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ABSTRACT: The COVID-19 pandemic has caused major
disturbances to human health and economy on a global scale.
Although vaccination campaigns and important advances in
treatments have been developed, an early diagnosis is still crucial.
While PCR is the golden standard for diagnosing SARS-CoV-2
infection, rapid and low-cost techniques such as ATR-FTIR
followed by multivariate analyses, where dimensions are reduced
for obtaining valuable information from highly complex data sets,
have been investigated. Most dimensionality reduction techniques
attempt to discriminate and create new combinations of attributes
prior to the classification stage; thus, the user needs to optimize a
wealth of parameters before reaching reliable and valid outcomes.
In this work, we developed a method for evaluating SARS-CoV-2
infection and COVID-19 disease severity on infrared spectra of sera, based on a rather simple feature selection technique
(correlation-based feature subset selection). Dengue infection was also evaluated for assessing whether selectivity toward a different
virus was possible with the same algorithm, although independent models were built for both viruses. High sensitivity (94.55%) and
high specificity (98.44%) were obtained for assessing SARS-CoV-2 infection with our model; for severe COVID-19 disease
classification, sensitivity is 70.97% and specificity is 94.95%; for mild disease classification, sensitivity is 33.33% and specificity is
94.64%; and for dengue infection assessment, sensitivity is 84.27% and specificity is 94.64%.

■ INTRODUCTION
Since late 2019, an outbreak of “viral pneumonia” began to be
reported in Wuhan, China. Although contention measures
were enforced, the virus, later identified as SARS-CoV-2,
rapidly spread outside the region and throughout the planet,
thereby causing one of the worse pandemics in the modern era.
Currently, as of mid-May 2022, 527 million people have been
diagnosed as infected with SARS-CoV-2 in the world since the
beginning of the outbreak, with over 6.2 million confirmed
deaths caused by COVID-19 (World Health Organization
(WHO)). Given SARS-CoV-2 transmission mechanisms, non-
pharmaceutical interventions (NPIs) involving social distanc-
ing regulations and the use of personal protection equipment
(PPE), where face shields and respiratory masks play a major
role, were among the first actions recommended and
implemented for preventing infection by SARS-CoV-2.1−3

Disease severity and lethality have been reduced since massive
vaccination campaigns began in several regions of the world,
although global immunization is still far from complete;
besides, the emergence of new SARS-CoV-2 variants after viral
mutations could reduce vaccines’ effectiveness.4 Nonvaccine

treatment options for COVID-19 have been studied and
reported, including antivirals, anti-inflammatories, monoclonal
antibodies, plasma therapy, and cell-based therapy.5−7

However, prevention via NPI, especially TTTI (testing,
tracking, tracing, and isolating) strategies, since no drugs
have up to now been able to prevent SARS-CoV-2 invasion, is
still the principal weapon we currently have against the
COVID-19 pandemic.7,8

For an effective application of TTTI strategies, testing is the
first step. Ending the pandemic involves the application of
massive testing plus a rapid use of the results in order to help
to implement the appropriate therapy and prevent further
spread.9 Testing methods for SARS-CoV-2 used until now
have mainly been based on three general strategies: nucleic
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acid amplification test (NAAT), antigen detection, and
antibody detection.10 NAAT tests, in particular RT-PCR,
have been until now the reference for identifying SARS-CoV-2
infections due to their high sensitivity and specificity. However,
capacity constraints and the relatively high cost of RT-PCR
tests limit their use on a massive scale. It also takes long
turnaround times (TATs) to produce test results.11,12 Through
antigen tests, results may be obtained much more rapidly.
They are also simple to use, are cheaper than other testing
strategies, and can be performed at point of care locations.
However, their reliability is inferior to NAAT (sensitivity in
Sofia test: 80% and 41.2% in symptomatic and asymptomatic
patients, respectively); thus, it has been suggested that an
additional confirmation test by RT-PCR should be performed
after negative results in symptomatic and positive in
asymptomatic patients.9,13 Antibody tests are based on the
highly specific antigen−antibody interaction. Detection of IgM
is an indicator of a recent infection, whereas IgG indicates an
earlier exposure to the virus and remains longer after
infection.14 However, specificity may be lower than in other
approaches.15 Other techniques including clusters of regularly
short palindromic repeats/Cas (CRISPR/Cas) based ap-
proaches, isothermal nucleic acid amplification, or digital
PCR methods are currently either being implemented or
waiting for approval.7 Given the importance of TTTI as the
current front-runner approach for fighting COVID-19
pandemic, as well as the advantages and especially disadvan-
tages of current testing strategies for SARS-CoV-2 contagion
regarding their massive implementation, strategies based on
different approaches should be thoroughly explored and
optimized.
Fourier transform infrared (FTIR) spectroscopy is a widely

used and well-established technique for the identification and
analysis of biological samples. It detects molecular vibrations
due to changes in the electric dipole moment in chemical
bonds, produced by the absorption of light in the medium
infrared range of the electromagnetic spectrum (400−5000
cm−1). If a virus modifies blood composition, either by the
virus itself or by the effect the infection causes on the host, if
said modification is within the LOD (limits of detection) of
the technique, it will be reflected on the spectrum.16 However,
said modification would be minimal when compared to the
impact on the spectrum by the rest of the components already
present in those biological matrices, thus the need for a tool
capable of unscrambling the data from the several spectra
obtained after analysis that would allow drawing valid
conclusions from all of the information obtained.17 As reported
in recent publications, infrared spectroscopy followed by
chemometric analysis has been successfully used for identifying
SARS-CoV-2 infection on various biological fluids. Barauna et
al.18 analyzed pharyngeal swabs from patients obtained at a
clinical setting (also tested and correlated by RT-qPCR for
status regarding SARS-CoV-2 infection) via ATR-FTIR,
followed by chemometric techniques. Their model was
calibrated via PCA (principal component analysis) using
inactivated virus-spiked saliva, where LODs were established.
Clinical samples were processed and segregated into categories
(infected vs non-infected) using GA-LDA (genetic algorithm−
linear discriminant analysis). They were able to successfully
identify both types of patients (thus the potential for this
technique as a testing tool for SARS-CoV-2 contagion) with a
sensitivity of 95%, and specificity of 89%. Zhang et al.19 used a
small amount of serum sample belonging to different cohorts

