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Generalized Empirical Bayes 
Modeling via Frequentist Goodness 
of Fit
Subhadeep Mukhopadhyay & Douglas Fletcher

The two key issues of modern Bayesian statistics are: (i) establishing principled approach for distilling 
statistical prior that is consistent with the given data from an initial believable scientific prior; and (ii) 
development of a consolidated Bayes-frequentist data analysis workflow that is more effective than 
either of the two separately. In this paper, we propose the idea of “Bayes via goodness-of-fit” as a 
framework for exploring these fundamental questions, in a way that is general enough to embrace 
almost all of the familiar probability models. Several examples, spanning application areas such as 
clinical trials, metrology, insurance, medicine, and ecology show the unique benefit of this new point of 
view as a practical data science tool.

Bayesians and frequentists have long been ambivalent toward each other1–3. The concept of “prior” remains the 
center of this 250 years old tug-of-war: frequentists view prior as a weakness that can hamper scientific objec-
tivity and can corrupt the final statistical inference, whereas Bayesians view it as a strength to incorporate rele-
vant domain-knowledge into the data analysis. The question naturally arises: how can we develop a consolidated 
Bayes-frequentist data analysis workflow4–7 that enjoys the best of both worlds? The objective of this paper is to 
develop one such modeling framework.

We observe samples y = (y1, …, yk) from a known probability distribution f(y|θ), where the unobserved 
parameters θ = (θ1, …, θk) are independent realizations from unknown π(θ). Given such a model, Bayesian infer-
ence typically aims at answering the following two questions:

•	 MacroInference: How should we combine k model parameters to come up with an overall, macro-level aggre-
gated statistical behavior of θ1, …, θk?

•	 MicroInference: Given the observables yi, how should we simultaneously estimate individual micro-level 
parameters θi?

Thanks to Bayes’ rule, answers to these questions are fairly straightforward and automatic once we have the 
observed data =y{ }i i

k
1 and a specific choice for π(θ). A common practice is to choose π as the parametric conjugate 

prior g(θ; α, β), where the hyper-parameters are either selected based on an investigator’s expert input or esti-
mated from the data (current/historical) when little prior information is available.

Motivating Questions
However, an applied Bayesian statistician may find it unsatisfactory to work with an initial believable prior g(θ) 
at its face value, without being able to interrogate its credibility in the light of the observed data8,9 as this choice 
unavoidably shapes his or her final inferences and decisions. A good statistical practice thus demands greater 
transparency to address this trust-deficit. What is needed is a justifiable class of prior distributions to answer the 
following pre-inferential modeling questions: Why should I believe your prior? How to check its appropriateness 
(self-diagnosis)? How to quantify and characterize the uncertainty of the a priori selected g? Can we use that 
information to “refine” the starting prior (auto-correction), which is to be used for subsequent inference? In 
the end, the question remains: how can we develop a systematic and principled approach to go from a scientific 
prior to a statistical prior that is consistent with the current data? A resolution of these questions is necessary 
to develop a “dependable and defensible” Bayesian data analysis workflow, which is the goal of the “Bayes via 
goodness-of-fit” technology.
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Summary of Contributions
This paper provides some practical strategies for addressing these questions by introducing a general modeling 
framework, along with concrete guidelines for applied users. The major practical advantages of our proposal 
are: (i) computational ease (it does not require Markov chain Monte Carlo (MCMC), variational methods, or 
any other sophisticated computational techniques); (ii) simplicity and interpretability of the underlying theo-
retical framework which is general enough to include almost all commonly encountered models; and (iii) easy 
integration with mainframe Bayesian analysis that makes it readily applicable to a wide range of problems. The 
next section introduces a new class of nonparametric priors DS(G, m) along with its role in exploratory graphical 
diagnostic and uncertainty quantification. The estimation theory, algorithm, and real data examples are discussed 
in Section 2. Consequences for inference are discussed in Section 3, which include methods of combining hetero-
geneous studies and a generalized nonparametric Stein-prediction formula that selectively borrows strength from 
‘similar’ experiments in an automated manner. Section 3.2 describes a new theory of ‘learning from uncertain 
data,’ which is an important problem in many application fields including metrology, physics, and chemistry. 
Section 3.4 solves a long-standing puzzle of modern empirical Bayes, originally posed by Herbert Robbins10. We 
conclude the paper with some final remarks in Section 4. Connections with other Bayesian cultures are presented 
in the supplementary material to ensure the smooth flow of main ideas.

Real-Data Applications
To demonstrate the versatility of the proposed “Bayes via goodness-of-fit” data analysis scheme, we selected 
examples from a wide range of models including normal, Poisson, and Binomial distributions. The full catalog of 
datasets is presented in Supplementary Table 2.

Notation
The notation g and G denote the density and distribution function of the starting prior, while π and Π denote the 
density and distribution function of the unknown oracle prior. We will denote the conjugate prior with hyperpa-
rameters α and β by g(θ; α, β). Let µ ( )2  be the space of square integrable functions with inner product 
∫ µf u g u u( ) ( )d ( ). Legj(u) denotes jth shifted orthonormal Legendre polynomials on [0, 1]. They form a complete 
orthonormal basis for  (0, 1)2 . Whereas T G G( ; ): Leg [ ( )]j jθ θ=  is the modified shifted Legendre polynomials of 
rank-G transform G(θ), which are basis of the Hilbert space G( )2 . The composition of functions is denoted by 
the usual ‘’ sign.

The Model
Our model-building approach proceeds sequentially as follows: (i) it starts with a scientific (or empirical) para-
metric prior g(θ; α, β), (ii) inspects the adequacy and the remaining uncertainty of the elicited prior using a 
graphical exploratory tool, (iii) estimates the necessary “correction” for assumed g by looking at the data, (iv) 
generates the final statistical estimate ( )π θˆ , and (v) executes macro and micro-level inference. We seek a method 
that can yield answers to all five of the phases using only a single algorithm.

New Family of Prior Densities.  This section serves two purposes: it provides a universal class of prior 
density models, followed by its Fourier non-parametric representation in a specialized orthonormal basis.

Definition 1 . The Skew-G class of density models is given by

π θ θ α β θ= Π .g d G G( ) ( ; , ) [ ( ); , ], (1 1)

where πΠ = − −d u G G u g G u( ; , ) ( ( ))/ ( ( ))1 1  for 0 < u < 1 and consequently d u G( ; , ) 1
0

1
∫ Π = .

