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COVID-19 has emerged as a devastating disease in the last 2 years. Many authors
appointed to the importance of kallikrein-kinin system (KKS) in COVID-19 pathophysiology
as it is involved in inflammation, vascular homeostasis, and coagulation. We aim to study
the bradykinin cascade and its involvement in severity of patients with COVID-19. This is
an observational cohort study involving 63 consecutive patients with severe COVID-19
pneumonia and 27 healthy subjects as control group. Clinical laboratory findings and
plasma protein concentration of KKS peptides [bradykinin (BK), BK1-8], KKS proteins
[high–molecular weight kininogen (HK)], and KKS enzymes [carboxypeptidase N subunit 1
(CPN1), kallikrein B1 (KLKB1), angiotensin converting enzyme 2 (ACE2), and C1 esterase
inhibitor (C1INH)] were analyzed. We detected dysregulated KKS in patients with COVID-
19, characterized by an accumulation of BK1-8 in combination with decreased levels of
BK. Accumulated BK1-8 was related to severity of patients with COVID-19. A multivariate
logistic regression model retained BK1-8, BK, and D-dimer as independent predictor
factors to intensive care unit (ICU) admission. A Youden’s optimal cutoff value of −0.352
was found for the multivariate model score with an accuracy of 92.9%. Multivariate model
score-high group presented an odds ratio for ICU admission of 260.0. BK1-8 was related
to inflammation, coagulation, and lymphopenia. Our data suggest that BK1-8/BK plasma
concentration in combination with D-dimer levels might be retained as independent
predictors for ICU admission in patients with COVID-19. Moreover, we reported KKS
dysregulation in patients with COVID-19, which was related to disease severity by means
of inflammation, hypercoagulation, and lymphopenia.

Keywords: bradykinin (BK), COVID-19, inflammation, thromboinflammation, NLRP3 inflammasome
INTRODUCTION

COVID-19 pandemic has causedmore than 5million deaths (1) and, in severe cases, is characterized by
multiple clinical manifestations ranging from lymphocytopenia to hyperinflammatory state,
procoagulant disorder, and thrombotic events (2). The development of a “cytokine storm” has been
widely studied and is directly related to the hyperinflammatory conditions (3). In addition, persistent
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and elevated inflammation is related to the development of
thrombotic dysregulation (4). This thromboinflammatory
disorder has been extensively reported and is implicated in
severity and mortality risk (5). Patients with severe COVID-19
also develop strong dysregulation of vascular permeability (6),
which is related to multiple clinical complications as pulmonary
edema (7). Tight regulation of vascular permeability is essential for
the maintenance of homeostasis, especially under inflammatory
conditions that are a main cause of vascular alteration (8, 9). To
ensure this regulation, there are twoparallelmechanisms: the renin-
angiotensin system (10) and the kallikrein-kinin system (KKS) (9,
11). Both systems are intrinsically connected and are essential to
maintain vascular homeostasis and are as well implicated in
inflammation and tissue repair (12). Connecting both
mechanisms, we find the angiotensin converting enzyme 2
(ACE2), which is involved in the regulation of angiotensin
peptides (12). In fact, ACE‐2 is directly related to COVID-19, as
it is well-recognized to be involved in the entry of SARS-CoV-2 into
host cells (13, 14). However, smaller attention has been given to the
intricate associations of the KKS, which, as other authors have
previously mentioned, could be of great importance in the context
of COVID-19 severity (15–18).

Bradykinin (BK) formation and regulation are initiated by the
activation of coagulation factor XII. Coagulation factor XII is
able to convert prekallikrein to kallikrein (KLKB1), which, in
turn, activates factor XII in a positive feedback loop that requires
C1-esterase inhibitor (C1INH) to get inactivated (19). KLKB1 is
involved in the processing of high–molecular weight kininogen
(HK) into BK, which can bind BK receptor B2 (BDKRB2) (20).
BDKRB2 is expressed in endothelial cells, and its activation is
involved in vasodilatation and increased vascular permeability
(21). However, BK is a short-lived peptide (21), and it is rapidly
degraded by several plasma enzymes as ACE or aminopeptidase
P (22). In addition, carboxypeptidase N1 (CPN1) is also able of
degrade BK, forming an eight–amino acid peptide: des-arg-9-
bradykinin (BK1-8) (20). BK1-8 has a longer life in plasma than
BK and binds to BK receptor B1 (BDKRB1) (23). Furthermore,
when activated by BK1-8, BDKRB1 is related to cytokine release,
leading to a positive feedback loop of inflammation (24). BK1-8
degradation is essential to regain homeostasis; however, the main
enzyme involved in this process, ACE2, is critically imbalance in
patients with COVID-19 (25). Studying the relation of BK
peptides and inflammation in the context of COVID-19 is
tempting and, as other authors have previously appointed,
KKS dysregulation could be another “storm” in the horizon of
COVID-19 pathophysiology and severity (18, 26). Hence, we aim
to assess the expression of KKS components as well as the
relation of BK and BK1-8 with clinical prognosis and COVID-
19 hyperinflammation and procoagulant state.
METHODS