of patients, separated regarding their status on SARS-CoV-2
contagion, as well as other diseases, in an ATR-FTIR
spectrophotometer. Second derivative spectra were used for
chemometric processing, where nonsupervised algorithms were
used (HCA, PCA) for reducing dimensions (although,
according to authors, were not as effective for separating
cohorts), followed by a supervised algorithm, triple class PLS-
DA (SARS-CoV-2 infected patients, controls, and other
diseases, including A/B influenza and RSV (respiratory synctial
virus)). By adjusting parameters, they were able to achieve a
specificity of 98% and a sensitivity of 87%. Martinez-Cuazitl et
al.20 studied vibrational modes by ATR-FTIR to detect
biological fingerprints that allow discrimination between
COVID-19 and healthy patients in saliva, using multiple linear
regression model (MLRM). Wood et al.21 characterized
purified SARS-CoV-2 virions by synchrotron IR, Raman
spectroscopy, and atomic force microscopy (AFM) IR and
proposed a high-throughput portable infrared spectrometer
with purpose-built accessory for indentifying SARS-CoV-2
contagion in saliva with a sensitivity of 93% and specificity of
82%. Banerjee et al. investigated the potential of ATR-FTIR as
a rapid blood test for assessing the severity of COVID-19
disease using PLS-DA, where results showed a specificity of
69.2% and a sensitivity of 94.1%.58 Nascimento et al.22

evaluated IR spectra by unsupervised random forest (URF)
model and, after class assignment by correlation to RT-qPCR,
selected variables by several algorithms such as SPA
(successive projection algorithm), GA, and PSO (particle
swarm optimization), followed by classification models such as
SPA-LDA, GA-LDA, PLS-DA, and PSO−PLS-DA in order to
obtain a consensus class with a sensitivity of 93% and a
specificity of 83% for separating SARS-CoV-2 negative from
positive patients. Machine learning methods (random forest,
standard C5.0 single decision tree algorithm, and DNN (deep
neural networks)) following ATR-FTIR analysis of sera were
successfully used by Guleken et al.23 for identifying spectral
differences between moderately and severely ill COVID-19
positive pregnant women. Nogueira et al.24 evaluated
oropharyngeal swab suspension fluid to predict COVID-19
positive samples by ATR-FTIR followed by PLS and KNN;
and Shlomo et al.25 compared BOH (breath of health)
analysis, based on FTIR, plus artificial intelligence, with PCR
for detection of SARS-CoV-2 infection, with a 1:1 FTIR/
AI:PCR correlation. Although not strictly in biological fluids, it
is worth mentioning that Kitane et al.26 evaluated RNA extracts
by ATR-FTIR and dimension reduction techniques (PCA and
PLS) followed by logistic regression and kernel SVM (support
vector machine) for classification of SARS-CoV-2 positive and
negative samples, where selectivity against 15 other respiratory
viruses was also assessed. High selectivity was found, regardless
of the highly similar structure of viral RNA, thus demonstrating
the potential of ATR-FTIR−chemometrics for discriminating
SARS-CoV-2 infection from other viral diseases.
The aforementioned works provide different methods for

detecting the presence or absence of SARS-CoV-2 on
biological matrices, mainly with the aid of dimensionality
reduction techniques. This can be achieved via linear
combination or variable selection. The potential advantages
of dimension reduction include the following: (a) reduced
computational cost and time; (b) reduced risk of overfitting
(i.e., improved model generalizability); and (c) better model
interpretability. Assuming an IR spectral data set, common
dimensionality reduction techniques, e.g., PCA, HCA, LDA,
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and PLS-DA, would simply reduce the dimension of the
spectral data into a smaller number of new axes; allowing one
to pick a number of discrete variables from the original data,
e.g., to select a particular spectral region (i.e., interval
selection), or to choose a number of discrete wave numbers
from the global IR spectral region. These techniques attempt
to discriminate and create new combinations of attributes prior
to the classification stage, and their versatility is both a blessing
and a curse, as the user needs to optimize a wealth of
parameters before reaching reliable and valid outcomes.27

In this work, we propose to focus on a rather simple feature
selection technique�Correlation-based feature subset selec-
tion.28 Feature selection is the process of selecting a subset of
relevant features for use in sample classification. Both
dimensionality reduction and feature selection seek to reduce
the number of attributes in the data set, but a dimensionality
reduction method does so by creating new combinations of
attributes, whereas feature selection methods include and
exclude attributes present in the data without changing them.
Feature selection acts as a filter, muting out features that are
not useful in a set of existing features.

■ MATERIALS AND METHODS
Sera Samples. We used samples from two different

sources: a major health institution in Mexico City (Centro
Medico Nacional Siglo XXI, CMNSXXI), where SARS-CoV-2
infected and non-infected patient serum samples were obtained
and correlated with analysis via PCR; and a research institute
(Cinvestav-Zacatenco), where a set of prepandemic sera was
provided, all negative to SARS-CoV-2, although separated in
cohorts regarding their status on dengue virus infection.
Samples were collected from patients diagnosed, treated, and
followed at the Internal Medicine department of the Specialties
Hospital, National Medical Centre “Siglo XXI” of the Mexican
Institute for Social Security (CMNSXXI), Hospital de
Especialidades del Instituto Mexicano del Seguro Social
(UMAE-IMSS). All participating patients were recruited with
signed informed consent; in the cases of critical patients,
informed consent was signed by a family member. Demo-
graphic and idiosyncratic characteristics regarding patients
involved (notably, severity in COVID-19 disease in some
cases) were also reported. On the day of admission to the
hospital, nasopharyngeal samples were obtained from patients
for PCR tests, performed within 72 h, to confirm COVID-19
clinical diagnosis. Blood samples were taken from patients
within the first 72 h from admission. Only blood samples from
PCR+ confirmed COVID-19 patients were used for this study.
The ethical approval was obtained from the IMSS ethics
committee (Comisioń Nacional de Investigacioń Cientif́ica
(CNIC) project R-2020-785-095. SARS-CoV-2 and Comite ́
Local de Investigacioń de la UMAE Hospital de Especialidades
(CLIES) project R-2020-3601-043) in accordance with the
Good Clinical Practice and Helsinki declaration. Infection was
identified at recruitment by RT-LAMP at the IMSS Medical
Research Unit on Immunochemistry (Unidad de Investigacioń
Med́ica en Inmunoquiḿica) and corroborated by RT-qPCR at
IMSS official reference laboratory. At CMNSXXI, healthcare
personal collected blood specimens from either negative or
PCR confirmed COVID-19 hospitalized patients in silicone-
coated and heparinized tubes (BD Vacutainer, N.J., USA);
samples were transported from the COVID-19 ward to the
Medical Research Unit on Immunochemistry in an exclusive
cooler and were processed immediately after collection in a