A few notes on the model specification:

•	 It has a unique two-component structure that combines assumed parametric g with the d-function. The func-
tion d can be viewed as a “correction” density to counter the possible misspecification bias of g.

•	 The density function d(u; G, Π) can also be viewed as describing the “excess” uncertainty of the assumed g(θ; 
α, β). For that reason we call it the U-function.

•	 The motivation behind the representation (1.1) stems from the observation that d[G(θ); G, Π] is in fact the 
prior density-ratio π(θ)/g(θ). Hence, it is straightforward to verify that the scheme (1.1) always yields a proper 
density, i.e., g d G G( ) [ ( ); , ] 1∫ θ θ Π =

θ
.

Since the square integrable d[G(θ); G, Π] lives in the Hilbert space G( )2 , we can approximate it by 
projecting into the orthonormal basis {Tj} satisfying ∫ θ θ δ=T G T G G( ; ) ( ; )di j ij. We choose Tj(θ; G) to be 

GLeg ( )j θ , a member of the LP-class of rank-polynomials11. The system {Tj} possesses two attractive 
properties: they are polynomials of rank transform G(θ) thus constitutes a robust basis, and they are 
orthonormal with respect to  G( )2 , for any arbitrary G (continuous). This is not to be confused with 
standard Legendre polynomials Legj(u), 0 < u < 1, which are orthonormal with respect to Uniform[0, 1] 
measure. For more details, see Supplementary Appendix B. The above discussion paves the way for the 
following definition.

Definition 2. Θ ~ DS(G, m) distribution if it admits the following representation:

∑π θ θ α β θ=








+ Π







.

.=
g j G T G( ) ( ; , ) 1 LP[ ; , ] ( ; )

(1 2)j

m

j
1



www.nature.com/scientificreports/

3Scientific REPOrTS | (2018) 8:9983 | DOI:10.1038/s41598-018-28130-5

The LP-Fourier coefficients LP[j; G, Π] are the key parameters that help us to express mathematically the 
“gap” between a priori anticipated G and the true prior Π. When all the expansion coefficients are zero, we 
automatically recover g.

We will now spend a few words on the LP-DS(G, m) class of prior models:
•	 When π(θ) is a member of DS(G, m) class of priors, the orthogonal LP-transform coefficients (1.2) satisfy

j G d T G T GLP[ ; , ] , [ ( ; ); ] (1 3)j j
1

(0,1)2Π = 〈 〉 = Θ Π . .
− 

Thus, given a random sample θ1, …, θk from π(θ), we could easily estimate the unknown LP-coefficients, 
and, thus, d and π, by computing the sample mean k T G( ; )i

k
j i

1
1 θ∑−

= . But unfortunately, the θi’s are 
unobserved. Section 2 describes an estimation strategy that can deal with the situation at hand. Before 
introducing this technique, however, we must acclimate the reader with the role played by the U-function 
d(u; G, Π) for uncertainty quantification and characterization of the initial believable prior g. That’s the 
objective of the next Section 1.2.

•	 Under definition 2, we have DS(G, m = 0) ≡ g(θ; α, β). The truncation point m in (1.2) reflects the concentra-
tion of permissible π around a known g. While this class of priors is rich enough to approximate any reason-
able prior with the desired accuracy in the large-m limit, one can easily exclude absurdly rough densities and 
focus on a neighborhood around the domain-knowledge-based g by choosing m not “too big.”

•	 The motivations behind the name ‘DS-Prior’ are twofold. First, our formulation operationalizes I. J. Good’s 
‘Successive Deepening’ idea12 for Bayesian data analysis:

A hypothesis is formulated, and, if it explains enough, it is judged to be probably approximately correct. The next 
stage is to try to improve it. The form that this approach often takes in EDA is to examine residuals for patterns, or to 
treat them as if they were original data (I. J. Good, 1983, p. 289).

Secondly, our prior has two components: A Scientific g that encodes an expert’s knowledge and a Data-driven 
d. That is to say that our framework embraces data and science, both, in a testable manner13.

Exploratory Diagnostics and U-Function.  Is your data compatible with the pre-selected g(θ)? If yes, the 
job is done without getting into the arduous business of nonparametric estimation. If no, we can model the “gap” 
between the parametric g and the true unknown prior π, which is often far easier than modeling π from scratch 
(hence, one can learn from small number of cases)! If the observed y1, …, yk look very unexpected given g(θ; α, 
β), it is completely reasonable to question the sanctity of such a self-selected prior. Here we provide a formal 
nonparametric exploratory procedure to describe comprehensively the uncertainty about the choice of g. Using 
the algorithm detailed in the next section, we estimate U-functions for four real data sets. Among them, the first 
three are binomial variate and the last one normal. The results are shown in Fig. 1.

•	 The rat tumor data14 consists of observations of endometrial stromal polyp incidence in k = 70 groups of 
female rats. For each group, yi is the number of rats with polyps and ni is the total number of rats in the 
experiment.

•	 The terbinafine data15 comprise k = 41 studies, which investigate the proportion of patients whose treatment 
terminated early due to some adverse effect of an oral anti-fungal agent: yi is the number of terminated treat-
ments and ni is the total number of patients in the experiment.

•	 The rolling tacks16 data involve flipping a common thumbtack 9 times. It consists of 320 pairs, (9, yi), where yi 
represents the number of times the thumbtack landed point up.

•	 The ulcer data consist of forty randomized trials of a surgical treatment for stomach ulcers conducted between 
1980 and 198917,18. Each of the 40 trials has an estimated log-odds ratio y s( , )i i i i

2θ θ| ∼   that measures the rate 
of occurrence of recurrent bleeding given the surgical treatment.
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Figure 1.  Graphical diagnostic tool: U-functions for (a) rat tumor data; (b) terbinafine and ulcer data; (c) 
rolling tacks data. The deviation from uniformity (red dotted line) indicates that the default prior contradicts 
the observed data. The flat shape of the U-function in panel (b) suggests Beta(1.24, 34.7) and  − . .( 1 17, 0 98) 
are consistent with the terbinafine and ulcer data, respectively.
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Throughout, we have used the maximum likelihood estimates (MLE) for estimating the initial starting value of 
the hyperparameters. However, one can use any other reasonable choice, which may involve expert’s judgment. 
What is important to note is the shape of the d̂; more specifically, its departure from uniformity, indicates the 
assumed conjugate prior g(θ; α, β) needs a ‘repair’ to resolve the prior-data conflict. For example, the flat shape of 
the estimated d̂ in Fig. 1(b) indicates that our initial selection of g(θ; α, β) is appropriate for the terbinafine and 
ulcer data. Therefore, one can proceed in turning the “Bayesian crank” with confidence using the parametric beta 
and normal prior respectively.

