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Over the last decades, T-cell immunotherapy has revealed itself as a powerful, and

often curative, strategy to treat blood cancers. In hematopoietic cell transplantation,

most of the so-called graft-vs.-leukemia (GVL) effect hinges on the recognition

of histocompatibility antigens that reflect immunologically relevant genetic variants

between donors and recipients. Whether other variants acquired during the neoplastic

transformation, or the aberrant expression of gene products can yield antigenic targets

of similar relevance as the minor histocompatibility antigens is actively being pursued.

Modern genomics and proteomics have enabled the high throughput identification of

candidate antigens for immunotherapy in both autologous and allogeneic settings.

As such, these major histocompatibility complex-associated tumor-specific (TSA) and

tumor-associated antigens (TAA) can allow for the targeting of multiple blood neoplasms,

which is a limitation for other immunotherapeutic approaches, such as chimeric antigen

receptor (CAR)-modified T cells. We review the current strategies taken to translate these

discoveries into T-cell therapies and propose how these could be introduced in clinical

practice. Specifically, we discuss the criteria that are used to select the antigens with the

greatest therapeutic value and we review the various T-cell manufacturing approaches

in place to either expand antigen-specific T cells from the native repertoire or genetically

engineer T cells with minor histocompatibility antigen or TSA/TAA-specific recombinant

T-cell receptors. Finally, we elaborate on the current and future incorporation of these

therapeutic T-cell products into the treatment of hematological malignancies.

Keywords: histocompatibility antigens, tumor-specific antigens (TSA), tumor-associated antigens (TAA),

transgenic T-cell receptors, T-cell immunotherapy, viral antigens, allogeneic stem cell transplant, chimeric antigen

receptor (CAR)

INTRODUCTION

Allogeneic hematopoietic cell transplantation (AHCT) remains to this day the most widely
used form of cancer cellular immunotherapy. Several studies in both humans and animals have
conclusively shown that the recognition of alloantigens by T cells is central to the so-called
“graft-vs.-tumor” (GVT) that occurs following AHCT (1–3). However, the recognition by donor
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T cells of major and minor histocompatibility antigens
(MiHA), encoded by germline polymorphisms and expressed on
malignant and normal host hematological cells as well as on
non-hematological cells, can also result in graft-vs.-host disease
(GVHD) (4). Despite several decades of research, the potentially
lethal GVHD reactions are still the major limitation to the
use of alloreactivity to treat blood cancers with AHCT. Recent
antigen identification and characterization methods, coupled
with refined cell manipulations and cell transfer procedures,
may allow for an effective separation of the GVT and GVHD
effects when targeting alloantigens. Moreover, other antigens are
inspiring immunotherapeutic strategies that can be implemented
in AHCT and non-transplant settings (5). The tumor-specific
antigens (TSA) refer tomajor histocompatibility complex (MHC)
class I or II-associated peptides that are found solely at the surface
of tumor cells. Often resulting from acquired genetic variants,
these antigens can stimulate vigorous T-cell responses and will
be extensively described below. T-cell immunotherapies targeting
unmutated MHC-associated antigens, including viral antigens
and tumor-associated antigens (TAA) will also be described in
the context of blood cancers. This review will focus on the
current status of immunotherapeutic approaches, particularly
those exploiting genetic variants, native and acquired, for the
treatment of hematological malignancies. These antigens are
almost exclusively relevant to the context of immune therapies
using conventional T cells, CD8+ and CD4+, that recognize their
MHC-bound peptide antigen through a T-cell receptor (TCR)
composed of an alpha and beta chain (Figure 1). T-cell therapies
targeting non-polymorphic antigens and the use of other
immune cell types will also be briefly discussed and put in context
of the current status of cellular immunotherapies for blood
neoplasms. The implementation of T-cell therapies targeting
relevant antigens for hematological cancers hinges on a detailed
knowledge of the targets, T-cell biology, gene engineering, ex
vivo cell processing methods and clinical expertise. As such,
these therapies represent a formidable challenge but also an
opportunity to make paradigmatic advances in blood cancer
treatment and oncology in general.

TARGET ANTIGENS IN HEMATOLOGICAL
CANCERS

Histocompatibility Antigens, Majors, and
Minors
AHCT’s curative potential relies substantially on the GVT effect,
which is largely based on the recognition of histocompatibility
antigens by allogeneic T cells. These antigens result from
the translation of germline-encoded genetic variants (6–10).
However, standard AHCT is a personalized but markedly
unspecific form of immunotherapy. The broad repertoire of
allogeneic T cells transferred with the graft react against a
multitude of host derived antigens. These can be expressed
on several cell and tissue types, inducing GVHD in most
recipients despite prophylactic immunosuppression (11, 12).
Thus, the curative potential of AHCT relies on the transfer
of histo-incompatible T cells recognizing germline genetic

variants on neoplastic cells (13–17). Histocompatibility antigens
are prime targets for T cells because they stimulate a high
avidity T-cell repertoire. Histocompatibility antigens are not
expressed in donor thymus, therefore T cells recognizing
histocompatibility antigens with high functional avidity do
not undergo negative selection prior their adoptive transfer
in patients (18, 19). Moreover, the high frequency of GVHD
occurrence in recipient of multiparous female donors hints at
the possibility of sensitization to host recipient antigens and
the mobilization of a memory T-cell repertoire against these
antigens (20). Thus, AHCT patients receive a treatment which
is targeted to a mostly unknown set of antigens by an equally
elusive T-cell repertoire leading to frequent toxic “on-target/off-
tumor” immune responses. The discovery and characterization of
relevant transplantation antigens nonetheless hold great promise
for the design of immunotherapies that could enhance the GVT
effect and limit the occurrence of GVHD. The development of
such immunotherapies depends on the identification of antigens
that are specifically, or at least preferentially, expressed on
hematopoietic and/or malignant cells (6, 21). As such, Human
leukocyte antigen (HLA) (the major histocompatibility antigens)
and MiHA mismatches can be harnessed to treat hematological
cancer patients.