Study Subjects
We recruited 63 consecutive hospitalized patients with COVID-19
on the day 1 of hospital admission according to the following
inclusion criteria: positive result in (RT-PCR) Real Time
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Polymerase Chain Reaction assay for SARS‐CoV-2;
abnormalities or infiltrates on chest x-ray/CT scan; room-air
oxygen saturation <92% or requirement of supplemental oxygen;
and age >18 years. Exclusion criteria were as follows: COVID-19
symptoms 14 days before hospitalization; concomitant systemic
fungal or bacterial infection; immunodeficiency or neutropenia;
active neoplasm; current systemic autoimmune or auto-
inflammatory disease; severe pulmonary disease requiring home
oxygen therapy; and previous therapy with oral corticosteroids or
anti-inflammatory cytokines.

Exploratory endpoints were 60-daymortality, ICU admission for
intubationandmechanicalventilation,anddurationofhospitalization.
Twenty-sevenhealthycontrols(HC)withoutevidenceofrespiratoryor
infectiousdiseasewereselectedascontrolgroup.

The study was approved by local Ethics Committee (PI-4087),
and informed consent was obtained from all participants.

Plasma and Peripheral Blood Mononuclear
Cell Isolation
Peripheral blood of 20 ml was collected using butterfly-winged
needles with a needle size of 21G and 9-ml EDTA polypropylene
tubes by venipuncture. In addition, blood collection was
performed using the aspiration technique applying a constant
move. Moreover, we have rapidly performed sampling of blood
and avoided any time delays after venipuncture. Precisely,
plasma isolation was performed within 30 min after blood
collection by layering blood over 10-ml Ficoll-Paque Plus
(Amersham Bioscience, Sweden) and centrifuging 2,000 rpm
for 10 min at 21°C. Plasma was removed from the upper layer
and peripheral blood mononuclear cells (PBMCs) were acquired
from the interphase and washed two times in PBS. Plasma was
stored at −80°C and freeze-thaw cycles were avoided. Finally, all
the blood samples collected (ICU/non-ICU patients and HCs)
were treated in an identical manner.

Plasma Protein Concentration Analysis
Specific ELISA kits were used according to the manufacturer’s
instructions as available in Table S3 to measure specific plasma
concentrations of KKS proteins [high–molecular weight
kininogen (HK)], KKS peptides (BK, BK1-8), and KKS
enzymes [carboxypeptidase N subunit 1 (CPN1), kallikrein B1
(KLKB1), C1 esterase inhibitor (C1INH), and ACE2]. Moreover,
we have measured IL-1b, IL-6, TNFa, tissue factor (TF), CD40L,
and gasdermin D (GSDMD). Measurements for plasma samples
were performed in duplicate. In all cases, intra-assay variability
was CV% < 8% and inter-assays variability was CV% < 15%.

Cytokine Concentration Analysis
Inflammatory cytokines IL-1b, IL-6, and TNF-a concentrations
were measured from supernatants of overnight-cultured isolated
PBMCs from patients with COVID-19 or HCs. Cytokine
quantification was performed using a BD Human Inflammatory
Cytokine CBA kit (551811, Becton-Dickinson Biosciences,
Belgium), acquired by BD FACS-Calibur flow cytometer (Becton-
Dickinson Biosciences, Belgium) and analyzed by FCAP Array
software (Becton-Dickinson Biosciences, Belgium).
June 2022 | Volume 13 | Article 909342
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Western Blot
Plasmas from HC and COVID-19 were diluted with PBS 1:20.
Then, plasma proteins were separated by 10% gradient SDS-
PAGE gels (Bio-Rad, Madrid, Spain) under reducing conditions
Frontiers in Immunology | www.frontiersin.org 3
and blotted on nitrocel lulose membranes. HK was
immunostained with a polyclonal anti-human HK antibody
developed in rabbit (ab226087, Cambridge, UK), followed by a
monoclonal anti-rabbit (Immunoglobulin G- Horseradish
TABLE 1 | General characteristics of the patients with COVID-19 pneumonia and healthy controls*.