In contrast, Fig. 1(a,c) provide a strong warning in using g = Beta(α, β) for the rat tumor and the rolling tacks 
experiments. The smooth estimated U-functions expose the nature of the discrepancy that exists between g and 
the observed data by having an “extra” mode. Clearly, the answer does not lie in choosing a different (α, β) as this 
cannot rectify the missing bimodality. This brings us to an important point: the full Bayesian analysis, by assign-
ing hyperprior distribution on α and β, is not always a fail-safe strategy and should be practiced with caution (not 
in a blind mechanical way). The bottom line is uncertainty in the prior probability model ≠ uncertainty in α, β. 
A foolproof prior uncertainty model, thus, has to allow ignorance in terms of the functional shape around g. The 
foregoing discussion motivates the following entropy-like measure of uncertainty.

Definition 3. The qLP statistic for uncertainty quantification is defined as follows:

∑Π = | Π | .
.

G j GqLP( ) LP[ ; , ]
(1 4)j

2

The motivation behind this definition comes from applying Parseval’s identity in (1.2): ∫ Π =d u G( ; , )
0

1 2

+ ΠG1 qLP( ) . Thus, the proposed measure captures the departure of the U-function from uniformity. The 
following result connects our qLP statistic with relative entropy.

Theorem 1. The qLP uncertainty quantification statistic satisfies the following relation:

Π ≈ × Π .G GqLP( ) 2 KL( ), (1 5)

where KL(Π||G) is the Kullback–Leibler (KL) divergence between the true prior π and its parametric approxi-
mate g.

Proof. Express KL-information divergence using U-functions by substituting G(θ) = u:

∫ ∫π θ π θ
θ

θΠ = = Π Π .
.

G
g

d u G d u G uKL( ) ( ) log ( )
( )

d ( ; , ) log ( ; , )d
(1 6)0

1

Complete the proof by approximating dlogd in (1.6) via Taylor series − + −d d( 1) ( 1)1
2

2.
We conclude this section with a few additional remarks:

•	 Our exploratory uncertainty diagnostic tool encourages “interactive” data analysis that is similar in spirit to 
Gelman et al.19. Subject-matter experts can use this tool to “play” with different hyperparameter choices in 
order to filter out the reasonable ones. This functionality might be especially valuable when multiple expert 
opinions are available.

•	 When d̂ shows evidence of the prior-data conflict, the question remains: what to do next? It is not enough to 
check the adequacy without informing the user an explanation for the misfit or what is the “deeper” structure 
that is missing in the starting parametric prior. Fortunately, our DS(G, m) model suggests a simple, yet formal, 
guideline for upgrading: g d G G( ) ( ; , ) [ ( ); , ]


ˆ ˆ ˆπ θ θ α β θ= × Π , where the shape of Πd̂ u G( ; , ) captures the pat-

terns which were not a priori anticipated. Hence our formalism simultaneously addresses the problem of 
uncertainty quantification and the subsequent model synthesis.

Estimation Method
Theory.  In this Section, we lay out the key theoretical results that we use for designing our algorithm. Before 
deriving the general expressions under the LP-DS(G, m) model, it is helpful to start by recalling the results for the 
basic conjugate model, i.e., Θ ~ DS(G, m = 0) and y f y( )i i i i

indθ θ| ∼ |  for i = 1, …, k. Table 1 provides the marginal 
f y f y g( ) ( ) ( )dG i i i i i

i
∫ θ θ θ= |

θ
 and the posterior distribution π θ | =

θ θ|
y( )G i i

f y g

f y

( ) ( )

( )
i i i

G i
 for four commonly encountered 

distributions, with the Bayes estimate of h(Θi) being denoted as h y h y[ ( ) ] ( ) ( )dG i i i G i i i
i

 ∫ θ π θ θΘ | = |
θ

. The subscript 
‘G’ in these expressions underscores the fact that they are calculated for the conjugate g-model.

Next, we seek to extend these parametric results to LP-nonparametric setup in a systematic way. Especially, 
without deriving analytical expressions for each case separately, we want to establish a more general representa-
tion theory that is valid for all of the above and, in fact, extends to any conjugate pairs, explicating the underlying 
unity of our formulation.

Theorem 2. Consider the following model:
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θ θ

π θ

| ∼ | = …

Θ ∼

y f y i k( ), ( 1, , )

( ),
i i i i

i

ind

ind

where π(θ) is a member of DS(G, m) family (1.2), G being the associated conjugate prior. Under this framework, the 
following holds:

	(a)	 The marginal distribution of yi is given by

∑=





+ Π Θ |





 .
f y f y j G T G y( ) ( ) 1 LP[ ; , ] [ ( ; ) ] ,

(2 1)
i G i

j
G j i iLP

where ∫ θ π θ θΘ | = |
θ

 T G y G y[ ( ; ) ] Leg ( ) ( )dG j i i j i G i i i
i

.
	(b)	 A closed-form expression for the posterior distribution of Θi given yi is

( )y
y j G T G

j G T G y
( )

( ) 1 LP[ ; , ] ( ; )

1 LP[ ; , ] [ ( ; ) ] (2 2)
i i

G i i j j i

j G j i i
LPπ θ

π θ θ
| =

| + ∑ Π

+ ∑ Π Θ | .

	(c)	 For any general random variable h(Θi), the Bayes conditional mean estimator can be expressed as follows:

h y
h y j G h T G y

j G T G y
[ ( ) ]

[ ( ) ] LP[ ; , ] [ ( ) ( ; ) ]

1 LP[ ; , ] [ ( ; ) ] (2 3)
i i

G i i j G i j i i

j G j i i
LP Θ | =

Θ | + ∑ Π Θ Θ |

+ ∑ Π Θ | .


 


Proof. The marginal distribution for DS(G, m)-nonparametric model can be represented as:

f y f y g d G G( ) ( ) { ( ; , ) [ ( ); , ]}di i i i i iLP ∫ θ θ α β θ θ= | × Π .

Expanding the U-function in the LP-bases (1.2) yields

f y f y j G T G f y g( ) ( ) LP[ ; , ] ( ; ) ( ) ( ; , )d
(2 4)

i G i
j

j i i i i iLP ∫∑ θ θ θ α β θ= + Π | .
.