The frequency of T cells capable to target mismatched HLA
molecules is very high (1–10%) (22–24). Given the likelihood
of severe GVHD occurrence when AHCT is performed across
HLA barriers, refinements in HLA typing in the last years
have improved outcomes due to better matching (25, 26). To
this day, HLA compatibility remains a key variable in AHCT
and most centers consider that a related or unrelated HLA
identical donor is the best donor. However, recent advances
in cell handling and GVHD prophylaxis now enable the use
of partially HLA mismatched cord blood and related haplo-
identical donors, with results that are comparable to those
obtained with HLA matched donors (27, 28). In both cases,
the risk of GVHD (especially chronic GVHD) is surprising
low. Although the reasons for this are incompletely understood,
several factors, such as the intensity of the immunosuppression
in haplo-identical AHCT, or the intrinsic features of the
graft in terms of cell composition and functionality in cord
blood transplants, may contribute to this observation (29, 30).
Moreover, in certain circumstances, the risk of relapse appears
to be lower following these mismatched transplants, arguing in
favor of enhanced GVT in these settings (31–33). Based on the
presumption that anti-HLA T-cell reactivity is an effective anti-
neoplastic mechanism, the infusion of intentionally mismatched
peripheral blood mononuclear cells following chemotherapy is
being investigated as a form of immunological consolidation
after chemotherapy (34). Such “microtransplantations” resulted
in improved leukemia outcomes relative to the usually reported
survival and leukemia-free survival rates, despite the absence
of prolonged and significant engraftment (35, 36). These
results need nonetheless to be confirmed and the underlying
mechanisms better defined. Several questions remain about
the relative contribution of CD4+ and CD8+ HLA-specific
T cells and other cell types, such as natural killer (NK)
cells in the recognition of HLA-mismatched cellular targets
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FIGURE 1 | Target MHC-associated antigens in hematological cancers. Major histocompatibility complex (MHC)-associated antigens may originate from viral

components, such as the episomal translation of Epstein-Barr Virus proteins (purple). The majority of known minor histocompatibility antigens (MiHA) are generated by

non-synonymous single nucleotide polymorphisms (ns-SNP) between the donor and the recipient of the T-cell therapy (red). Tumor-specific antigens (TSA) arise from

intronic or exonic mutations unique to the tumor cells (orange). Tumor-associated antigens (TAA) come from aberrantly expressed proteins in cancer cells (green).

[reviewed in Paul and Lal (37)]. The infusion of HLA
mismatched NK cells has led to promising clinical results,
confirming a direct anti-neoplastic effect (38, 39). Hence, the
respective impacts of T-cell and NK-cell reactivity in HLA
mismatched transplants and other cell therapy approaches are
still unknown but may account for the effects on GVT and
GVHD observed in haplo-identical and cord blood transplants.
To this date, no clinical studies using ex vivo expanded
anti-HLA reactive T cells have been reported. Although this
may be fraught with the risk of inducing severe GVHD,
the design of anti-HLA T-cell therapy targeting the class
II antigens which have a more restricted tissue expression
(with high expression in blood cancer subtypes) may be
considered (40, 41).

In the context of HLA-matched AHCT, alloreactive donor T
cells (CD4+ and CD8+) recognize MHC-bound polymorphic
peptides derived from the host proteome and known as the
MiHA. Both MHC class I and class II molecules have been
shown to present MiHA (2, 6, 42–47). Most of the molecularly
characterized MiHA are encoded by autosomal genes that differ
between patient and donor secondary to germline encoded
non-synonymous single nucleotide polymorphisms (ns-SNP).
However, the true contribution of ns-SNP to MiHA disparities
is unknown. Several non-SNP events, such as alternative
proteasome degradation, non-presentation of allelic variants, Y-
chromosome derived peptides, polymorphic proteins created
by frameshift insertions or deletions [reviewed in Griffioen
et al. (48)] can also generate MiHA. However, these are more
difficult to characterize using currently available methods (45,

49). Recent evidence suggest that the genetic origin of the
MiHA presented by MHC class I is not random, with specific
exomic regions coding for proteins being overrepresented
among the repertoire of MHC-peptides directly assessed by
proteomic methods (45, 50). This indicates that relying on ns-
SNP detection to predict MiHA’s sequences is fraught with
limitations as only 0.5% of ns-SNP generate MHC-associated
peptides (6, 51). More comprehensive proteogenomic analyses,
including the direct identification of MHC-associated peptides
by mass spectrometry appears to be required to permit the
robust, and high-throughput, identification of candidate MiHA
that derive from ns-SNP (6, 51). One shortcoming of current
methods to define MHC-associated peptides as candidate
antigens, is that our current proteomics and bioinformatics
tools are better at identifying MHC class I than class II-
associated peptides (52, 53). In addition to the confirmation of
presentation by the MHC, candidate MiHA for immunotherapy
should fulfill several other criteria (Figure 2). Perhaps the most
important is tissue restriction. In the context of AHCT, the
expression of the source protein of a given MiHA should
be restricted to the hematopoietic system and the malignant
cells. Determining tissue distribution can be achieved through
several methods including bioinformatics mining of tissue gene
expression atlases to standard biochemical and histological
methods (6). Moreover, a practical consideration is that the
minor allele frequency (MAF) of a MiHA sequence should
be well-balanced in the population to enhance the odds that
there will be a mismatch between the donor and recipient.
Pre-clinical studies in mice demonstrated the curative potential
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FIGURE 2 | Ideal MiHA target selection. Important criteria and proposed algorithm to select optimal target MiHA for immunotherapy of blood cancers.