Patients With COVID-19 Healthy Controls P-Value

Age, years ± SD 54 ± 12 51 ± 14 0.3044
Sex, male/female 47/16 18/9 0.4411
Body mass index, kg/m2 29.2 ± 6.5 28.3 ± 5.4 0.5293
Days since onset of symptoms 8.8 ± 3.6 NA NA
Symptoms at admission, n (%)
Cough 32 (50) NA NA
Active fever 32 (50) NA NA
Dyspnea 32 (50) NA NA
Myalgia 16 (25) NA NA
Sputum production 9 (14) NA NA
Chest tightness 2 (3) NA NA
Headache 11 (17) NA NA
Fatigue 13 (21) NA NA
Anorexia 4 (6) NA NA
Nausea 5 (8) NA NA
Diarrhea 13 (21) NA NA
Chest pain 7 (11) NA NA
Anosmia 6 (10) NA NA

Comorbidities, n (%)
Hypertension 18 (29) NA NA
Coronary artery disease 4 (6) NA NA
Diabetes mellitus 12 (19) NA NA
Obesity 14 (22) NA NA
Chronic lung disease 9 (14) NA NA
Chronic kidney disease 1 (2) NA NA
Hypothyroidism 2 (3) NA NA

Smoking history, n (%)
Current 37 (59) 4 (14) <0.001
Former 10 (16) 1 (3) <0.001
Never 16 (26) 22 (81) 0.10

Pneumonia severity scores
CURB-65 0.67 ± 0.78 NA NA
Fine risk class 2.19 ± 1.0 NA NA
Laboratory findings
PaO2, mmHg 65.4 ± 13.8 NA NA
PaO2/FiO2 ratio 249.7 ± 102.4 NA NA
PaCO2, mmHg 34.2 ± 6.5 NA NA
White cell count, 103 cells/µl 7.19 ± 4.07 NA NA
Neutrophils, 103 cells/µl 5.51 ± 3.32 NA NA
Lymphocytes, 103 cells/µl 1.10 ± 1.70 NA NA
Monocytes, 103 cells/µl 0.32 ± 0.16 NA NA
Platelets, 103 cells/µl 230 ± 75 NA NA
Hemoglobin, g/dl 13.9 ± 1.5 NA NA
C-reactive protein, mg/L 84.2 ± 71.8 NA NA
Aspartate aminotransferase, U/L 45.4 ± 28.8 NA NA
Alanine aminotransferase, IU/L 44.6 ± 32.3 NA NA
ϒ-Glutamyltransferase, IU/L 91.3 ± 92.7 NA NA
Bilirubin, µmol/L 0.53 ± 0.24 NA NA
Albumin, g/L 4.3 ± 0.3 NA NA
Ferritin, ng/ml 882.8 ± 791.8 NA NA
Lactate dehydrogenase, U/L 307.1 ± 104.0 NA NA
D-dimer, ng/ml 1107 ± 1461 NA NA
Fibrinogen, mg/dl 734.4 ± 264.0 NA NA

Evolution results
Duration of hospital stay, days 19.5 ± 20.7 NA NA
Requirement of mechanical ventilation, n (%) 16 (25.4) NA NA
ICU admission, n (%) 17 (27.0) NA NA
Exitus, n (%) 4 (6.3) NA NA
June 2022 | Volume 13 | Articl
*SD, standard deviation; PaO2, oxygen arterial pressure; FiO2, fractional inspired oxygen; PaCO2, carbon dioxide arterial pressure; ICU, intensive care unit. NA, not available.
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peroxidase) IgG-HRP–linked antibody (A9452-1VL, Sigma-
Aldrich, Madrid, Spain). Detection was done with enhanced
chemiluminescence (ECLTM Prime; Amersham).
Blood mRNA Isolation and BDKRB1
Quantification by qPCR
Total RNA was extracted from blood samples using TRIzol (TRI
reagent) following the manufacturer’s protocol (ref: 10296028,
Life Technologies, Canada). RNA levels were measured by
RTqPCR using QuantiMix Easy kit (Biotools, Spain) and
Light-Cycler system (Roche Diagnostics, Switzerland) and
results normalized to 18S expression. Primer sequences:

18S: F: CGGCGACGACCCATTCGAAC and R: GAATCGA
ACCCTGATTCCCCGTC; BDKRB1: F: AGGCCAATT
TGTTCATCAGC and R: AGGCCAGGATGTGGTAGTTG.
Statistical Analysis
Data are presented as mean ± standard error mean (SEM).
Comparisons were performed by Mann–Whitney U-test or
chi-squared test. For quantitative variable correlation,
Spearman’s rho analysis was performed. Receiver operating
characteristic (ROC) analysis was achieved by Brown/Wilson
test and to calculate optimal cutoff values Youden index was
used. In all cases, level of significance (alpha) was set at 0.05.
Analyses were performed using Prism 8.0 (Graph Pad, USA) and
SPSS 26.0 (IBM, USA) software.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Characteristics of the Study Subjects
Twenty-seven HC subjects and 63 severe COVID-19 (COV)
pneumonia patients were recruited on the day 1 of hospital
admission. HC and COV were homogeneous in sex (67 vs. 75%
males, respectively), age (51 ± 14 vs. 54 ± 12 years, respectively),
and body mass index (28.3 ± 5.4 vs. 29.2 ± 6.5 kg/m2,
respectively). During the follow-up period, four patients died,
16 patients required mechanical ventilation, and 17 patients were
admitted to ICU. Detailed clinical characteristics of patients with
COVID-19 are shown in Table 1.

Dysregulated Plasma Levels of KKS
In comparison with HC, patients with COVID-19 presented
elevated plasma concentrations of HK (Figure 1A), a compound
that is delivered to the blood by the liver under basal conditions and
that could be released by other tissues, such as alveoli epithelium,
under inflammatory conditions (27). However, BK plasma levels
were reduced in patients with COVID-19 (Figure 1B), which may
suggest an impairment of its production or an increase of its
degradation. We measured the plasma concentration of KLKB1,
the enzyme involved in BK release, and the observed normal levels
compared to HC (Figure S1A). Interestingly, altered levels of BK
might be implicated in COVID-19 coagulation complications.
Moreover, C1INH that is involved in KLKB1 regulation also
presented similar levels in patients with COVID-19 and HC
(Figure S1B). Regarding BK degradation toward smaller
peptides, we observed high plasma levels of its byproduct: BK1-8
A

B

C

D

E

F

FIGURE 1 | Plasma levels of KKS components. ELISA quantification in plasma from healthy controls (HC) and patients with COVID-19 (COV) of (A) HK (HC, n = 20;
COV, n = 49), (B) BK (HC, n = 27; COV, n = 63), (C) BK1-8 (HC, n = 27; COV, n = 63), and (D) CPN1 (HC, n = 26; COV, n = 61). (E) Representative Western blot
of plasma of healthy control (HC) and patients with COVID-19 patient (COV) (blue arrow, band at approximately 110 kDa is an intact 1-chain HMWK; red arrows,
bands at approximately 46 and 56 kDa are cleaved 2-chain HMWK). (F) Cleaved 2-chain HK expression relative to intact-1chain HK expression in plasma from
healthy controls (HC, n = 4) and patients with COVID-19 (COV, n = 8) measured by densitometry quantification of bands from Western blot. Mean differences were
analyzed by Mann–Whitney U-test. Error bars: mean ± SEM. *P < 0.05; ***P < 0.001; ****P < 0.0001.
June 2022 | Volume 13 | Article 909342

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Alfaro et al. BK1-8 in COVID-19 Severity
(Figure 1C). Concomitantly, CPN1, the major BK degrading
enzyme, was upregulated in patients with COVID-19
(Figure 1D). To further address KKS activation in patients with
COVID-19, we performed HK Western blot, and we observed
nearly threefold increase in relative level of HK proteolytically
cleaved forms in plasma from patients with COVID-19 compared
to healthy controls (Figures 1E, F), which could confirm contact
pathway activation. These consecutive results suggest that KKS is
critically dysregulated in patients with COVID-19, promoting the
formation of active peptide BK1-8, thus reducing BK. BK1-8
accumulation must be resolved by ACE2; however, this enzyme is
slightly but significantly reduced in plasma from patients with
COVID-19 (Figure S1C) as other authors have previously
described (25). In addition, BK1-8 main receptor, BDKRB1,
mRNA expression were upregulated in circulating cells from
patients with COVID-19 (Figure S1D).