The next step is to recognize that

f y g f y y( ) ( ; , ) ( ) ( ) (2 5)i i i G i G i iθ θ α β π θ| = | . .

Substituting (2.5) in the second term of (2.4) leads to

j G T G f y g f y j G T G yLP[ ; , ] ( ; ) ( ) ( ; , )d ( ) LP[ ; , ] [ ( ; ) ]
(2 6)j

j i i i i i G i
j

G j i i∫∑ ∑θ θ θ α β θΠ | = Π Θ | .
.

Complete the proof of part (a) by replacing (2.6) into (2.4).

Family
Conjugate 
g-prior Marginal [fG(yi)] Posterior [πG(θi|yi)]

Binomial(ni, θi) Beta(α, β)








α β

α β

+ − +n
y

i

i

yi yi niB
B

( , )
( , ) Beta(α + yi, β − yi + ni)

Poisson(θi) Gamma(α, β)
α




+ − 




−αy
y p p

1
(1 )i

i

yi ( )yGamma ,i 1α + β
β+

θ σNormal( , )i i
2 Normal(α, β2) α σ β+Normal( , )i

2 2 λ α λ λ σ+ − −yNormal( (1 ) , (1 ) )i i i i i
2

Exp(λ) Gamma(α, β)
y(1 ) 1

αβ

β α+ + ( )Gamma 1, yi1α + β
β+

Table 1.  Details on the distributions, their conjugate priors, and the resulting marginal and posterior 
distributions for four familiar distributions (two discrete and two continuous): Binomial, Poisson, Normal, and 
Exponential. For the normal-normal posterior λ σ σ β= +/( )i i i

2 2 2  and in the marginal of the Poisson-gamma 
p = 1/(1 + β). We use B( , ) ( ) ( )

( )
α β = α β

α β
Γ Γ
Γ +

 to denote the normalizing constant of beta distribution.



www.nature.com/scientificreports/

6Scientific REPOrTS | (2018) 8:9983 | DOI:10.1038/s41598-018-28130-5

For part (b) of posterior distribution calculation we have

∑π θ
θ θ α β

θ| =
| 







+ Π







.
.

y
f y g

f y
j G T G( )

( ) ( ; , )
( )

1 LP[ ; , ] ( ; )
(2 7)

i i
i i i

i j
j jLP

LP

Combine (2.1) and (2.5) to verify that


θ θ α β π θ|

=
|

+ ∑ Π Θ |
.

.

f y g
f y

y
j G T G y

( ) ( ; , )
( )

( )
1 LP[ ; , ] [ ( ; ) ] (2 8)

i i i

i

G i i

j G j i iLP

Finish the proof of part (b) by replacing (2.8) into (2.7).

Part (c) is straightforward as

 h y h y[ ( ) ] ( ) ( )d ,i i i i i iLP LP∫ θ π θ θΘ | = |

which is same as

{ }h y j G T G

j G T G y

( ) ( ) 1 LP[ ; , ] ( ; ) d

1 LP[ ; , ] [ ( ; ) ]
,

i G i i j j j i

j G j i i

∫ θ π θ θ θ| + ∑ Π

+ ∑ Π Θ |

by (2.2). Hence, result (2.3) is immediate.
Our LP-Bayes recipe (2.1)–(2.3), admits some interesting overall structure: The usual ‘parametric’ answer mul-

tiplied by a correction factor involving LP[j;G,Π]’s. This decoupling pays dividends for theoretical interpretation 
as well as computation.

Algorithm.  The critical parameters of our DS(G, m) model are the LP-Fourier coefficients, which, as is evi-
dent from (1.3), could be estimated simply by their empirical counterpart θΠ = ∑−

=j G k T GLP[ ; , ] ( ; )i
k

j i
1

1
 . But as 

we pointed out earlier, θ1, …, θk are unobservable. How can we then estimate those parameters? While the θi’s are 
unseen, it is interesting to note that they have left their footprints in the observables y1, …, yk with distribution 
f y f y( ) ( ) ( )di i i i i∫ θ π θ θ= | . Following the spirit of the EM-algorithm, an obvious proxy for Tj(θi; G) would be its 
posterior mean Θ |T G y[ ( ; ) ]j i iLP , which also naturally arises in the expression (2.1). This leads to the following 
‘ghost’ LP-estimates:

j G k T G yLP[ ; , ] [ ( ; ) ],
(2 9)i

k

j i i
1

1
LP∑Π = Θ |

.

∼ −

=

satisfying  Π = Π = …
∼ ∼j G j G j m{LP[ ; , ]} LP[ ; , ] ( 1 , ), by virtue of the law of iterated expectations. These esti-

mates can then be refined via iterations. The following algorithm implements this strategy.

We conclude this section with a few remarks on the algorithm:

•	 Taking inspiration from I. J. Good’s type II maximum likelihood nomenclature20, we call our algorithm Type-
II Method of Moments (MOM), whose computation is remarkably tractable and does not require any numer-
ical optimization routine.

•	 To enhance the results, we smooth the output of MOM-II algorithm as follows: determine significantly non-
zero LP-coefficients via Schwartz’s BIC-based smoothing. Arrange j GLP[ ; , ]Π

∼ ’s in a decreasing magnitude 
and choose m that maximizes

Type-II.  Method of Moments: Estimation of LP-Coefficients in DS(G, m).
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m j G m k
k

BIC( ) LP[ ; , ] log( )

j

m

1

2∑= | Π | − .
=



See Supplementary Appendix D for more details. Furthermore, Supplementary Appendix I discusses how 
MOM-II Bayes algorithm can be adapted to yield LP-maximum entropy prior density estimate21.

Results.  In addition to the rat tumor data (cf. Section 1.2), here we introduce and analyze three additional 
datasets: two binomial and one Poissonian example.

•	 The surgical node data22 involves number of malignant lymph nodes removed during intestinal surgery22. 
Each of the k = 844 patients underwent surgery for cancer, during which surgeons removed surrounding 
lymph nodes for testing. Each patient has a pair of data (ni, yi), where ni represents the total nodes removed 
from patient i and yi ~ Bin(ni, θi) are the number of malignant nodes among them.

•	 The Navy shipyard data23 consists of k = 5 samples of the number of defects yi found in ni = 5 lots of welding 
material.
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Figure 2.  Comparisons of the DS(G, m) prior ( )π θˆ  (solid red) with the respective parametric EB (PEB) priors 
g(θ; α, β) (dashed blue) for the (a) rat tumor data, (b) surgical node data, (c) Navy shipyard data, and (d) 
insurance data.