BSL2 laboratory. Sample tubes were centrifugated at 2500 rpm
for 10 min (Hettich ROTINA 420). From each sample 250 μL
serum aliquots were placed in sterile cryo-vials (1.5 mL,
Corning). Samples were stored in a freezer at −20 °C for 1 day
and then were stored at −70 °C until use. Regarding the
second source of sera samples, the study protocol was
approved by institutional review boards of the Veracruz
University’s Institute for Biomedical Research Ethics Commit-
tee (Protocol No. 18/2010). A single blood sample was
collected from healthy individuals between 20 and 25 years of
age from the same endemic area (EA) of Veracruz. Samples
from healthy individuals from non-endemic DENV areas
(NEAs) for dengue virus were collected as negative controls.
Inactivation and Safety. Samples were inactivated at a

research institute (Cinvestav-Zacatenco). All personnel who
handled samples from suspected or infected patients with
SARS-CoV-2 mandatorily wore PPE including N95 mask, cap,
laboratory coat, and gloves. It is important to note that the
samples container could have potentially contained aerosol;
thus, any procedure of inactivation was performed in the
biosafety cabinet BSL2.
Sera samples were immediately inactivated upon arrival from

the hospital. Prior to sample processing, a heat block
(Thermomixer comfort 2 mL Eppendorf AG 22331,
Hamburg) was prewarmed to 56 °C. Then, samples were
incubated for 30 min at said temperature, aliquoted in volumes
of 200 μL, and kept at −20 °C until their shipping to the next
institution. The heating process at 56 °C for 30 min effectively
inactivated infectious virus in the samples, while preserving
viral RNA.29

ATR-FTIR Analysis. All sera samples used for this study
were received frozen and preserved on special containers, with
accompanying documentation, at Cinvestav, Irapuato, and
were kept ultrafrozen at −70 °C until analysis. Analyses were
performed on an Agilent CARY 660 infrared spectrometer
(Agilent, Santa Clara, CA, USA), equipped with a Pike
Technologies germanium crystal ATR (Pike Technologies,
Madison, WI, USA). Infrared spectra samples were obtained
by Agilent Resolutions Pro software installed on an attached
computer to the ATR-FTIR instrument and stored on its hard
drive (using native.res extension file). Before analysis, samples
were allowed to thaw for 30 min at room temperature. The
following parameters were optimized:30 sample aliquot size
(1−10 μL), moisture, use or not of the ATR clamp accessory,
and cleaning protocols. We decided to allow the samples to
dry, since moisture influence on the spectra, evidenced by a
wide band correlated to water absorption at approximately
3200−3400 cm−1 (OH group), scaled down most other bands
in the resulting spectra, thus bringing unwanted contributions
to our model. For serum spectral acquisition, the final
conditions used were as follows: One sample per each person,
read from 550 to 5000 cm−1, 32 scans, and a wavenumber
distance of 4 cm−1; sample size, 3 μL. Time after sample
collocation on the ATR crystal (for moisture evaporation at
room temperature with no additional airflow): 11 min
(another sampling at 13 min was also performed in order to
verify that no additional changes due to loss of moisture were
being manifested on each spectrum). ATR clamp accessory
was used after each sample was confirmed dry, and their
resulting spectra provided the data to be used for the assembly
of the sample matrices to be processed by the chemometric
algorithms that followed. Between samples, after cleaning using
isopropyl alcohol until any remaining substance was
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completely removed from the ATR crystal, a background and
an empty sample (blank) were also taken and stored. In
addition to sera samples, in order to help in the understanding
of a possible mechanism that could be involved in spectral-
based separation between SARS-CoV-2 infected and non-
infected patients, we also analyzed the following cytokine
standards, reported in literature as correlated to COVID-19
infections: IL-1 (Interleukin 1), IL-1α (Interleukin 1α), IL-1β
(Interleukin 1β), IL-2 (Interleukin 2), IL-6 (Interleukin 6), IL-
17 (Interleukin 17), TNF-α (tumor necrosis factor α), IFN-γ
(gamma interferon), CXCL10 (C-X-C motif chemokine ligand
10, also known as Interferon gamma-induced protein 1), and
VEGF (vascular endothelial growth factor), purchased from
Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA), prepared
on the basis of the manufacturer’s recommendations at a
concentration of 0.1 mg/mL, and analyzed at the ATR-FTIR
under the same conditions as sera samples. Sample spectra
results, exported on.csv (comma separated values) format at
Resolutions Pro, were used on the chemometric processing
that followed.
Classifying Imbalanced Data. There is a large imbalance

between the amount of samples of normal individuals
compared to those with COVID-19. This is a well-known
source of bias in the multivariate statistical analysis. The
problem of learning from unbalanced data sets has been
addressed in previous works.31 In particular, logistic regression
(LR) is one of the most important statistical and data mining
techniques employed by statisticians and researchers for the
analysis and classification of binary and proportional response
data sets.32−34 Some of the main advantages of LR are that it
can naturally provide probabilities and extend to multiclass
classification problems.32,35 Another advantage is that most of
the methods used in the LR model analysis follow the same
principles used in linear regression.36 Recently, there has been
a revival of LR importance through the implementation of
methods such as the truncated Newton. Truncated Newton
methods have been effectively applied to solve large-scale
optimization problems. Komarek and Moore37 were the first to
show that the truncated-regularized iteratively reweighted
least-squares (TR-IRLS) can be effectively implemented on
LR to classify large data sets and that it can outperform the
support vector machines (SVMs). Later on, trust region
Newton method,38 which is a type of truncated Newton, and
truncated Newton interior-point methods39 were applied for
large-scale LR problems. With regard to imbalanced and rare
events data, the standard LR methods may capture this bias
unless certain corrections are applied. The most common
correction techniques are prior correction and weighting.40