(without causing GVHD) of injected T cells primed against
a single MiHA (54–56) offering solid proof of principle
for the development of MiHA-based immunotherapeutics
in humans.

Tumor-Specific Antigens (TSA)
The genetic mutations that characterize the neoplastic process
can result in acquired ns-SNP with altered reading frames and
the translation of proteins with different amino acid sequences
(57). Once degraded and presented by MHC molecules at
the cell surface, these altered sequences can be recognized by
the host T cells. Since the mutations giving rise to these so-
called neoepitopes are present only in cancer cells, the resulting
antigens are deemed specific for the tumor. TSA are therefore
thought to be most prevalent in highly mutated cancers, such
as melanoma and lung cancer. The correlation (albeit very
imperfect) betweenmutation load and responses rates to immune
checkpoint (CTLA-4 and PD-1) blockade reinforces the notion
that the mutanome is immunologically relevant (6, 58–60). The
discovery of TSA has provided new hopes for the field of cancer
vaccines with several trials launched in the last decade (61–66).
It has also provided a rationale to explain the success of tumor
infiltrating lymphocytes (TIL) infusions in certain cancers (67).
The identification of putative patient-specific tumor antigens
generated by somatic mutation is unfortunately insufficient as
most mutations identified in tumor-expressed genes do not
generate neoepitopes capable of stimulating T-cell responses.
It has been estimated that only 10% of the non-synonymous
mutations in tumor cells can generate mutant peptides with
high MHC affinity (68), while only 1% of peptides with

high MHC affinity can be recognized by T cells in patients
(69). Moreover, a large fraction of these mutations are not
shared between patients and often not by all cells comprised
in the tumor or metastases (70, 71). Such heterogeneity
forces the development of highly personalized approaches for
immunotherapy. Unlike many solid tumors, hematologic cancers
usually carry a low mutation burden and consequently, TSA
are predicted to be much less frequent in these neoplasms (72).
However, specific B-cell receptor sequence in B-cell malignancies
(idiotype) offer an opportunity to specifically target mature B-cell
cancers (73). Likewise, the presence of well-characterized fusion
proteins in leukemia, notably the BCR-ABL fusion in chronic
myelogenous leukemia and acute lymphoid leukemia, enabled
the demonstration that circulating T cells could recognize neo-
epitopes created by the fusion (74). The infusion of T cells
targeting BCR-ABL fusion epitopes in three acute lymphoid
leukemia patients bearing the fusion has been associated with
molecular remission and trafficking of the antigen-specific T
cells to the bone marrow, hence providing a rationale to
pursue the development of TSA-based immunotherapy in blood
cancers (75).

It is now increasingly recognized that the acquired genetic
variants only represent a fraction of the aberrancies leading to an
altered MHC-ligandome on cancer cells. Recent evidence shows
that transcription and translation of presumed non-coding
genetic regions may significantly alter the immunogenicity of
malignant cells. These antigens are different from the well-
known TAA which originate from canonical reading frames
that are either overexpressed and/or abnormally expressed
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in neoplastic cells (see below). Therefore, a subclassification
for TSA has recently been proposed; mutated TSA (mTSA)
and aberrantly expressed TSA (aeTSA) (76). The mTSA
derive from mutated DNA sequences in canonical genes
that can be either exonic or non-exonic (77, 78) and the
aeTSA arise from aberrant and cancer-specific expression of
unmutated non-canonical transcripts that are not expressed
in normal tissues, including thymic medullary cells (mTECs),
which has crucial importance for central tolerance. The
aeTSA combine the immunological characteristics of MiHA
and mTSA, despite being non-polymorphic and shared
between individuals and cancer cells like TAA (76, 79).
Importantly, aeTSA that derive from unmutated non-exonic
sequences (introns, intergenic regions, etc.) may be very
abundant, as revealed by proteogenomic methods in human
acute lymphoblastic leukemias and lung cancer samples
(76, 80).

Tumor-Associated Antigens (TAA)
Neoplastic cells can overexpress, or aberrantly express,
unmutated proteins that are recognized by the immune
system (46, 81–83). At present, several TAA have been identified
across many cancer types. They are categorized traditionally
into four groups: antigens encoded by cancer-gonads genes,
embryonic/differentiation genes, overexpressed antigens,
and viral antigens. The inclusion of viral antigens as TAA is
problematic for several reasons, the most important being that
virus-derived antigens are non-self and do not contribute to
central tolerance in the thymus like the other TAA. Virus-specific
T cells have high functional avidity and have repeatedly been
shown to be highly effective for the treatment of Epstein-Barr
virus (EBV)-associated lymphoma, particularly in the post-
transplant setting (84). Despite issues related to central tolerance,
TAA can elicit T-cell responses and TAA-specific T cells can
be found at high frequency in the circulating T-cell repertoire
of normal individuals (79, 85). Several immunotherapies have
been devised to target TAA derived from proteins, such as WT1,
NY-ESO-1, PRAME, Proteinase 3, MAGE-A3 in blood cancers
and despite inherent limitations, TAA have practical advantages
for the design of immunotherapies. The most evident being that
being non-polymorphic, they are applicable to a large number of
patients and can be prepared using standardized reagents.