Group Studies

1 (0, 20), (0, 20), (0, 20), (0, 20), (0, 20), (0, 20), (0, 20), (0, 19), (0, 19), (0, 19), (0, 19)
(0, 18), (0, 18), (0, 17), (1, 20), (1, 20), (1, 20), (1, 20), (1, 19), (1, 19), (1, 18), (1, 18)

2

(3, 27), (2, 25), (2, 24), (2, 23), (2, 20), (2, 20), (2, 20), (2, 20), (2, 20), (2, 20), (1, 10)
(5, 49), (2, 19), (5, 46), (2, 17), (7, 49), (7, 47), (3, 20), (3, 20), (2, 13), (9, 48), (10, 50)
(4, 20), (4, 20), (4, 20), (4, 20), (4, 20), (4, 20), (4, 20), (10, 48), (4, 19), (4, 19), (4, 19)
(5, 22), (11, 46), (12, 49), (5, 20), (5, 20), (6, 23), (5, 19), (6, 22), (6, 20), (6, 20), (6, 20)
(16, 52), (15, 46), (15, 47), (9, 24)

Table 2.  Two group partitions of the rat tumor studies based on K-means clustering on the posterior mode 
predictions (see Section 3.3 and Fig. 5(c)).
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•	 The insurance data24, shown in Table 4, provides a single year of claims data for an automobile insurance 
company in Europe24. The counts yi ~ Poisson(θi) represent the total number of people who had i claims in a 
single year.

Figure 2 displays the estimated LP-DS(G, m) priors along with the default parametric (empirical Bayes) coun-
terparts. The estimated LP-Fourier coefficients together with the choices of hyperparameters (α, β) are summa-
rized below:

	(a)	 Rat tumor data, g is the beta distribution with MLE α = 2.30, β = 14.08:

g T G( ) ( ; , ) [1 0 50 ( ; )] (2 10)3π θ θ α β θ= − . . .ˆ

	(b)	 Surgical node data, g is the beta distribution with MLE α = 0.32, β = 1.00:

g T G T G T G T G( ) ( ; , ) [1 0 07 ( ; ) 0 11 ( ; ) 0 09 ( ; ) 0 13 ( ; )] (2 11)3 4 5 7π θ θ α β θ θ θ θ= − . − . + . + . . .ˆ

	(c)	 Navy shipyard data, g is the Jeffreys prior with α = 0.5, β = 0.5:

ˆ g T G T G( ) ( ; , ) [1 0 67 ( ; ) 0 90 ( ; )] (2 12)1 2π θ θ α β θ θ= − . + . . .

	(d)	 Insurance data, g is the gamma distribution with MLE α = 0.70 and β = 0.31:

π θ θ α β θ= − . . .g T G( ) ( ; , ) [1 0 26 ( ; )] (2 13)2ˆ

The rat tumor data shows a prominent bimodal shape, which should not come as a surprise in light of Fig. 1(a). 
For the surgical data, DS-prior puts excess mass around 0.4, which concurs with the findings of Efron [22, Sec. 
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Figure 3.  Estimated macro-inference summary along with standard errors (using smooth bootstrap) are 
shown. Panel (a) displays the rat tumor data modes located at 0.034 (±0.016) and 0.156 (±0.016). Panel (b) 
shows the estimated unimodal prior of the terbinafine data has a mean at 0.034 (±0.006). Panel (c) presents the 
modes of the rolling tacks data at 0.55 (±0.022) and 0.77 (±0.018).
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Figure 4.  Panel (a) shows the U-function, while panel (b) compares the DS-prior ˆ( )π θ  (solid red) with the PEB 
prior g(θ; α, β) (dashed blue) for the arsenic data. Based on the estimated macro-inference summary along with 
standard errors (using smooth bootstrap), the best consensus value is the mode 13.6 (±0.242).
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4.2]. In the case of the Navy shipyard data, our analysis corrects the starting “U” shaped Jeffreys prior to make it 
asymmetric with an extended peak at 0. This is quite justifiable looking at the proportions in the given data: (0/5, 
0/5, 0/5, 1/5, 5/5). Finally, for the insurance data, the starting gamma prior requires a second-order (dispersion 
parameter) correction to yield a bona-fide π̂ (2.13), which makes it slightly wider in the middle with sharper peak 
and tail.

Inference
MacroInference.  A single study hardly provides adequate evidence for a definitive conclusion due to the 
limited sample size. Thus, often the scientific interest lies in combining several related but (possibly) heterogeneous 
studies to come up with an overall macro-level inference that is more accurate and precise than the individual 
studies. This type of inference is a routine exercise in clinical trials and public policy research.

Terbinafine data analysis.  For the terbinafine data, the aim is to combine k = 41 treatment arms with varying 
event rates and produce a pooled proportion of patients who withdrew from the study because of the adverse 
effects of oral anti-fungal agents. Recall that our U-function diagnostic in Fig. 1(b) indicated the parametric 
beta-binomial model with MLE estimates α = 1.24 and β = 34.7 as a justifiable choice for this data. Thus the 
adverse event probabilities across k = 41 studies can be summarized by the prior mean = .α

α β+
0 034. We apply 

parametric bootstrap using DS(G, m)-sampler (see Supplementary Appendix C) with m = 0 to compute the 
standard error (SE): 0.034 ± 0.006, highlighted in the Fig. 3(b). If one assumes a single binomial distribution for 
all the groups (i.e., under homogeneity), then the ‘naive’ average y n/i

k
i i

k
i1 1∑ ∑= =  would lead to an overoptimistic 

biased estimate 0.037 ± 0.0034. In this example, heterogeneity arises due to overdispersion among the exchange-
able studies. But there could be other ways too. An example is given in the following case study.

Figure 5.  Comparisons of DS Elastic-Bayes and PEB posterior predictions of the rat tumor data: (a) posterior 
means, (b) posterior medians, and (c) posterior modes. The vertical red triangles indicate the location of the 
modes on the DS prior; the blue triangles respectively denote the mean, median, and mode of the parametric 

ˆ ˆBeta( 2 3, 14 08)α β= . = . .

Laboratory 1 2 3 4 5


25 26 27 28

Measurement (yi) 9.78 10.18 10.35 11.60 12.01


14.70 15.00 15.10 15.50

Uncertainty (si) 0.30 0.46 0.07 0.78 2.62


0.30 1.00 0.20 1.60

Table 3.  Measurements (sorted) along with their uncertainty from different laboratories in arsenic data.