King and Zeng40 applied these corrections to the LR model,
and showed that they can make a difference when the
population probability of interest is low. Inspired by these
works, we propose to deal with class imbalance by performing
a preprocessing step prior to applying our LR classifier. This
preprocessing is described in the next section.
Correlation-Based Feature Subset Selection. Feature

selection, as a preprocessing step to machine learning, is
effective in reducing dimensionality, removing irrelevant data,
increasing learning accuracy, and improving result comprehen-
sibility. Feature selection is frequently used as a preprocessing
step to machine learning. It is a process of choosing a subset of
original features so that the feature space is optimally reduced
according to a certain evaluation criterion. Feature selection
has been a fertile field of research and development since the

1970s and proven to be effective in removing irrelevant and
redundant features, increasing efficiency in learning tasks,
improving learning performance such as predictive accuracy,
and enhancing comprehensibility of learned results.41−43 In
recent years, data have become increasingly larger in both
number of instances and number of features in many
applications such as genome projects,44 text categorization,45

image retrieval,46 and customer relationship management.47

This enormity may cause serious problems to many machine
learning algorithms with respect to scalability and learning
performance. For example, high-dimensional data (i.e., data
sets with hundreds or thousands of features) can contain a high
degree of irrelevant and redundant information which may
greatly degrade the performance of learning algorithms.
Therefore, feature selection becomes very necessary for
machine learning tasks when facing high-dimensional data
nowadays. However, this trend of enormity on both size and
dimensionality also poses severe challenges to feature selection
algorithms. Some of the recent research efforts in feature
selection have been focused on these challenges from handling
a huge number of instances48 to dealing with high-dimensional
data.44,49

There exist broadly two approaches to measure the
correlation between two random variables. One is based on
classical linear correlation and the other is based on
information theory. Under the first approach, the most well-
known measure is linear correlation coef f icient. For a pair of
variables (X,Y), the linear correlation coefficient r is given by
the formula

r
x x y y

x x y y

( )( )

( ) ( )
i i i i i

i i i i i i
2 2

=

where xi is the mean of X and yi is the mean of Y. The value of
r lies between −1 and 1, inclusive. If X and Y are completely
correlated, r takes the value of 1 or −1; if X and Y are totally
independent, r is zero. It is a symmetrical measure for two
variables. Other measures in this category are basically
variations of the above formula, such as least-squares regression
error and maximal information compression index.50 There are
several benefits of choosing linear correlation as a feature
goodness measure for classification. First, it helps to remove
features with near zero linear correlation to the class. Second, it
helps to reduce redundancy among selected features. It is
known that if data are linearly separable in the original
representation, it is still linearly separable if all but one of a
group of linearly dependent features are removed.51 However,
it is not safe to always assume linear correlation between
features in the real world. Linear correlation measures may not
be able to capture correlations that are not linear in nature.
Another limitation is that the calculation requires all features
contain numerical values.
To overcome these shortcomings, we chose a correlation

measure on the basis of the information-theoretical concept of
entropy, a measure of the uncertainty of a random variable. The
entropy of a variable X is defined as

H X P x P x( ) ( ) log ( ( ))
i

i i2=

and the entropy of X after observing values of another variable
Y is defined as
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H X Y P y P x y P x y( ) ( ) ( ) log ( ( ))
j

j
i

i j i j2| = | |

where P(xi) is the prior probabilities for all values of X and
P(xi|yi) is the posterior probabilities of X given the values of Y.
The amount by which the entropy of X decreases reflects
additional information about X provided by Y and is called
information gain,52 given by

X Y H X H X YIG( ) ( ) (( ))| = |

According to this measure, a feature Y is regarded more
correlated to feature X than to feature Z, if IG(X|Y) > IG(Z|Y).
Using symmetrical uncertainty (SU) as the goodness

measure, we can develop a procedure to select good features
for classification on the basis of correlation analysis of features
(including the class). This involves two aspects: (1) how to
decide whether a feature is relevant to the class or not and (2)
how to decide whether such a relevant feature is redundant or
not when considering it with other relevant features.
The answer to the first question can be using a user defined

threshold SU value, as the method used by many other feature
weighting algorithms (e.g., Relief). More specifically, suppose a
data set S contains N features and a class C. Let SUi,c denote
the SU value that measures the correlation between a feature Fi
and the class C (named C-correlation); then a subset S′ of
relevant features can be decided by a threshold SU value δ,
such that ∀Fi ∈ S′, 1 ≤ i ≤ N, and SUi,c ≥ δ.
The answer to the second question may involve analysis of

pairwise correlations between all features (named F-correla-
tion), which results in a time complexity of O(N2) associated
with the number of features N for most existing algorithms.
Since F-correlations are also captured by SU values, in order

to decide whether a relevant feature is redundant or not, we
need to find a reasonable way to decide the threshold level for
F-correlations as well. In other words, we need to decide
whether the level of correlation between two features in S′ is
high enough to cause redundancy so that one of them may be
removed from S′. For a feature Fi in S′, the value of SUi,c
quantifies the extent to which Fi is correlated to (or predictive
of) the class C. If we examine the value of SUj,i for ∀Fj ∈ S′ (j
≠ i), we will also obtain quantified estimations about the extent
to which Fi is correlated to (or predicted by) the rest of the
relevant features in S′. Therefore, it is possible to identify
highly correlated features to Fi in the same straightforward
manner as we decide S′, using a threshold SU value equal or
similar to δ. We can do this for all features in S′. However, this
method only sounds reasonable when we try to determine
highly correlated features to one concept while not considering
another concept. In the context of a set of relevant features S′
already identified for the class concept, when we try to
determine the highly correlated features for a given feature Fi
within S′, it is more reasonable to use the C-correlation level
between Fi and the class concept, SUi,c, as a reference. The
reason lies on the common phenomenon�a feature that is
correlated to one concept (e.g., the class) at a certain level may
also be correlated to some other concepts (features) at the
same or an even higher level. Therefore, even the correlation
between this feature and the class concept is larger than some
threshold δ and thereof making this feature relevant to the
class concept; this correlation is by no means predominant.
Therefore, we consider a predominant correlation as the

correlation between a feature Fi (Fi ∈ S) and the class C is

predominant iff SUi,c ≥ δ and ∀Fj ∈ S′ (j ≠ i;, there is no Fj
such that SUj,i ≥ SUi,c.
If there exists such an Fj to a feature Fi, we call it a redundant

peer to Fi and use SPdi
to denote the set of all redundant peers

for Fi. Given Fi ∈ S′ and SP di
(SP di

≠ ⌀), we divide SP di
into two

parts, SP di

+ and SP di

−, where SP di

+ = {Fj|Fj ∈ SPdi
, SUj,c > SUi,c} and

SPdi

− = {Fj|Fj ∈ SPdi
, SUj,c ≤ SUi,c}.