MiHA, TSA, TAA, Which Targets to Choose
for Blood Cancer Immunotherapy?
The ideal antigenic targets should be highly cancer-specific,
be universally applicable to all patients and cancer types and
enable treatment without the requirement for AHCT. This last
decade has seen the rise of anti-CD19 chimeric antigen receptor
(CAR)-modified T cells which fulfill some of these characteristics
(86). Despite excellent clinical results in childhood acute
lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma
(DLBCL) and myeloma, current CAR-based approaches are
limited to a subset of B-cell antigens [CD19, CD22 (87), B-cell
maturation antigen—BCMA (88)]. This is partly because the
on-target/off-tumor reactivity leading to normal B-cell depletion
is easy to palliate with exogenous gammaglobulins. Targeting
other cells, notably those of the myeloid lineage with CAR

therapy may prove to be more difficult as the most promising
antigens are also expressed by normal progenitor cells. Finally,
toxicities related to this therapy are substantial (89). In fact,
the cytokine release syndrome (CRS) and neurological toxicities
that follow CAR T-cell infusions require careful patient follow
up. The CRS involves fever, hypotension and hypoxia that can
rapidly degenerate into organ dysfunction if not treated with
anti-cytokine therapy. Likewise, seemingly mild cognitive deficits
can rapidly degenerate into encephalopathy and seizure if left
untreated. Hence, it is likely that pursuing MHC-associated
antigens originating from genetic variations, or variations in the
expression of unmutated genetic sequences will offer the promise
of immunotherapy for the effective and safe treatment of the full
spectrum of blood cancers.

Because they are encoded by germline polymorphisms
instead of somatic mutations, MiHA possess features that
make them attractive for immunotherapy (6). In contrast
to TSA, suitable MiHA are more likely to be expressed
by all neoplastic cells and applicable to a large number of
patients (71, 90, 91). However, this limitation may not be as
important if TSA are derived from shared driver mutations
or fusion proteins. For both MiHA and TSA, the use of
high avidity T-cell repertoires remains a most appealing
element. However, devising and implementing immunotherapies
targeting shared epitopes is more convenient. This is a major
aspect driving TAA-specific strategies. Lastly, aeTSA may be
shared by many tumors, while being non-polymorphic and
not inducing central immune tolerance. These characteristics
would make aeTSA ideal targets, but much more work is
needed in order to evaluate the therapeutic potential of these
antigens in humans. The next section will review current and
future T-cell therapy strategies (both autologous, and donor-
derived in the context of AHCT) directed against these various
antigen types.

T-CELL IMMUNOTHERAPY STRATEGIES

The development of methods to identify and characterize MHC-
associated antigens resulting from genetic variants is motivated
by a strong impetus to design T-cell therapies to treat neoplastic
diseases. These T-cell therapies may be used alone or in
combination with other approaches, such as vaccination and
immune checkpoint blockade but this review focuses on the
current status of T-cell therapies aimed at MHC-associated
peptides to treat hematological cancers.

T-cell therapies can be antigen agnostic (administered
without precise knowledge of the antigens targeted), such as
in unmanipulated donor lymphocyte infusions (DLI) and TIL
infusion, or targeted to known antigens. The administration
of antigen-specific T cells requires prior ex vivo manipulations
for enrichment and/or expansion of T cells bearing native
TCR specific to the targeted antigens. Alternatively, genetic
engineering can enable the production of large numbers of TCR
transgenic T cells directed against a given antigen.

Antigen Agnostic Approaches
The use of DLI has been one of the most conclusive proof
of the GVT effect in AHCT (i.e., objective responses following
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the infusion of donor cells without other treatment). However,
the efficacy of donor T cells, collected after AHCT and infused
in graded doses, has yielded variable results and has a risk
of triggering GVHD in 60–70% of patients (92). There is
substantial variability in the response rates to DLI based on
the underlying disease [from close to 100% in chronic phase
chronic myelogenous leukemia to 15–40% in acute leukemia
(93)], the disease burden, the timing of administration (pre-
emptive vs. advanced disease) and the use of concomitant
treatments. Most of the experience in DLI was gained in HLA-
matched transplant settings, where MiHA mismatches are the
drivers of the alloresponses. With no prior knowledge of the
number of antigen mismatches, the tissues in which these MiHA
source proteins are expressed and the number of MiHA-specific
T cells present in the DLI, this form of immunotherapy does
not fully harness the potential of MiHA based immunotherapy
in AHCT patients. However, it has the advantage of requiring
minimal manipulation and thus be rapidly accessible to a
large number of AHCT patients. Other antigen agnostic T-
cell therapies have been explored as treatment for solid tumors
and blood cancers. An interesting approach is to attempt to
exploit T cells harvested from the disease site and reinfuse
them after ex vivo expansion. TIL therapy was pioneered in
solid tumors, in melanoma particularly, where it has yielded
high response rates and durable complete remissions (94). This
approach is based on the assumption that T-cell populations
contained in tumor beds may comprise a high frequency of
tumor-reactive cells (95). This principle may also apply for
several hematological malignancies. The bone marrow is a
natural reservoir of antigen-experienced memory T cells and
the site of disease of many blood cancers (96). As such, it may
contain a large repertoire of T cells capable of recognizing the
malignant hematopoietic cells. Moreover, a practical advantage
is that the bone marrow is easily accessible for collection of T
cells that can later be expanded ex vivo. Expanded autologous
“MIL” (marrow infiltrating lymphocytes) frommultiple myeloma
patients using anti-CD3/CD28 stimulation and IL-2 revealed
that the bone marrow contained a high number of myeloma
reactive T cells (relative to blood derived T cells from the
same patients) capable of targeting both mature and precursor

myeloma cells in vitro (97). A clinical trial performed in 25
patients confirmed the feasibility of performing “MIL” therapy
following autologous stem cell transplant in myeloma patients.
The absence of a control group precludes a rigorous assessment
of disease response against the standard treatment of this disease,
but the authors were able to correlate the presence of anti-
myeloma activity in the expanded MILs product, as well as the
persistence of anti-myeloma reactivity 1 year after infusion, with
favorable outcome (98).