Claims y 0 1 2 3 4 5 6 7

Counts 7840 1317 239 42 14 4 4 1

Gamma PEB 0.164 0.398 0.633 0.87 1.10 1.34 1.57 1.80

Robbins’ EB 0.168 0.363 0.527 1.33 1.43 6.00 1.75 —

Deconvolve 0.164 0.377 0.642 1.14 2.13 3.45 4.47 5.08

NPMLE 0.168 0.362 0.534 1.24 2.21 2.53 2.58 2.58

DS Elastic-Bayes 0.156 0.322 0.517 0.744 1.02 1.56 3.01 5.24

Table 4.  For the insurance data set, estimates for the number of claims expected in the following year by an 
individual who made y claims during the present year, θ| =̂ Y y( ), by five different methods.
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Rat tumor and rolling tacks data analysis.  Can we always extract a “single” overall number to aptly describe k 
parallel studies? Not true, in general. In order to appreciate this, let us look at Fig. 3(a,c), which depict the esti-
mated DS-prior for the rat tumor and rolling tacks data. We highlight two key observations:

	 1.	 Mixed population. The bimodality indicates the existence of two distinct groups of θi’s. We call this “struc-
tured heterogeneity,” which is in between two extremes: homogeneity and complete heterogeneity (where 
there is no similarity between the θi’s whatsoever). The presence of two clusters for the rolling tacks data 
was previously detected by Jun Liu25. The author further noted, “Clearly, this feature is unexpected and 
cannot be revealed by a regular parametric hierarchical analysis using the Beta-binomial priors.” One plau-
sible explanation for this two-group structure was attributed to the fact that the tack data were produced 
by two persons with some systematic difference in their flipping. On the other hand, the bimodal shape of 
the rat example was not previously anticipated14,26,27. The resulting two groups of rat tumor experiments 
are enumerated in the Table 2. Although we do not have the necessary biomedical background to scientif-
ically justify this new discovery, we are aware that potentially numerous factors (e.g., experimental design, 
underlying conditions, selection of specific groups of female rats) may contribute to creating this systemic 
variation.

	 2.	 From single mean to multiple modes. An attempt to combine the two subpopulations using a single prior 
mean (as carried out for the terbinafine example) would result in overestimating one group and underesti-
mating another. We prefer modes of 


π θ( ), along with their SEs, as a good representative summary, which 

can be easily computed by the nonparametric smooth bootstrap via DS(G, m) sampler.

Learning from big heterogeneous studies is one of the most important yet unsettled matters of modern mac-
roinference18,28. Our key insight is the realization that the ‘science of combining’ critically depends on the shape of 
the estimated prior. One interesting and commonly encountered case is multimodal structure of the learned prior. 
In such situations, instead of the prior-mean summary, we recommend group-specific modes. Our algorithm is 
also capable of finding data-driven clusters of the partially exchangeable studies in a fully automated manner.

Learning From Uncertain Data.  An important problem of measurement science that routinely appears 
in metrology, chemistry, physics, biology, and engineering can be stated as follows: measurements are made by 
k different laboratories in the form of y1, …, yk along with their estimated standard errors s1, …, sk. Given this 
uncertain data, a fundamental problem of interest is inference concerning: (i) estimation of the consensus value 
of the measurand, and (ii) evaluation of the associated uncertainty. The data in Table 3 are an example of such an 
inter-laboratory study involving k = 28 measurements for the level of arsenic in oyster tissue. The study was part 
of the National Oceanic and Atmospheric Administration’s National Status and Trends Program Ninth Round 
Intercomparison Exercise29.

Arsenic data analysis.  We start with the DS-measurement model: Y s( , )i i i i i
2θ θ|Θ = ∼  and Θi ~ DS(G, m) 

(i = 1, …, 28) with G being µ τ( , )2 . The shape of the estimated U-function in Fig. 4(a) indicates that the 
pre-selected prior ( 13 22, 1 85 )2 2ˆ ˆµ τ= . = .  is clearly unacceptable for arsenic data, thereby disqualifying the 
classical Gaussian random effects model30. The DS-corrected π shows some interesting asymmetric pattern with 
two-bumps. The left-mode represents measurements from three laboratories that are unlike the majority. The 
result of our macro-inference is shown in Fig. 4(b), which delivers the consensus value 13.6 ± 0.24. This is clearly 
far more resistant to fairly extreme low measurements and surprisingly, also more accurate when compared to the 
parametric EB estimate 13.22 ± 0.26. Most importantly, our scheme provides an automated solution to the funda-
mental problem of which (as well as how) measurements from the participating laboratories should be combined 
to form a best consensus value. Possolo31 fits a Bayesian hierarchical model with prior as Student’s tν, where the 
degrees of freedom was also treated as a random variable over some arbitrary range {3, …, 118}. Although a 
heavy-tailed Student’s t-distribution is a good choice to ‘robustify’ the analysis, it fails to capture the inherent 
asymmetry and the finer modal structure on the left. Distinguishing long-tail from bimodality is an important 
problem of applied statistics by itself.

To summarize, there are several attractive features of our general approach: (i) it adapts to the structure of the 
data, yet (ii) allows the use of expert opinion to go from knowledge-based prior to statistical prior; (iii) if multiple 
expert opinions are available, one can also use the U-diagnostic for reconciliation–exploratory uncertainty assess-
ment; (iv) it avoids the questionable exercise of detecting and discarding apparently unusual measurements32, and 
finally (v) our theory is still applicable for very small number of parallel cases (cf. Fig. 2(c)), a situation which is 
not uncommon in inter-laboratory studies.

MicroInference.  The objective of microinference is to estimate a specific microlevel θi given yi. Consider the 
rat tumor example where, along with earlier k = 70 studies, we have an additional current experimental data, that 
shows y71 = 4 out of n71 = 14 rats developed tumors. How can we estimate the probability of a tumor for this new 
clinical study? There could be at least three ways to answer this question:

•	 Frequentist MLE estimate: An obvious estimate would be the sample proportion θ = .y n: / 0 286i 71 71 . This 
operates in an isolated manner, completely ˇ˅∨∨ignoring the additional historical information of k = 70 
studies.