A feature is predominant to the class, if its correlation to the
class is predominant or can become predominant after
removing its redundant peers.
According to the above definitions, a feature is good if it is

predominant in predicting the class concept, and feature
selection for classification is a process that identifies all
predominant features to the class concept and removes the
rest.
Multivariate Analysis. Samples were classified into

cohorts as follows: Regarding SARS-CoV-2: 322 samples in
total were received from both sources; 73 were discarded due
to lack of information regarding SARS-CoV-2 contagion, and
thus 249 samples were processed. By correlation with RT-
PCR, 55 samples, all provided by CMNSXXI, were reported as
infected with SARS-CoV-2, where 31 belonged to patients with
severe COVID-19 disease, 12 to patients affected with mild
COVID-19, and 12 with no information regarding COVID-19
severity (although positive to the virus). From CMNSXXI, 68
samples were reported as negative for SARS-COV-2 (also
correlated with RT-PCR). From Cinvestav-Zacatenco, 102
samples belonged to prepandemic sera (thus negative to SARS-
CoV-2), plus 24 additional samples belonging to healthy
students (also negative to SARS-CoV-2). Regarding dengue
virus contagion, all 322 samples were considered in this case.
Among the 102 samples belonging to prepandemic sera, 75
were reported as infected with dengue, thus a remaining 27
samples from this set, as well as the additional 24 samples
taken from students, were considered as negative for dengue.
All 196 samples from CMNSXXI were either negative or not
suspected to have dengue virus infection. Therefore, 75
samples were considered as positive for dengue, while 247
were considered as negative. A total of 2309 wavenumbers
(variables) were recorded on each spectrum after each analysis.
However, section from 2289.091 to 2387.442 cm−1 was
removed due to specific conditions on spectral bands related to
CO2, where environmental conditions mainly drove their levels
in the spectra, thus scaling down the influence that a sample
related vibration could bring. Therefore, 1718 wavenumbers
were used as variables on chemometric analyses. Although
explored while optimizing the model, no spectra preprocessing
such as first or second derivative, Savitsky−Golay smoothing,
normalization, and rubberband correction, among others, were
used; thus, raw absorbance data were the information
considered for chemometrics in this study.53

To classify samples, we use a multinomial logistic regression
model with a ridge estimator.54 Linear regression attempts to
model the relationship between a continuous variable and one
or more independent variables by fitting a linear equation.
Three of the limitations that appear in practice when trying to
use these types of models (adjusted by ordinary least-squares)
are as follows: they are harmed by the incorporation of
correlated predictors, they do not select predictors, and all
predictors are incorporated into the model even if they do not
provide relevant information. This often complicates the
interpretation of the model and reduces its predictive power.
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One way to mitigate the impact of these problems is to use
regularization strategies such as ridge, lasso, or elastic net,
which force the model coefficients to tend to zero, thus
minimizing the risk of overfitting, reducing variance,
attenuating the effect of correlation between predictors, and
reducing the influence on the model of less relevant predictors.
Regularization strategies incorporate penalties in the adjust-

ment by ordinary least-squares (OLS) with the aim of avoiding
overfitting, reducing variance, attenuating the effect of the
correlation between predictors, and minimizing the influence
of less relevant predictors on the model. In general, applying
regularization allows achieving models with greater predictive
power.55

Ridge regularization penalizes the sum of the squared
coefficients (∥β∥22 = ∑j=1

p βj
2). This penalty is known as l2 and

has the effect of proportionally reducing the value of all of the
coefficients of the model, but without them reaching zero. The
degree of penalty is controlled by the hyperparameter λ. When
λ = 0, the penalty is null and the result is equivalent to that of a
linear OLS model. As λ increases, the greater the penalty and
the smaller the value of the predictors.
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where yi refers to a given observation, out of n observations. β0
is the ordinate at the origin, it corresponds to the average value
of the response variable y when all predictors are zero. βj is the
average effect that the increase in one unit of the predictor
variable (in this case, wavenumber) xj, (j ∈ {0 ... p}) has on the
response variable, keeping the rest of the variables constant.
They are known as partial regression coefficients.
The main advantage of applying ridge over adjustment by

OLS is the reduction of variance. In general, in situations
where the relationship between the response variable and the
predictors is approximately linear, least-squares estimates have
little bias but can still suffer from high variance (small changes
in the training data have a large impact on the resulting
model). This problem is accentuated as the number of
predictors introduced in the model approaches the number of
training observations, reaching the point where, if p > n, it is
not possible to fit the model by ordinary least-squares. Using a
suitable value of λ, the ridge method is capable of reducing
variance without hardly increasing the bias, thus achieving a
lower total error.
The disadvantage of the ridge method is that the final model

includes all of the predictors. This is so because although the
penalty forces the coefficients to approach zero, they never
reach exactly zero (only if λ = ∞). This method manages to
minimize the influence on the model of the predictors less
related to the response variable.
Multivariate analyses were performed using Scikit-learn:

Machine Learning in Python56 using learn.linear_mo-
del.Ridge. We found an optimal ridge λ of 0.0035 by using
the grid search technique.57 For evaluation we used 5-fold
cross-validation. Additional confirmatory analyses by PLS-DA
were performed using Pirouette (Infometrix, Bothell, WA,
USA).

■ RESULTS AND DISCUSSION
SARS-CoV-2 Infection Status. Averaged Spectra of Both

Categories (SARS-CoV-2 Infected and Non-infected). In
Figure 1, the average of all 55 SARS-CoV-2 positive spectra

and the average of all 194 negatives are shown. The following
wavenumbers/regions showed apparent differences between
both types of spectra (cm−1): 550−650; 1000−1160; band
around 1232; band around 1300; band around 1394; band
around 1492; band around 1635; band around 1714; band
around 2898; 2917−2960; band around 3056; and band
around 3274. Since these spectra averages reflect contributions
by all of the compounds present within the sera (where
proteins, cholesterol, urea, and triglycerides, among other more
diluted compounds, can be found, plus additional contribu-
tions by viral infection),19 spectra are similar, thus the need for
additional tools in order to establish a model that would allow
for separation into categories.