The transfer of a large T-cell repertoire has advantages, such
as broad applicability as well as the likelihood of targeting several
antigens at the same time. However, antigen agnostic methods
can miss the relevant targets by expanding/transferring T cells
that are not specific for cancer associated/specific antigens (99).
In the setting of AHCT and DLI, this can also lead to toxicity
in the form of GVHD. The molecular characterization of MiHA,
viral antigens, TAA and TSA now permits the development
of more precise and possibly more potent T-cell therapies.
This, coupled with more widely accessible T-cell manufacturing
methods, allows for the use of manipulated T cells targeting
MHC-associated targets in blood cancers.

MHC-Associated Antigen-Specific
Approaches in T-Cell Therapy
The current experience using T-cell therapies against MiHA,
viral antigens, TSA and TAA demonstrates the possibility to
expand antigen-reactive T cells in high numbers to treat patients.
However, T-cell manufacturing continues to be challenging
and the optimal approach to integrate these therapies in
the patients’ treatment trajectory remains to be determined.
This section reviews the current approaches aiming to treat
hematological malignancies through the specific targeting of
MHC-associated antigens. A summary of the molecularly
defined HLA-associated antigens that have been targeted in
adoptive T-cell immunotherapy clinical studies is included in
Table 1 (75, 100–107).

MiHA
As described above, the MiHA have several conceptual
advantages for immunotherapy. Vaccination against MiHA

TABLE 1 | MHC-associated antigens targeted in T-cell therapy trials for blood cancers.

Target antigen Unique or multiple antigen(s) Antigen type Natural vs. transgenic TCR Cancer type HLA restriction References

HA-1 Unique antigen MiHA Natural AML, CML, ALL A0201 (100)

P2RX7265−273 Unique antigen MiHA Natural ALL A2902 (101)

DPH1334−343 Unique antigen MiHA Natural MDS B5701 (101)

DDX37 Unique antigen MiHA Natural ALL B2705 (101)

BCR-ABL fusion Antigen library TSA Natural ALL ND (75)

WT-1126−134 Unique antigen TAA Natural/Transgenic AML, ALL, MDS A0201 (102, 103)

WT-1235−243 Unique antigen TAA Transgenic AML, MDS A2402 (104)

MAGE-A3 Unique antigen TAA Transgenic MM A01 (105)

NY-ESO-1/LAGE-1 Unique antigen TAA Transgenic MM A0201 (106)

LMP1, LMP2 Antigen library Viral Ag Natural Lymphoma ND (107)

ALL, Acute lymphoblastic leukemia; AML, Acute myeloid leukemia; CML, Chronic myelogenous leukemia; MDS, myelodysplastic syndrome; MM, Multiple myeloma. ND, not defined.
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in the context of post-AHCT DLI has been reported to
induce detectable MiHA-specific responses in myeloma patients.
Although clinical responses were modest (transient regression
or stable disease), the vaccination protocol was well-tolerated
(108, 109). An alternative approach could be to vaccinate the
donors prior to graft collection in order to generate a robust
anti-MiHAmemory T-cell repertoire in these healthy individuals,
as previously done in animal models (55, 110). Unfortunately,
this is difficult to envisage for several reasons, including the
consequences of allosensitization in donors who may eventually
require tissue, cell or organ transplantations themselves.

Cell therapy is the other approach to selectively or
preferentially target MiHA. The first trial reporting on a
MiHA-specific T-cell therapy strategy used MiHA-specific CD8+

clones obtained by co-culturing donor T cells with host-
derived lymphoblastoid cells (EBV-transformed B-cells) (101).
After ruling out reactivity to EBV antigens and host fibroblasts
(surrogate for non-hematopoietic tissues), reactive T cells were
infused. Thus, although highly specific, this approach did not
rely on a priori knowledge of the targeted MiHA and their tissue
distribution. The administration of these T-cell clones led to
objective responses in 5/7 refractory relapsing leukemia patients
post-AHCT. These responses were short-lived, with evidence
of gradual decrease in antigen expression at disease recurrence
in at least one patient, hinting at a plausible immune escape
mechanism. A surprising complication was the occurrence of
pulmonary toxicity, which is not seen following regular DLI.
Although, the MiHA source protein could be detected in the lung
tissue in one case, the patients had also received a conditioning
regimen and post-infusion IL-2, which can be associated with
pulmonary complications (111). Nonetheless, these findings are
an additional argument to select MiHAwith restricted expression
to the hematopoietic system. Another trial used donor-derived
T-cell lines stimulated ex vivo with dendritic cells loaded with
the blood lineage and HLA-A0201 restricted MiHA HA-1 (100).
Following up to 5 rounds of weekly stimulation with antigen
loaded dendritic cells in the presence of IL-2, donor derived T-cell
lines containing from 11 to 243× 106 HA-1 specific CD8+ T cells
were infused to 3 relapsing patients post-AHCT. Although clearly
demonstrating the feasibility of the approach and its innocuity
(no notable GVHD), the procedure was not associated with
clinical responses.