•	 Parametric empirical Bayes estimate: It is reasonable to expect that the historical data from earlier studies may 
be related to the current 71st study, thus borrowing information can result in improved estimator of θ71. Bayes 
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posterior mean estimate y[ ]i G i iθ̌ = Θ |  operationalizes this heuristic, which in the Binomial case takes the 
following form:
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This is famously known as Stein’s shrinkage formula33,34, as it pulls the sample proportions toward the overall 

mean of the prior α
α β+

. For smaller (ni) studies, shrinkage intensity is higher, which allows them to learn from 

other experiments.
•	 Nonparametric Elastic-Bayes estimate: Is it a wise strategy to shrink all iθ ’s toward the grand mean 0.14? Inter-

estingly, this shrinking point is near the valley between the twin-peaks of the rat tumor prior density estimate 
(verify from Fig. 3(a)) and therefore may not represent a preferred location. Then, where to shrink? Ideally, we 
want to learn only from the relevant subset of the full dataset–selective shrinkage, e.g., for rat data, it would be 
the group 2 of Table 2. This brings us to the question: how to rectify the parametric empirical Bayes estimate 
θ̌i? The formula (2.3) gives us the required (nonlinear) adjusting factor:

ˆ
ˇ 


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θ
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dictating the magnitude and direction of shrinkage in a completely data-driven manner via LP-Fourier coeffi-
cients. Note that when d 1≡ , i.e., all the LP[j; G, Π] are zero, (3.2) reproduces the parametric θǐ. Due to its flexi-
bility and adaptability, we call this the Elastic-Bayes estimate. This can be considered as a nonparametric class of 
shrinkage estimators that starts with the classical Stein’s formula and rectifies it by looking at the data.

Rat tumor example.  Figure 5 compares Stein’s empirical Bayes estimate with our Elastic-Bayes estimate for the 
all k = 70 tumor rates. Posterior mean, median, and mode of θj’s are shown side by side in three plots. The depar-
ture from the 45° reference line is a consequence of “adaptive shrinkage.” Elastic-Bayes automatically shrinks the 
empirical θi towards the representative modes (0.034 and 0.156), whereas the Stein’s PEB estimate uses the grand 
mean (≈0.14) as the shrinking target for all the tumor rates. This is particularly prominent in Fig. 5(c) for maxi-
mum a posteriori (MAP) estimates. As before, for heterogeneous population, we prescribe posterior mode as the 
final prediction.

The Pharma-example.  Our DS Elastic-Bayes estimate is especially powerful in the presence of prior-data con-
flict. To illustrate this point, we report a small simulation study. The goal is to compare MSE for frequentist MLE, 
parametric empirical Bayes, and nonparametric Elastic-Bayes estimates for a new study ynew in various levels of 
prior-data conflict. To capture the prior-data conflict, we consider the following model for π(θ) and ynew:

y
( ) Beta(5, 45) (1 )Beta(30, 70)

Bin(50, 0 3)new

π θ η η= + −
∼ . .
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Figure 6.  Panel (a) illustrates the prior-data conflict for η = 0.1 versus η = 0.4; ‘*’ denotes 0.3, the true mean of 
ynew. Panel (b) shows the MSE ratios for PEB to Frequentist MLE (PEB/FQ; green) and PEB to DS (PEB/DS; red) 
with respect to η. Notice that as more prior-data conflict is introduced, DS outperforms PEB while frequentist 
MLE performance improves.
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The parameter η varies from 0 to 0.50 in increments of 0.05; as η increases we introduce more heterogeneity 
into the true prior distribution and exacerbate the prior-data conflict between π(θ) and ynew; see Fig. 6(a). We 
simulated k = 100 θi from π(θ), with which we generate θ θ| ∼y Bin(60, )i i i . Using the Type-II MoM algorithm on 
the simulated data set, we found π̂. After generating ynew, we then determined the frequentist MLE, parametric EB 
(PEB), and the nonparametric elastic Bayes estimates of the mode. For each value of η, we repeated this process 
250 times and found the mean squared error (MSE) for each estimate. To better illustrate the impact of prior-data 
conflicts, we used ratio of PEB MSE to frequentist MSE and PEB MSE to DS MSE. The results are shown in 
Fig. 6(b).

The Elastic-Bayes estimate outperforms the Stein’s estimate for all η. More importantly the efficiency of our 
estimate continues to increase with the heterogeneity. This is happening because elastic Bayes performs selective 
shrinkage of sample proportion towards the appropriate mode (near 0.3) and thus gains “strength” by combining 
information from ‘similar’ studies even when the contamination in the study population increases. An interesting 
observation is the performance of the frequentist MLE estimate; as the data becomes more heterogeneous, the fre-
quentist MLE shows improvement with respect to the Stein’s PEB estimate. Our simulation depicts a scenario that 
is very common in historic-controlled clinical trials, where the heterogeneity arises due to changing conditions. 
Additional comparisons with other empirical Bayes procedures can be found in Supplementary Appendix G.

Three additional real examples.  Figure 7 shows the posterior plots for specific studies in four of our data sets: 
surgical node, rat tumor, Navy shipyard, and rolling tacks. In studies like the surgical node data, personalized 
predictions are typically valuable. Figure 7(a) shows posterior distributions for three selected patients, which are 
indistinguishable from Efron’s deconvolution answer35 [Fig. 4]; the patient with ni = 32 and yi = 7 shows almost 
certainly θi > 0.5, i.e., he or she is highly prone to positive lymph nodes, and thus should be referred to follow-up 
therapy. With regard to the rat tumor data, Fig. 7(b) depicts the DS-posterior distribution of θ71 along with its 
parametric counterpart πG(θ71|y71, n71). Interestingly, the DS nonparametric posterior shows less variability; this 
possibly has to do with the selective learning ability of our method, which learns from similar studies (e.g. group 
2), rather than the whole heterogeneous mix of studies. We see similar phenomena in the rolling tacks data, 
where panel (d): yi = 3, is more reflective of the first mode and panel (f): yi = 8, of the second. Panel (e) shows 
the bimodal posterior for yi = 6 case. Finally, the Navy shipyard data (Fig. 7(c)) exhibits another advantage of DS 
priors: it works equally well for small k. The DS-posterior mean estimate for y6 = 0 is 0.0471, which is consistent 
with the findings of Sivaganesan and Berger36 [p. 117].

