which was substantially larger than that denoted by IR-seq (Figure 2A,B).
These results suggest that clonotypes with single read that are virtually impossible to distinguish from
mapping biases or sequencing errors represent a large proportion of the total clonotypes and that they
should be removed if they cannot be reliably proved. However, there are still no recommended values
that must be carried out to find a clear IR pattern in the current IR analysis methods.

To determine an optimal threshold for selecting reliable clonotypes, we first reviewed the
distribution of the read counts for clonotypes in our 31 samples and selected the filtering criteria based
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on these results. In total, 37,668 clonotypes were found in at least two samples in all 31 IR-seq results
(Figure S3A). However, removing singleton reads reduced the number of shared clonotypes to 23,905,
approximately 37% of the total. When clonotypes with less than two read counts and less than three
read counts were removed, 21,959 and 20,857 common clonotypes remained, respectively, which was
not much different than when clonotypes from a single read were removed. The shared clonotype
(i.e., the clonotype with overlapping IR-seq and RNA-seq results from matched samples) was also
compared, and it was markedly reduced by read count filtering. The removal of one count read on
both sides eliminated approximately 63.7% of the shared clonotypes, while the removal of doublets
and triplets eliminated up to 82.7% and 88.7%, respectively (Figure S3B). Despite the reduction in
shared clonotypes, it is inevitable to draw the conclusion that clonotypes with insufficient reads cannot
be distinguished from putative erroneous reads, since we performed strict read validation before
mapping, as described in the Materials and Methods section.

Second, we compared the mapping qualities of both single-read and other clonotypes to identify
whether single-read clonotypes harbor quality issues. In this respect, all clonotypes were grouped by
their supporting read numbers, and the group-wise distributions of quality scores were compared
(Figure 3A). As a result, we found that only the clonotypes with single support showed statistically
significant differences (adjusted Kolmogorov–Smirnov test p < 0.05, Figure 3A) with other groups
of clonotypes, which also supports our suggestion of filtering single-read clonotypes. Moreover, a
further clonotype-level analysis in which principal component analysis (PCA) was used showed that
the removal of single-read clonotypes dramatically improved clonotype quality, since the majority of
low-quality clonotypes were supported by a single read (Figure 3).

Based on these results, we removed all clonotypes annotated with a single count and compared
their distribution once more. Consequently, 31–746 read counts targeting 2840 unique clonotypes and
3,987,468–10,072,564 reads covering 1,654,551 unique clonotypes were identified from RNA- and IR-seq,
respectively. The distribution of the shared clonotypes showed substantial differences that changed
with read filtration. As indicated as red circles in Figure 2C, clonotypes with very low ratios from both
sequencing methods as well as those with the highest proportions on either side were removed after
the removal of clonotypes with a single read. In addition, the overall number of correlations increased,
confirming that the results are more accurate when analyzing and comparing IRs. The correlation
coefficient values of the two methods also increased significantly after removing single-read clonotypes
(Figure 2C).
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Figure 2. Distribution of single reads coding new amino acid clonotypes in TCR repertoires. (A) The frequency of single reads from each sequencing method. (B) 
The percentage of unique clonotypes referenced by single reads from each sequencing method. (C) Correlation of the shared TCR clonotype frequencies generated 
by IR-seq and bulk RNA-seq. Each dot represents each sample sharing the same amino acid clonotypes. Frequencies of removed TCR clonotypes with single reads 
are represented with red circles. Zoomed-in scale where the most clonotypes with single reads existed (from 0 to 0.005). 

Figure 2. Distribution of single reads coding new amino acid clonotypes in TCR repertoires. (A) The frequency of single reads from each sequencing method. (B) The
percentage of unique clonotypes referenced by single reads from each sequencing method. (C) Correlation of the shared TCR clonotype frequencies generated by
IR-seq and bulk RNA-seq. Each dot represents each sample sharing the same amino acid clonotypes. Frequencies of removed TCR clonotypes with single reads are
represented with red circles. Zoomed-in scale where the most clonotypes with single reads existed (from 0 to 0.005).
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Figure 3. Comparison of mapping quality and effect of low-quality clonotype filtering. (A) Group-wise comparison of mapping quality score distribution by the 
number of supporting reads. Only one p-value of Kolmogorov–Smirnov test is depicted between the distributions of quality scores from # reads = 1 vs. 2, while the 
others are summarized as a text below the legend (N.S., Not Significant) (B) Results of PCA and k-nearest neighbor clustering before (left) and after (right) 
single-read clonotype filtering. (C) Distribution of quality scores between low- and high-quality clonotypes (top) and their group-wise proportion by the number 
of supporting reads (bottom). 