In both cases, the advanced disease status of the patients and
the prolonged period of T cells in culture can be suspected as
limiting factors. It was shown that repeated stimulation with
antigen-loaded dendritic cells has a detrimental effect, especially
for the targeted MiHA-specific T cells relative to the other
T cells present in the culture (112). Upon repeated antigen
exposure, the MiHA-specific T cells acquired the expression of
PD-1 as well as the terminal differentiation marker KLRG-1,
which correlated with their relative failure to expand relative
to other T cells in the culture. Other research published in
the last decade similarly demonstrated that the acquisition of
terminal effector T-cell differentiation and exhaustion features
ex vivo, compromises the further expansion and persistence of
the T cells after adoptive transfer. Less-differentiated T cells
bearing early memory T-cell features (central memory—Tcm,

or stem cell memory—Tscm) have been shown to be superior
compared to more differentiated T cells in several animal and
human pre-clinical models (113–115). It was also shown in
humans that exposure to T-cell memory differentiating factors
early in the culture can program long term persistence in vivo
despite the expression of effector or effector memory T-cell
differentiation markers at the end of the culture (102). The issue
of T-cell differentiation is relevant to the whole field of T-cell
immunotherapy and the quest for culture conditions that will
preserve or promote early memory expression is an active area of
research. Candidate pathways and molecules shown to influence
memory differentiation include cytokines [IL-21 (102, 116), TGF-
β (117)] and metabolic/developmental pathways [AKT (118),
WNT (119)].

Gene engineering is a way to avoid the drawbacks of using
elaborate and long cultures to expand antigen-specific T cells.
The transfer of a transgenic TCR in T cells can be achieved using
brief manufacturing protocols that maintain early T-cell memory
differentiation and that generate a high number of T cells with
the desired antigenic specificity. The efficacy and safety of T cells
expressing a transgenic HA-1 specific TCR has been established
in vitro (120). In this study, an elaborate transgene was used
for optimal reactivity and safety. The transgene comprised four
elements: a TCR specific to HA-1, a CD8 co-receptor to promote
the function of the MHC class I restricted TCR in CD4+ T
cells, an inducible caspase 9 safety switch for rapid induction of
apoptosis in case of toxicity and a CD34−CD20 tag to facilitate
the selection of the cells and to track the cells once transferred
(121). This design enabled the expression of the TCR in both
CD4+ and CD8+ cells which may contribute to CD4+ T-cell
help after transfer. The cells were responsive against different
types of primary leukemia cells and cell lines, supporting the
further evaluation of HA-1 specific transgenic T cells in clinical
trials (NCT03326921). Although the TCR transgenic approach
can solve the conundrum of late T-cell differentiation arising
in the context of antigen-driven T-cell expansion, it has its
own limitations. The production of clinical grade gene therapy
vectors is costly and current reports investigating transgenic
TCR therapy target only one antigen at a time. TCR transgenic
therapies are also limited by the possible mispairing of alpha
and beta chain with the endogenous TCR potentially giving
rise to unwanted reactivity and toxic allo- or autoimmunity
(122, 123). This can be mitigated by the use of murine constant
domains, the addition of cysteine residues for preferential pairing
of the transgenic chains, α/β chain domain-swapping or the
knockdown/out of the endogenous TCR (124–127). However,
there is an argument to be made that keeping the endogenous
TCR could be beneficial. Chapuis et al. transduced a robust
memory EBV-specific T-cell repertoire (which will not cause
GVHD) with a TAA-specific TCR transgene in order to leverage
the properties of these long term persisting memory cells and use
viral reactivations as an adjuvant (103).

Given the possibility for immune escape variants selection
following single antigen targeting, the future of MiHA-
based therapy may involve multivalent T-cell products
(NCT03091933). This emphasizes the importance of discovering
and characterizing a large number of MiHA derived from
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proteins expressed in the hematopoietic system, as well as
MiHA presented by enough HLA alleles to treat most, if not all,
AHCT patients.

TSA
The development of T-cell therapies, or vaccines, against
TSA or so-called neoantigens is complicated. Identification
and validation of neoantigens is time-consuming as well as
expensive. The process of preparing vaccines from tissue
samples usually takes several months (62, 63). Finally, the
development of TSA-specific T-cell immunotherapy may seem
unthinkable given the added complexity of T-cell manufacturing.
This being said, several approaches can be taken to leverage
TSA identification/prediction and design T-cell immunotherapy.
Candidate TSA predicted from mutation analysis have been
identified using in vitro antigen expression system and co-
culture with responder autologous TIL (128). Selection and
enrichment of these T-cell populations followed by re-expansion
represent an attractive strategy to enhance TIL-based, TSA-
specific targeting. Interestingly, circulating T cells recognizing
neoantigens detected in cancer patients can be found in the
peripheral blood of healthy donors (129). In some cases, the
cancer naïve repertoire comprises TSA-specific T cells that are
not found in the patient TIL which may indicate the loss of
certain T-cell clones in cancer patients. Of particular relevance
to the development of T-cell therapies, certain mutations within
oncogenes occur at the same genetic location, leading to “public”
(or shared) T-cell epitopes (130). An example is the G12D KRAS
gene mutation in digestive cancers, leading to a mutant peptide
presented by HLA-C0802 (131). Such “hot-spot” mutations also
exist in blood cancers. A recently published study showed that
a frequent nucleophosmin 1 mutation in acute myeloid leukemia
resulted in the presentation of a neoepitope byHLA-A0201 (132).
Finally, given their “public” nature and restricted expression
by cancer cells, the aeTSA may represent excellent targets to
investigate for the development of T-cell based immunotherapies
of hematological malignancies. However, no human studies have
been performed to date with aeTSA.