Poisson Smoothing: The Two Cultures.  We consider the problem of estimating a vector of Poisson inten-
sity parameters θ = (θ1, …, θk) from a sample of Yi|θi ~ Poisson(θi), where the Bayes estimate is given by:
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Figure 7.  Panel (a) shows DS posterior plots of three observations from the surgical node data: (y = 7, n = 32), 
(y = 3, n = 6), and (y = 17, n = 18). For panels (b) through (f), red denotes the DS posterior and blue dashed is 
the PEB posterior. Panel (b) is π̂ θ | =y( 4)71 71  for the rat tumor data. Panel (c) displays ˆ y( 0)6 6π θ | =  for the Navy 
shipyard data. The second row shows the posterior distributions of (d) yi = 3, (e) yi = 6, and (f) yi = 8 from the 
rolling tacks data.
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Two primary approaches for estimating (3.3):

•	 Parametric Culture37,38: If one assumes π(θ) to be the parametric conjugate Gamma distribution 
θ α β θ=

β α
α θ β

Γ
− −

αg e( ; , ) 1
( )

1 / , then it is straightforward to show that Stein’s estimate takes the following ana-
lytical form θ =

α

β

+

+−i
y

1
i

1
ˇ , weighted average of the MLE yi and the prior mean αβ.

•	 Nonparametric Culture4,7,39: This was born out of Herbert Robbins’ ingenious observation that (3.3) can alter-
natively be written in terms of marginal distribution y( 1) f y

f y
( 1)

( )
+ + , and thus can be estimated non-paramet-

rically by substituting empirical frequencies. This remarkable “prior-free” representation, however, does not 
hold in general for other distributions. As a result, there is a need to develop methods that can bite the bullet 
and estimate the prior π from the data. Two such promising methods are Bayes deconvolution7 and the Kief-
er-Wolfowitz non-parametric MLE (NPMLE)39,40. Efron’s technique can be viewed as smooth nonparametric 
approach, whereas NPMLE generates a discrete (atomic) probability measure. For more discussion, see Sup-
plementary Appendix A2.

The Third Culture.  Each EB modeling culture has its own strengths and shortcomings. For example, PEB meth-
ods are extremely efficient when the true prior is Gamma. On the other hand, the NEB methods possess extraor-
dinary robustness in the face of a misspecified prior yet they are inefficient when in fact π α β≡ Gamma( , ). 
Noticing this trade-off, Robbins raised the following intriguing question10: how can this efficiency-robustness 
dilemma be resolved in a logical manner? To address this issue, we must design a data analysis protocol that offers 
a mechanism to answer the following intermediate modeling questions (before jumping to estimate π̂): Can we 
assess whether or not a Gamma-prior is adequate in light of the sample-information? In the event of a prior-data 
conflict, how can we estimate the ‘missing shape’ in a completely data-driven manner? All of these questions are 
at the heart of our ‘Bayes via goodness-of-fit’ formulation, whose goal is to develop a third culture of generalized 
empirical Bayes (gEB) modeling by uniting the parametric and non-parametric philosophies. Compute the DS 
Elastic-Bayes estimate by substituting i

y

1
i

1θ̌ =
α

β

+

+−
 in the Eq. (3.2), which reduces to the PEB answer when 

Π ≡d u G( ; , ) 1 (i.e, the true prior is a Gamma) and modifies non-parametrically, only when needed; thereby 
turning Robbins’ vision into action (see Supplementary Appendices A and G for more discussions on this point).

The insurance data.  Table 4 reports the Bayes estimates Y y[ ] θ| =  for the insurance data. We compare five 
methods: parametric Gamma, classical Robbins’ EB, Efron’s Deconvolve, Koenker’s NPMLE, and our procedure. 
The raw-nonparametric Robbins’ estimator is clearly erratic at the tail due to data-sparsity. The PEB estimate 
overcomes this limitation and produces a stable estimate; but is it dependable? Should we stop here and report this 
as our final result? Our exploratory U-diagnostic tells that (consult Sec. 2.3) the PEB estimate needs a 
second-order correction to resolve the discrepancy between the Gamma prior and data. The improved 
LP-nonparametric Stein estimates are shown in the last row of Table 4.

Figure 8.  Panel (a) displays the estimated DS(G, m = 4) prior (solid red) with the PEB Gamma prior g(θ; α, β) 
(dashed blue) for the butterfly data; these results indicate that Fisher’s Gamma-prior guess required some 
correction. Panel (b) shows estimates for the number of butterfly species caught in the following year ̂ x( )θ|  by 
the Gamma PEB, Robbins’ formula, Bayesian deconvolution, NPMLE, and our Elastic-Bayes estimate.
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The butterfly data.  The next example is Corbet’s Butterfly data37 – one of the earliest examples of empirical 
Bayes. Alexander Corbet, a British naturalist, spent two years in Malaysia trapping butterflies in the 1940s. The 
data consist of the number of species trapped exactly y times in those two years for y = 1, …, 24. Figure 8(b) plots 
different Bayes estimates. The Robbins’ procedure suffers from similar ‘jumpiness.’ The blue dotted line represents 
the linear PEB estimate with α = 0.104 and β = 89.79 (same as of Efron and Hastie24, Eq. 6.24) estimated from 
the zero-truncated negative binomial marginals. Our DS-estimate is almost sandwiched between the PEB and 
Deconvolve answer. The NPMLE method (the orange curve) yields some strange looking sinusoidal pattern, 
probably due to overfitting. In conclusion, we must say that the triumph of our procedure as compared to the 
other Bayes estimators lies in its automatic adaptability that Robbins alluded in his 1980 article10.

Discussions
We laid out a new mechanics of data modeling that effectively consolidates Bayes and frequentist, parametric 
and nonparametric, subjective and objective, quantile and information-theoretic philosophies. However, at a 
practical level, the main attractions of our “Bayes via goodness-of-fit” framework lie in its (i) ability to quantify 
and protect against prior-data conflict using exploratory graphical diagnostics; (ii) theoretical simplicity that 
lends itself to analytic closed-form solutions, avoiding computationally intensive techniques such as MCMC or 
variational methods.

We have developed the concepts and principles progressively through a range of examples, spanning appli-
cation areas such as clinical trials, metrology, insurance, medicine, and ecology, highlighting the core of our 
approach that gracefully combines Bayesian way of thinking (parameter probability where prior knowledge can 
be encoded) with a frequentist way of computing via goodness-of-fit (evaluation and synthesis of the prior distri-
bution). If our efforts can help to make Bayesian modeling more attractive and transparent for practicing statisti-
cians (especially non-Bayesians) by even a tiny fraction, we will consider it a success.

Data availability.  All datasets and the computing codes are available via free and open source R-software 
package BayesGOF. The online link: https://CRAN.R-project.org/package=BayesGOF.
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