Figure 3. Comparison of mapping quality and effect of low-quality clonotype filtering. (A) Group-wise comparison of mapping quality score distribution by the
number of supporting reads. Only one p-value of Kolmogorov–Smirnov test is depicted between the distributions of quality scores from # reads = 1 vs. 2, while the
others are summarized as a text below the legend (N.S., Not Significant) (B) Results of PCA and k-nearest neighbor clustering before (left) and after (right) single-read
clonotype filtering. (C) Distribution of quality scores between low- and high-quality clonotypes (top) and their group-wise proportion by the number of supporting
reads (bottom).
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2.4. Assessment of TCR Genes from IR-seq and RNA-seq after Read Filtering

Upon reconfirming the pattern of all TCR genes after read filtering, the characteristic elements
appearing in the whole samples were well represented, and the difference in the results between
the two methods was clearly denoted, as shown in Figure 4 that depicts the sample-wise relative
abundances of TCR genes against the most expressed gene in each category. The importance of the
expression level and overall proportion of most TCR genes could be confirmed by IR-seq, but there
were several genes whose RNA-seq results could not be determined (Figure 4A, genes TRBV12-3 to
TRBV7-4). With our observation that most genes from RNA-seq vary substantially among samples,
we believe that RNA-seq has a weaker performance in identifying patterns in TCR genes than IR-seq
(Figure 4). This is believed to be due to the low TCR gene extraction from RNA-seq, which suggests
that RNA-seq results alone may indicate a misunderstanding of T-cell diversity in certain patients
or genes.
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Figure 4. Comparisons of TCRB gene usage after single read removal. (A) TRBV genes with usage
differences between two sequencing methods. The y-axis depicts the proportion of each gene among
all TRBV genes from each sample (p proportion of each gene/maximum gene proportion). The value
for the most frequent gene was equal to one. The x-axis is sorted by the highest proportion among
all genes. Distribution and comparison of the most abundant (B) TRBV genes and (C) all TRBJ genes.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, t-test.
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Finally, we evaluated to what extent our single read filtering affects the clonotype measurement.
Here, the clonal expansion of the TCR repertoire was further assessed by calculating the frequency
distribution of the CDR3 AA sequences. After removing singleton reads, RNA-seq was found to yield
fewer than 20 clonotypes in two samples. Comparison of the ratio of the top 10 clonotypes before
and after clearing singleton reads in both sequencing methods revealed that the proportion of total
AA sequences was not significantly different (Welch’s t-test, p = 0.82) despite the large amount of
clonotype removal in IR-seq (Figure 5A). However, the ratio of the top 10 clonotypes was slightly (2% on
average) increased after the singleton reads were removed in RNA-seq. In addition, comparison of the
proportions of the top five clonotypes yielded the same results as the top 10 (Figure 5B). This result
indicates that unstable results from RNA-seq can mislead the interpretation of clonal expansion,
and such trends are largely dependent on how the analysis pipeline is set, such as alignments and
filtering criteria.
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the most frequent TCR CDR3 AA sequences before and after single read removal from both sequencing
methods. There were no significant differences in the (A) top 10 or (B) top 5 most frequent AA sequences
with IR-seq, but the ratio of the top clonotypes increased after the singleton reads were removed in
RNA-seq. (ns, not significant; * p < 0.05, *** p < 0.001; **** p < 0.0001).