Chemometric Processing of Spectra. Correlation-based
feature subset selection28 was used to find the relevant
wavenumbers that allow for separation into SARS-CoV-2
infected and non-infected categories. This algorithm evaluates
the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy between them. The search method was bidirec-
tional bestfirst. Twenty-five wavenumbers were selected out of
1,718. Selected wavenumbers are shown in Table 1 and Figure
1.
Additional confirmatory analyses by PLS-DA were per-

formed, using Pirouette software, on the sera spectra data
matrix built with the wavenumbers selected by the previously
developed model based on correlation-based subset selection

Figure 1. Average of all 55 SARS-CoV-2 positive spectra, and the
average of all 194 negatives (cm−1). Wavenumbers selected for
separation of categories between both types of samples indicated by
vertical lines.

Table 1. Wavenumbers Selected by Our Model for
Separation in Categories between SARS-CoV-2 Infected and
Non-infected Patients (cm−1)

1018.23 1045.22 1054.87 1079.94 1643.05
1024.01 1047.15 1068.37 1116.58 1646.91
1025.94 1049.08 1070.29 1135.86 1751.04
1027.87 1051.01 1076.08 1159.00 1752.97
1035.58 1052.94 1078.01 1536.98 2923.55
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algorithm for segregating in categories between SARS-CoV-2
infected and non-infected patients (wavenumbers as listed in
Table 1). In Figure 2, the 2D graphical representation of Y1/

CS1 (dependent variable 1/class specific result 1) scores
obtained by PLS-DA are presented. Red diamonds correspond
to infected patients, whereas brown diamonds correspond to
non-infected patients. A clear, although overlapping separation
in a cluster for the SARS-CoV-2 infected group, is observed in
Figure 2.

Spectral Interpretation and Band Assignments. Following
infection by SARS-CoV-2 and during development of COVID-
19 disease, several alterations in sera, measurable by IR, thus
reflected in the spectra, may occur. On one hand, the spectral
contribution by the virus itself, where 1657, 1547, and 1517
cm−1 bands may be attributed to proteins (from spike,
envelope, membrane, and nucleocapsid proteins), 1740, 1464,
1382, and 1341 cm−1 bands may be attributed to lipids (from
lipid bilayer surrounding the nucleocapsid), and 1690, 1235,
1124, 1089, 996, and 967 cm−1 bands may be attributed to
viral RNA; on the other hand, the host organism response to
the virus infection, especially immune response, may also be
observed, and thus, several biomarkers have been suggested for
identifying SARS-CoV-2 infection.18−21,58

Wavenumber shifts in bands attributed to a specific
compound/family of compounds normally considered as sera
components have been reported between infected and non-
infected patients.19 Besides, some variations regarding the
specific wavenumbers attributable to a given compound/family
of compounds can be found between the studies performed by
different authors.18−21,58 Moreover, it has been reported that
several factors may influence the quality of IR spectra which
may cause distortion (for example, unfolding, conformational
changes, and denaturation that proteins may suffer after
exposure to high temperatures).19 Therefore, as it has been
suggested by the authors, the exact biological interpretation of
those bands involved in SARS-CoV-2/COVID-19 status
assessment by infrared spectroscopy may require further
experimental confirmation in future studies.58

Regarding wavenumbers selected by our model for
separation in categories between SARS-CoV-2 infected and
non-infected patients, those in the range between 1100 and
850 cm−1 may be attributed to nucleic acids; it is a region
where, in their work, authors reported a higher expression in
the COVID-19 group.20 Within the region, specifically bands
at 1028 and 1037 cm−1 (1036 cm−1 in our work) may be
correlated to contributions by glycogen (since it is known that
the SARS-CoV-2 spike glycoprotein�S-protein�has 66
glycosilation sites which may be occupied by glycans upon
infection).20 Bands at 1068 and 1070 cm−1 may correspond to
C−O stretching in ribose.18 The band at 1076 cm−1, explained
by symmetrical stretching vibrations of PO2

− phosphodiester
groups, has shown an increase in SARS-CoV-2 groups.19−21

Bands at 1117 and 1080 cm−1 may be related to viral RNA
(the latter, specifically to symmetric PO2

− stretching).18,21 The
band at 1537 cm−1 may be attributed to amide II (mainly in-
plane N−H bending), whereas bands at 1643 and 1647 cm−1

to amide I (mainly stretching vibrations of C�O as well as
C−N groups) absorption bands of proteins. The band at 1159
cm−1 may be explained by C−O−C symmetric stretching of
phospholipids, triglycerides, and cholesterol esters.19 Since
overlapping of contributions by different functional groups
may occur (especially given the complexity of sera
composition), additional sources may contribute to specific
bands within the spectra. The range between 1160 and 1028
cm−1 has been attributed to IgM, whereas the range between
1560 and 1028 cm−1, to IgA.20

Comparison with Cytokine Standards. Cytokine storm,
where an aggressive inflammatory response by the host occurs,
mediated by pro-inflammatory cytokines, has been reported as
an aggravating factor related to COVID-19 disease. It is a
hyperactive response which leads to an excessive inflammatory
reaction that has been directly correlated with lung injury,
multiorgan failure, and unfavorable prognosis of severe
COVID-19.59−62 Elevated levels of cytokines in COVID-19
infected patients, when compared to healthy adults, have been
reported in several studies. Huang et al.59 reported that the
initial plasma IL1B, IL1RA, IL7, IL8, IL9, IL10, basic FGF,
GCSF, GMCSF, IFNγ, IP10, MCP1, MIP1A, MIP1B, PDGF,
TNFα, and VEGF concentrations were higher in both ICU
patients and non-ICU patients than in healthy adults. Further
comparison between ICU and non-ICU patients showed that
plasma concentrations of IL2, IL7, IL10, GCSF, IP10, MCP1,
MIP1A, and TNFα were higher in ICU patients than non-ICU
patients. Chen et al.62 reported that serum levels of interleukin
2R (IL-2R), IL-6, IL-10, and tumor necrosis factor α (TNF-α)
were markedly higher in severe cases than in moderate cases.
And Liu et al.63 found a significant increase of IL-6 levels
correlated to the clinical manifestation of severe patients.
Immune response related to SARS-CoV-2 infection, disease
development and vaccination, has been also investigated by
infrared spectroscopy and multivariate analysis. Bandeira et
al.64 studied structural changes in IgG induced by COVID-19
by FTIR and PLS-DA; and Dogan et al.65 were able to
successfully separate in categories vaccinated from non-
vaccinated patients by ATR-FTIR, PCA, and LDA analysis of
sera.
In this work, we analyzed the following cytokine standards:

IL-1, IL-1α, IL-1β, IL-2, IL-6, IL-17 (although not listed in the
aforementioned studies, it is a pro-inflammatory cytokine
which has been suggested as a possible target for
immunomodulatory treatment of COVID-19),66 TNF-α,

Figure 2. 2D representation of Y1/CS1 scores by PLS-DA of SARS-
CoV-2 infected and non-infected patients.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01374
ACS Omega 2022, 7, 30756−30767

30762

https://pubs.acs.org/doi/10.1021/acsomega.2c01374?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01374?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01374?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01374?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01374?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


IFN-γ, CXCL10 (also known as interferon γ induced protein
10; IP-10), and VEGF. Regarding correspondences between
cytokine standards absorption bands and wavenumbers
selected by our model for separation in SARS-CoV-2 infected
and non-infected categories, there was observed a correspond-
ence in several wavenumbers; thus, alterations in cytokine
blood levels upon infection could also be contributing to
changes in the serum spectra from infected patients when
compared to those from healthy individuals. In Table 2 we
present a correlation between wavenumbers selected for
separation in SARS-CoV-2 infected vs non-infected patients
as selected by our model (as shown in Table 1) and absorption
maximum bands of cytokine standards analyzed in this study
(the raw spectra are shown in Figure 3).

Validity. Using wavenumbers listed in Table 1, the classifier
was able to correctly classify 242 instances, leaving only 7
incorrectly classified ones. This corresponds to 97.19%
instances being correctly classified. Confusion matrix for
SARS-CoV-2 infection status instances classification is shown
in Table 3.
According to Table 3, 52 samples are considered as TP and

190 as TN, four samples were incorrectly classified as positives
(FP), and three were incorrectly classified as negatives (FN).

sensitivity/% 100
TP

(TP FN)
= ×

+

specificity/% 100
TN

TN FP
= ×

+
Therefore, for separation in categories between SARS-CoV-

2 infected and non-infected patients in this study, sensitivity is
94.55% and specificity is 98.44%. Table 4 shows precision,
recall, F-measure, Matthews correlation coefficient, ROC, and
precision-recall curves area per class.
COVID-19 Disease Severity Status. Data Processing.

We used raw infrared absorbance data from the 249 samples,
as described earlier, and considered the following COVID-19
severity status cohorts: not infected, mild, severe, and severity
unknown, based on SARS-CoV-2 infected patients’ clinical
history, plus additional information regarding the samples. The
distribution of cases is shown in Table 5.
A new model was built using attribute selection, as described

earlier, for achieving separation in categories according to
COVID-19 disease severity status on the 249 sera samples data
matrix. Out of 1,718 wavenumbers, 14 wavenumbers were
selected for this model (Table 6).

Spectral Interpretation, Band Assignments, and Correla-
tion to Cytokine Standards. The following wavenumbers
selected by or model for assessing COVID-19 disease severity
were also selected for differentiation in categories between
SARS-CoV-2 infected and non-infected patients (cm−1): 1049,
1051, 1053, 1055, 1065, 1647, and 2924. Therefore, discussion
regarding those wavenumbers was previously presented.
Wavenumbers 1014, 1032, 1039, and 1084 cm−1 are within
the range 1100−850 cm−1, reported as a region for nucleic
acids. More specifically, bands at 1032 and 1039 cm−1 may be
correlated to contributions by glycogen.20 The band at 1084
may be related to viral RNA (symmetric PO2

− stretching)
(Zhang et al.19 report a range between 1083 and 1086 cm−1).
The band at 1757 cm−1 is within the reported range for the
amide I absorption band of proteins.20 Regarding correlation
to cytokine standards, only 1647 cm−1 corresponds to
absorption maximum bands of IP-10 (1648 cm−1), IL-6
(1649 cm−1), IL-1α (1649 cm−1), and IL-1β (1646 cm−1).

Validity. Pursuant to their clinical history, 31 patients
presented severe COVID-19 disease, thus leaving 218 samples
regarded as not severe. Twelve patients were affected with mild
COVID-19; therefore, 237 were regarded as not mild. Besides,
12 patients among those positive for SARS-CoV-2 contagion
were unknown regarding COVID-19 severity status (it is worth
noting that we are discarding any possible bias that could be
introduced by these samples, since no status regarding this
topic could be assumed in this case).
According to Table 7, 33 instances were classified as severe,

where 22 belonged to the high-severity cohort; nine were
incorrectly classified as severe, and 11 were incorrectly

Table 2. Maximum Bands of Cytokine Standards Wavelengths vs SARS-CoV-2 Contagion Selected Wavelengths (cm−1)

IP-10 VEGF IL-6 IL-2 IFN-γ IL-1α IL-1 IL-1β TNF-α IL-17 selected λ
1069 1068, 1070

1117 1117
1076 1076 1077 1076, 1078

1080 1080
1538 1538 1542 1542 1540 1536 1537

1644 1643 1642 1642 1641 1643
1648 1649 1648 1649 1646 1647

Figure 3. Raw spectra of cytokine standards where correspondence
with our model was shown (in absorbance vs wavenumber range in
cm−1).