Clinical Relevance of BK1-8/BK Plasma
Concentrations in Patients With
Severe COVID-19
In patients with COVID-19, plasma levels of BK1-8 were
associated with duration of hospital stay (r = 0.469; P = 0.0002)
(Figure 2A) and were elevated in patients requiring mechanical
ventilation (Figure 2B) or ICU admission (Figure 2C). We
performed a ROC curve analysis of BK1-8 levels for ICU
admission (Figure 2D) and found an optimal Youden’s cutoff
value of 8.201 ng/ml (Table S1). Contingency table showed an
odds ratio of 20.48 for ICU admission in the high BK1-8 plasma
level group (Figure 2E). In a logistic regression model, D-dimer
Frontiers in Immunology | www.frontiersin.org 5
level—previously described as biomarker of COVID-19 severity
(28)—BK1-8 and BK levels were retained as independent
predictors of ICU admission (Table S2). ROC curve for the
multivariate model score was very efficient with a Youden’s
cutoff value of −0.3521 (sensitivity, 92.86%; specificity, 95.24%)
(Figure 2F), being more accurate than any of the parameters alone
(Table S2). Contingency table showed an odds ratio of 260.0 for
ICU admission in the high-score group (Figure 2G). Hence, we
present BK/BK1-8 plasma concentrations as potentially valuable
markers for COVID-19 severity which, when combined in a
model with D-dimer, yield an accuracy of 92.9% for ICU
admission in our cohort (Figure 2H).
BK1-8 Dysregulation Is Related to
Hyperinflammatory and Prothrombotic
State of Patients With COVID-19
Regarding the hyperinflammation, we observed BK1-8 was
positively and significantly related to four out of five
inflammation markers studied (CRP, ferritin, IL-1b, IL-6, and
TNF-a) (Figure 3), suggesting a potential role of this peptide in
patients with COVID-19’ inflammation. Meanwhile, the
prothrombotic state markers such as fibrinogen and CD40L
were related to HK (Figure 3). In line with this, D-dimer,
fibrinogen, tissue factor (TF), and CD40L were also directly
related to BK1-8 (Figure 3).

Interestingly, the NLRP3 inflammasome plays a role in
processing and release of the inflammatory cytokine IL-1b
(29). Consistently, our data of NLRP3 showed a positive
A B C

D E

F G H

FIGURE 2 | BK1-8 association with COVID-19 severity. (A) Correlation of BK1-8 plasma concentration and duration of hospital stay (n = 60). Spearman’s correlation
coefficient (r) and P‐value are shown. (B) Comparison of BK1-8 plasma concentration in patients not requiring mechanical ventilation (MV−, n = 47) and those requiring it
(MV+, n = 16). (C) Comparison of BK1-8 plasma concentration in patients not derived to ICU (non-ICU, n = 46) and patients derived to ICU (ICU, n = 17). Mean
differences were analyzed by Mann–Whitney U-test. Error bars: mean ± SEM. ***: P < 0.001. (D) Receiver operating characteristic (ROC) curve for predictive performance
value for ICU admission of BK1-8 (n = 63). (E) Contingency table comparing ICU admission for patients with high and low BK1-8 plasma levels. (F) ROC curve for
predictive performance value for ICU admission of multivariate model score (n = 56). (G) Contingency table comparing ICU admission for patients with high and low
multivariate model score. ROC curves were analyzed by Wilson/Brown test. Contingency tables were analyzed by chi-squared test. (H) Multivariate model score in
patients with COVID-19 not derived to ICU (non-ICU, n = 42) and derived to ICU (ICU, n = 14).
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correlation with IL-1b (Figure S2), as suggested by previous
studies where NLRP3 role in COVID-19 is highlighted (30–33).