2.5. Repertoire Inference Using Random Sampling

To overcome the limited repertoire approach with scant evidence for RNA-seq, RNA-seq with
extremely high-depth or additional primers to cover the whole TCR region in detail can be used under
the rationale of an optimal sequencing depth. In this respect, we conducted a simple simulation to
determine how the sequencing depth affects the IR results by adjusting the total sequencing depth using
randomized sampling. We compared the number of unique clonotypes shared with the RNA-seq results,
decreasing the read depth sequentially by 1–60% of the total Immunoverse sequencing reads. The total
number of unique clonotypes found in all samples increased proportionally with the cumulative
sequencing depth because of random sampling (Figure 6A). Even so, no significant differences in
sequencing depth were found for the number of clonotypes identified simultaneously with RNA-seq
results (Figure 6B). From our observations, even if the change in Immunoverse sequencing depth was
reduced by 1%, the proportion of shared clonotypes was almost the same, and there was no significant
effect on extracting the true clonotypes from each sample.
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Figure 6. TCR clonality pattern in randomly downsampled TCR reads with outliers represented as dots.
(A) Changes in sequencing read volume from 1% to 50% for downsampling analysis. (B) Distribution
of shared clonotypes detected with both downsampled TCR throughput sequencing and raw bulk RNA
sequencing. No significant differences in shared clonotypes or the number of clonotypes identified
simultaneously in the RNA-seq results were found. (NS., not significant; * p < 0.05; *** p < 0.001).

3. Discussion

The potential to determine precise TCR sequences is critical for understanding the specificity and
flexibility of the T-cell environment [10,23]. However, due to complex TCR sequences, massive amounts
of sequencing data are required to reduce bias and extract faithful results [11,24]. Many consequences
have been derived using various sequencing methods to characterize the region of the TCR transcript,
but, in practice, it is necessary to determine whether these methods yield accurate and precise results.

In this respect, our study provides not only reliable and systematic comparison of TCR repertoires’
detection using 31 MM samples with two different sequencing methods used to characterize immune
cells, but also an intuitive and effective filtering approach to measure credible immune repertoire.
While IR-seq has been regarded the most prominent method for deep scanning of TCR region with
less bias [22,25], no large-scale and systematic side-by-side analysis of both IR- and RNA-seq has been
conducted to demonstrate such advantages. In terms of IR analysis, the sequencing method must
ensure that the analysis is performed by precisely comparing the resulting CDR3 sequences.

Our results from a large-scale dataset of 31 samples of both RNA- and IR-seq showed that IR-seq
is a much more accurate reader of wider TCR sites than RNA-seq, and the greatest coverage depth
of each CDR3 was captured at a high rate. From our extensive comparison, IR-seq can successfully
capture the complex composition of clonotypes with substantially higher depths, thus providing much
more stable and reliable results than RNA-seq, which suffers from highly variable and sparse TCR
region capture.

Moreover, we demonstrated that the quality control of IR-seq requires sufficient filtering criteria to
ensure robust measurement of immune repertoires, by showing our approach can efficiently eliminate
potential bias from clonotypes with a single read while maintaining a major proportion of the shared
clonotypes from both sequencing methods. Finally, we also confirmed smaller throughput of IR-seq is
sufficient to identify most of the shared clonotypes using our random sampling approach, which can
provide cost-effectiveness in certain types of immune repertoire studies.

4. Materials and Methods

4.1. Sample Collection and Processing

The 31 newly diagnosed MM patient samples investigated in this study were collected after
informed consent was provided for study participation at Seoul National University Hospital.



Cancers 2020, 12, 3693 13 of 16

Every patient underwent BM sampling at the time of active disease [26,27]. For the isolation of CD138−

cells directly from whole BM samples, the mononuclear cell (MNC) layer was first depleted using
gradient centrifugation with Ficoll–Hypaque solution. Separated MNCs were then released with MACS
buffer followed by incubation with 20 µL of CD138 magnetically labeled microbeads, and then 10 µL of
CD138-PE were added to stain CD138 cells. The CD138− subset was isolated from MNCs by negative
magnetic column selection using a MACS separator (Miltenyi Biotec). Afterwards, the fluorescence
levels of isolated cells were determined by flow cytometry (Attune NxT, Life Technologies) using
CD138 antibodies to confirm the actual concentration. Total RNA was extracted using TRIzol reagent
(15596018, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
RNA concentration was measured with a NanoDrop spectrophotometer (NF-1000, Thermo Fisher
Scientific, Waltham, MA, USA).