TAA and Viral Antigens
Adoptive T-cell immunotherapy against viral reactivations
occurring after AHCT is highly effective, with response rates
globally above 70% in otherwise refractory patients (133, 134).
In the case of EBV, which is associated with the development
of post-transplant lymphoproliferative disorder (PTLD), as
well as several lymphoma subtypes outside the context of
transplantation, adoptive immunotherapy has a remarkable track
record of safety and efficacy (135). Arguably, the prevention
or treatment of EBV-associated PTLD after AHCT occurs in
the best conditions for T-cell adoptive immunotherapy. The
target antigens are foreign, the T cells are expanded (or
selected) using multiple antigens frommemory T-cell repertoires
circulating in immunocompetent healthy donors, who are the
original AHCT donors or even partially HLA-matched third-
party donors. The resulting T-cell products are polyclonal,
can display reactivity against antigens bound by several HLA
alleles, usually contain both EBV reactive CD4+ and CD8+ T

cells and, depending on the manufacturing protocol, express
early memory T-cell markers. The use of peptide libraries
containing multiple epitopes derived from several antigenic
EBV proteins (such as LMP2, EBNA1, and BZLF1) allow the
generation of multivalent T-cell products (136). Virus-specific T-
cell lines are effective after AHCT or even solid organ transplant
and can be used as prophylaxis in patients at high risk of
PTLD with excellent result and no significant GVHD or organ
rejection (137–139). The mobilization of the autologous EBV
T-cell repertoire in previously treated lymphopenic lymphoma
patients outside the context of transplantation requires more
elaborate ex vivo culture protocols, but is nonetheless feasible
and well-tolerated (107). Bollard et al. reported on 29 patients
with EBV-associated lymphoma who received the T-cell lines
as consolidation following the achievement of remission (one
relapse after a median follow up of 3.1 years) and 21
patients who had active disease at the time of infusion.
Among these, 13 had clinical responses (11 complete responses)
with evidence of T-cell reactivity against the targeted EBV
antigens (LMP1, LMP2) and TAA, evoking the possibility of
epitope spreading.

Expanding on the success of anti-viral therapy, it was
shown that T-cell lines can be generated by stimulating with
overlapping peptide libraries of multiple TAA (140). These T-
cell lines products were reactive to multiple TAA simultaneously,
were polyclonal, displayed early memory T-cell markers and
could be generated from both healthy donors and lymphoma
patients. Trials are currently testing the clinical effects of
such multivalent TAA-targeting T-cell lines in several blood
cancer types (NCT02203903, NCT02494167, NCT02475707,
NCT02291848, NCT01333046). Because TAA are molecularly
defined and non-polymorphic, they are more easily amendable
to transgenic TCR therapy. The isolation and cloning of TAA
specific TCR restricted by common HLA alleles can yield TCR
sequences that can be used in a large population of patients.
For the same reasons, TAA have been used in vaccine trials in
the setting of various blood cancers including multiple myeloma,
lymphoma, and acute myeloid leukemia [reviewed in Avigan
and Rosenblatt (141)]. Transgenic TCR therapy against TAA
expressed by hematopoietic cancers was also tested in several
clinical trials. Transgenic MHC class I restricted TCR against
NY-ESO-1/LAGE-1 and MAGE-A3 have been used to treat
myeloma patients. In both cases, the TCR were engineered
for increased affinity for the MHC-peptide complex as a way
to circumvent a limitation of TAA-based immunotherapy as
described above. The use of autologous engineered NY-ESO-
1 specific T cells administered in the context of autologous
transplantation resulted in clinical responses in 16/20 patients
(106). The adoptively transferred T cells showed expansion as
well as trafficking to the bone marrow, and did not cause
significant toxicity. Expectedly, loss of antigen or lack of
persistence of the transferred T cells were associated with relapse.
In the case of MAGE-A3, enhanced affinity TCR transgenic
T cells caused unexpected and rapid cardiotoxicity in the
first 2 patients recruited on the trial (105). Cross-reactivity
with a peptide derived from the heart muscle protein TITIN
was the causative mechanism. These trials showed both the
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promise and perils of using affinity enhanced TCR in cancer
adoptive immunotherapy. Native and unaltered TAA-specific
TCR gene transfer has also been performed. The transcription
factor WT1 is overexpressed in several blood cancers and
contributes to several known MHC class I associated epitopes.
A first trial involving transgenic WT1 specific TCR has been
reported in 2017. The study was performed in patients suffering
from refractory acute myelogenous leukemia and high risk
myelodysplastic syndromes (104). The treatment involved the
administration of two T-cell infusions and post-transfer WT1
vaccination. Eight patients were treated in two dose groups.
Two objective, but transient, responses were noted and among
the five patients who had persisting circulating engineered
T cells, four survived more than 12 months. No significant
toxicity was observed. More recently, another study was reported
using a different transgenic native (but selected for high
affinity) TCR against an HLA-A0201 restricted WT1 peptide
and transduced in EBV-specific memory T cells (103). The
cells were administered to prevent acute myeloid leukemia
relapse after AHCT, when the disease burden is low. With
a relapse free survival of 100% at a median of 44 months
of follow up (compared to 54% in a concurrent control
group), an argument can be made about the importance of
administering T-cell therapy early in the treatment trajectory
of patients.