Table 3. Confusion Matrix for SARS-CoV-2 Infection Status
Instances Classification

cohorts non-infected SARS-CoV-2 infected

negatives 190 4
positives 3 52
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classified as not severe. Sixteen samples were classified as mild,
where four belonged to the mild severity cohort, 8 were
incorrectly classified as mild, and 12 were incorrectly classified
as not mild.
According to the formulas previously described, the results

for assessing the severity of COVID-19 disease in this study are
as follows: For severe disease classification, sensitivity is
70.97%, and specificity is 94.95%. For mild disease
classification, sensitivity is 33.33% and specificity 94.93%.
It is important to mention that additional samples with the

complete information regarding COVID-19 severity status
should be analyzed in the future for improving the robustness
of the model, as well as the biological understanding based on
spectral bands assignments. However, the potential of ATR-
FTIR and chemometrics analysis of serum samples for
assessing COVID-19 severity status was observed in this work.
Dengue Infection Status. Although it was not the main

objective of this work, considering that some of the samples
were classified as “dengue positive”, we decided to extract the
maximum information from the data set; thus, we evaluated
the data obtained from all of the processed spectra for
assessing status regarding dengue contagion. Since we lack
information regarding the dengue positive samples, notably,
the serotype of the dengue virus involved, we believe that it
would be a stretch to attempt to form a biological explanation
through spectral interpretation.
Data Processing. For dengue infection status assessment,

serum spectra from the 322 samples originally processed were
considered, since the lack of information regarding SARS-CoV-
2 infection status on the 73 samples discarded for the two
previous models do not affect cohorts in this case. Therefore,

out of 322 samples, 75 were infected with dengue, while 247
were considered as non-infected with dengue. It is important
to note that although the same raw infrared absorbance data
were used, dengue and SARS-CoV-2 sets were disjointed.
Using the previously presented method for feature selection, a
new model was built, where 24 wavenumbers were selected
(out of 1,718) (see Table 8).

Validity. Using the wavenumbers listed in Table 6, the
classifier was able to correctly classify 294 instances, leaving 28
incorrectly classified (accuracy of 91.304%). The confusion
matrix for dengue infection status instances classification is
presented in Table 9.

According to the confusion matrix shown in Table 7, there
were 61 TP, 233 TN, 14 FN, and 14 FP. Thus, according to
formulas (as described before), for separation in categories
between dengue infected and non-infected patients in this
study, sensitivity is of 81.33% and specificity is of 94.33%.
Table 10 shows precision, recall, F-measure, Matthews
correlation coefficient, ROC, and precision-recall curves area
per class.
More studies should be performed on this topic, although

the potential of ATR-FTIR and chemometrics for identifying
dengue contagion status in serum was observed in this work. It
is worth mentioning that other colleagues have also
successfully used ATR-FTIR for identifying dengue virus
contagion.17,67,68

■ CONCLUSIONS
In this work, we corroborated the potential of ATR-FTIR and
chemometrics for assessing SARS-CoV-2 contagion status, as
reported by colleagues in previous works.18−21,58 Several serum
constituents including viral RNA, proteins, glycogen, antibod-
ies, and cytokines, could be attributed to differences in the
infrared spectra between infected and non-infected patients,
thus serving as chemical fingerprints. High sensitivity (94.55%)

Table 4. Evaluation Matrix for SARS-CoV-2 Infection Status Classification

class precision recall F-measure MCC ROC area PRC area

non-infected 0.984 0.979 0.982 0.919 0.949 0.962
infected 0.929 0.945 0.937 0.919 0.895 0.488
weighted average 0.972 0.972 0.972 0.919 0.937 0.858

Table 5. Distribution of Cases

severity cases

not infected 194
unknown 12
high 31
mild 12

Table 6. Wavenumbers Selected by Our Model for Assessing
COVID-19 Disease Severity (cm−1)

1014.37 1051.01 1083.79 2792.42
1031.72 1052.94 1646.91 2923.55
1039.44 1054.87 1756.83
1049.08 1064.51 2391.29

Table 7. Confusion Matrix for COVID-19 Disease Severity

classification according to model

cohorts (according to clinical
history)

not
infected unknown severe mild

not infected 186 2 1 5
severity unknown 2 0 8 2
severe 1 3 22 5
mild 4 2 2 4

Table 8. Wavenumbers Selected by Our Model for
Separation in Categories between Dengue Infected and
Non-infected Patients (cm−1)

1008.58 1556.27 2285.23 2902.34
1012.44 1558.20 2289.09 2925.48
1024.01 1724.04 2387.44 3394.10
1351.85 1725.97 2389.37 3561.87
1365.35 1754.90 2391.29 3727.72
1554.34 2273.66 2412.51 3789.43

Table 9. Confusion Matrix for Dengue Infection Status
Instances Classification

classification according to model

cohorts non-infected infected with dengue

non-infected 233 14
infected with dengue 14 61
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and high specificity (98.44%) were achieved by our model for
separating into categories sera samples with regard to SARS-
CoV-2 infection status. The low TATs plus the simplicity of
sample preparation and infrared analysis, which could be
performed by clinical laboratory personnel, followed by
multivariate analysis, which could be performed via cloud
computing, are promising for the development of a widespread
rapid SARS-CoV-2 testing tool. As specifically investigated in
this work, given the correspondence between cytokines
absorption bands and wavenumbers selected by our model
for distinguishing between infected and non-infected patients,
alterations in cytokine blood levels upon infection could be
related to changes in infected patients’ serum infrared spectra,
thus reflecting the influence of pro-inflammatory cytokines in
COVID-19 disease development.
Assessing COVID-19 severity by analyzing infected patients’

sera samples with a rapid, low-cost technique, such as ATR-
FTIR and multivariate analysis, would help medical personnel
to prioritize severe patients in a timely manner, thus potentially
reducing fatalities from COVID-19 disease, as well as a better
management of generally reduced resources within the
currently overwhelmed healthcare infrastructure. According
to our model, for separating in categories regarding COVID-19
severity status, for severe disease classification, sensitivity is
70.97%, and specificity is 94.93%. For mild disease
classification, sensitivity is 33.33% and specificity 94.93%. It
is worth noting that further investigation should be performed
in order to improve the robustness of the model, as well as for
determining spectral contributions upon disease development
with higher precision.
Another advantage of ATR-FTIR and chemometrics analysis

of sera samples include the possibility for developing models
for extracting additional information from the same data
matrix. Regarding dengue contagion status, according to our
model, sensitivity is of 81.33%, and specificity is of 94.33%.
In summary, we have shown the potential of ATR-FTIR

followed by multivariate analysis for the developing of a rapid
and low-cost SARS-CoV-2 infection status and COVID-19
severity diagnostic tool, which can also assess other viruses that
may be present within the samples.
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