4.2. RNA Sequencing

The DNase step was performed before library construction to remove RNAs with DNA
contamination, and RNA integrity and quantity were assessed using electrophoresis (Agilent
Technologies 2100 Bioanalyzer). The transcriptome sequencing libraries were constructed with the
TruSeq RNA Access Library Prep Kit (Illumina Inc., San Diego, CA, USA), and adapter-ligated
fragments were then PCR amplified and gel purified. The libraries were sequenced on an
Illumina HiSeq 2500 platform using paired-end run mode with a 100 bp read length following
the manufacturer’s instructions.

4.3. Immunoverse Sequencing

Identical RNA samples after transcriptome sequencing were used for TCR library preparation.
TCR libraries with molecular barcoded (MBC) adaptors to amplify the T-cell receptor alpha/delta and
beta/gamma chains were constructed with 400 ng of RNA using the Immunoverse™ kit (ArcherDX
Inc., Boulder, CO, USA) after PCR amplification. Sequencing of the prepared TCR library was then
conducted on a HiSeq 4000 platform (Illumina Inc., San Diego, CA, USA), and 2 × 150 cycles were
performed on the ArcherDX platform.

4.4. Data Analysis and TCR Repertoire Extraction

For IR-seq, detected TCR sequences were aligned to the human reference V, D, J and C genes [28]
of TCRs using MiXCR [29]. Overlapping fragmented sequencing reads which partially aligned were
assembled into CDR3-containing contigs and clonotypes and then extracted after sequencing quality
score filtering and error correction [29]. TCR repertoires from bulk transcriptome sequencing data
were also determined using MiXCR, which uses parameters (-p rna-seq) specifically optimized for
RNA-seqas recommended by the maintainer’s webpage (https://mixcr.readthedocs.io). Reads encoding
TCR region from bulk-RNA sequencing were only aligned to human TCR genes in the same manner of
IR-seq. Subsequently, identified information, including the number of total clone reads, number of
clonotypes (AA sequences) and statistical TCR gene diversity, was analyzed using the tcR [30] package
in R statistical software.

For the statistical analyses of mapping qualities, we first grouped all clonotypes by their number
of supporting reads and extracted clonotype-wise mapping qualities for each group. From the group
of single-read clonotypes, we compared their quality score distribution to that of the next largest
group using the Kolmogorov–Smirnov test. Next, we drew a PCA plot of the clonotypes using
clonotypes-wise mapping qualities, and then we performed k-nearest neighbor clustering with k = 2
on the first two PCs to determine the low- and high-quality clonotypes. The low-quality clonotypes
were further grouped by their number of supporting reads to assess how many low-quality clonotypes
were present in each group.

For the visualization of TCR genes’ usage (Figure 4), we measured relative abundance of each gene.
For each V, D, J category, we first identified which gene in that category contains largest clonotypes

https://mixcr.readthedocs.io
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for each sample. Then, sample-wise relative abundances of a gene were derived by dividing their
clonotype counts with the largest clonotype count we identified.

For the random sampling analysis, the original sequenced reads from fastq files of Immunoverse
were randomly downsampled by decreasing the sequence proportion seeds using Seqtk-1.3-r106.
The extracted reads were aligned and used for TCR analysis as described above. To check the raw
mapping reads from RNA-seq, reads from RNA-seq were aligned to the human genome (GRCh37)
using STAR aligner [31] (version 2.5.3a).

5. Conclusions

In summary, we believe that Immunoverse can provide more valuable and deeper insights than
bulk RNA sequencing in determining the robust immune profile and characteristics of cancer patient
samples. Moreover, a proper quality control strategy for IR-seq is essential to ensure the quality of the
immune repertoire, and our simple and straightforward filtering strategy successfully improved the
quality of the IR-seq dataset.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3693/s1,
Figure S1. Validation of TCR gene detection with bulk RNA-seq; Figure S2. Assessment of raw mapping proportion
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