PERSPECTIVES AND CLINICAL
INTEGRATION OF T-CELL THERAPIES

The opportunities for antigen-specific T-cell immunotherapies
are rapidly expanding. The MHC-associated antigens arising
from genetic variants, both germline and acquired through
the neoplastic process, are prime targets for the treatment of
hematological cancers. The genuinely personalized approaches
required to translate the complexity and multiplicity of MiHA,
TSA, and TAA into therapy is certainly a challenge, but
also a great promise. The discovery and characterization of
an increasing number of antigens will enable the design of
multivalent therapies capable to target all blood cancers and limit
the emergence of immune escape variants associated with single
antigen targeting. However, for such promise to materialize,
manufacturing processes for these highly personalized therapies
will have to be refined and made cost-effective. Nonetheless,
T-cell therapies aimed at MHC-associated peptides have the
potential to significantly expand existing paradigms in AHCT,
autologous cell transfer and other T-cell therapies, such as
CAR T cells. Indeed, the development of peptide-MHC specific
antibodies may further increase the relevance of characterizing
immunogenic MiHA, TAA or shared TSA for CAR-based
immunotherapy (142, 143). Along the same lines, genetic variants
may also create non-MHC associated cell surface epitopes
targetable through recognition by antibodies. Finally, existing
CAR may be transduced and expressed in antigen-specific T
cells recognizing viral, TAA, MiHA, or TSA through their
natural TCR and thus enable dual targeting of malignant
cells. The development of multivalent T-cell products, either

as a combination of T cells specific for a single antigen or
T cells with multiple specificities, will be essential to avoid
the emergence of immune escape variants following therapy.
In addition, approaches aimed at targeting multiple antigens
may prove to be synergistic. For example, pre-clinical studies
have shown that only a combination of T cells targeting Y-
chromosome derived MiHA and TAA could lead to tumor
regression. A threshold effectmay be required to generate enough
inflammation to support effective anti-cancer immunity (144,
145). Similarly, this is likely achieved in AHCT settings by Y-
chromosome antigen-specific T cells given the increased GVT
and GVHD effects noted after female into male transplants
(146). Another possible benefit of inducing strong immune
responses is the development of epitope spreading as evoked
by the appearance of detectable anti-TAA responses following
microtransplantation, AHCT or anti-viral T-cell therapy (147,
148). Along the same lines, the combination of T-cell therapy
with other immunotherapeutic interventions is also likely to
unveil important synergies. To this end, the administration of
vaccines to consolidate the response after adoptive transfer, or
immune checkpoint inhibitor therapy following adoptive T-cell
infusion, are actively investigated.

The timing of administration of T-cell therapies will
need to be better studied (Figure 3). Cell therapies remain
largely offered to refractory patients. However, the promising
results following prophylactic DLI (149, 150), anti-viral T-
cell lines (137) and more recently transgenic TCR therapy
(103), suggest that T-cell therapies should not be confined to
the treatment of relapsing patients. In fact, these treatments
are probably more potent in the context of low burden
disease. The reassuring safety profile of several of the
approaches targeting MHC-associated peptides should facilitate
the introduction of T-cell therapies earlier on during the
patient’s course.

FIGURE 3 | Clinical integration of T-cell therapies targeting MHC-associated

antigens. Representation of T-cell therapy timing relative to disease history.

While early treatment or treatment following a reduction in disease burden may

be associated with prolonged remission (dotted red lines), late-stage blood

cancers treatment with MHC-associated antigen-specific T cells may only

delay disease progression.
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Several scientific and methodological issues remain to be
addressed to improve T-cell therapies directed against MHC-
associated peptides or the MHC molecule itself. A significant
contributor to the response against genetic variants is CD4+

T-cell mediated, but most identified MiHA, TAA and TSA are
MHC class I associated peptides (151). Although challenging, the
identification of MHC class II restricted responses will likely be
essential to optimize T-cell therapies. This should be a major area
of research in the upcoming years.

The downregulation or loss of MHC expression, the genetic
loss or silencing of antigen source protein are well-known
immune escape mechanisms in cancer. This can be fairly
extensive as described in haplo-identical transplants, where
the loss of the entire mismatched haplotype can be observed
(152). Elaborate strategies targeting MHC-associated peptides
presented by different alleles and belonging to different
haplotypes may be necessary to harness the therapeutic
potential of T-cell immunotherapy against genetic variants
translated intoMHC-associated peptides. Moreover, an attractive
combination approach is to maximize antigen presentation
though epigenetic modulation. Demethylating agents, histone
deacetylase inhibitors and methyltransferase inhibitors are
established or investigational drugs for the treatment of blood
cancers. It is increasingly recognized that these also promote
gene expression that increases the immunogenicity of malignant
cells and also affect immune cell physiology [reviewed in
Lindblad et al. (153)]. These effects have been reported to
occur through multiple mechanisms like cytokine expression,
as well as upregulation of the MHC and associated antigens
(154, 155). This last aspect is particularly intriguing as both TAA
and cryptic aeTSA antigens have been shown to be promoted
by epigenetic modulation (156–159). Notably, extra-exomic
endogenous retroviral elements which are attractive as a source
of specific and robust cancer antigens can be expressed through

modulation of methylation. However, as a note of caution, there
is conflicting reports on the outcome of epigenetic modifiers on
the physiology of immune cells. Among others, regulatory T cells
and the expression of immune checkpoints can be promoted
by these agents, perhaps inviting for further combinations with
immune modulators.

To conclude, the field is increasingly confronted with multiple
antigens and approaches to target them. Careful selection of the
best targets will need more research and rational combinations
therapies are likely to be required for these antigens to reveal their
full potential.
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