Lastly, lymphopenia markers such as lymphocyte and
monocyte counts negatively correlated with BK1-8. In line with
this, the pyroptotic marker, GSDMD, showed a positive
correlation with BK1-8, suggesting an implication of KKS in
lymphopenia (Figure 3).
DISCUSSION

Our study of BK cascade suggested an impaired KKS in severity of
patients with COVID-19. This regulation was characterized by high
levels of HK and BK1-8 in combination with low levels of BK, all of
these are part of contact system involved in intrinsic coagulation
cascade activation (34). A reduction of BK levels could result in
endothelial dysfunction because BK activation of BDKRB2 induces
the release of nitrogen oxide, prostacyclin, endothelium-derived
hyperpolarizing factor, and tissue plasminogen activator, which
exert diverse physiological actions on the cardiovascular system,
including regulation of vascular tone and local blood flow to organs,
coagulation, fibrinolysis, and water-electrolyte balance (35).
Conversely, high levels of BK could lead to capillary leakage and
thus angioedema, which also constitutes a COVID-19 complication.
In this line, blocking BDKRB2 and inhibiting KLKB1 activity have
been proposed to ameliorate early disease caused by COVID-19 (15,
18). BK plasma levels are regulated by several enzymes including
CPN1, which cleaves BK to BK1-8 (36). In patients with COVID-
19, we observed an overexpression of plasma CPN1, which we
suggest collaborates in BK1-8 accumulation. It is interesting to
further explore the role of CPN1 in COVID-19 pathophysiology as
this carboxypeptidase also inactivates the complement system (37).
Recently, CPN1 has been described as a promising biomarker for
Frontiers in Immunology | www.frontiersin.org 6
chemotherapeutic surveillance (38). In addition, our results
from HK Western blot suggest that BK1-8 levels in plasma
of patients with COVID-19 could not only result because of
the increased level of CPN1 but also by an increased e
production of kinins, via increased degradation of HK. Once
BK1-8 is released to the plasma, it exerts multiple functions
mainly by binding to BDKRB1, which stimulates cytokine
release by macrophages and monocytes (24, 39, 40).
Interestingly, inflammatory condition of patients with
COVID-19 has been related to their prothrombotic state (41).

Interestingly, BDKRB1 receptor is expressed in the endothelium
and in leukocytes under inflammatory conditions as those expected
in patients with COVID-19 (42). Indeed, Nicolau et al.
hypothesized that targeting BDKRB1 pathway may be beneficial
inSARS-CoV-2 infection (17).BK1-8 accumulation is at the basis of
several pathophysiological conditions (43–45), and some authors
have hypothesized about its role in COVID-19 progression (26), so
we were tempted to study its relation with clinical markers for
COVID-19 severity. In our study, BK1-8 is related to COVID-19
severity; indeed, we propose BK and BK1-8 when combined in a
model with D-dimer plasma concentrations as potentially valuable
markers for COVID-19 severity.

We observed that BK1-8 was positively and significantly related
to inflammation, suggesting a potential role of this peptide in
inflammation in patients with COVID-19. Interestingly,
inflammatory condition of patients with COVID-19 has been
related to NLRP3 inflammasome (30–33). Further study of the
KKS is quite interesting, especially in the context of
thromboinflammation and pulmonary edema complications; in
fact, therapeutical targeting on this pathway has been addressed
(15). BK1-8 was also directly related to coagulation markers: D-
dimer, fibrinogen, tissue factor (TF), and CD40L, although the
mechanistic relation was not addressed in this study. In contrast, BK
was negatively related with TF; indeed, it has been described that BK
can inhibit TF expression (46). We hypothesize that
hyperinflammatory state and damaged endothelial function (47),
both related to KKS (48), might be associated with patients with
COVID-19 prothrombotic complications, although a more detailed
evaluation of this process is needed. Finally, we observed a relation
between BK1-8 concentration and lymphopenia assessed by
lymphocyte and monocyte count and GSDMD plasma
concentration. These findings suggest that lymphopenic states in
patients with COVID-19 along with damaged endothelial function
(49, 50) are facilitating the accumulation of BK1-8, as lymphocytes
and monocytes, as well as endothelial cells, are the main source of
ACE2, the BK1-8‐degrading enzyme (51).

This study supports with patients’ data the suggested
importance of the BK peptides in severe patients with COVID-
19, which we propose are linked to ICU admission. Interestingly,
Garvin and colleagues reported altered KKS in bronchoalveolar
lavage fluid (BALF) of patients with COVID-19, showing
reduced levels of ACE in combination with enhanced ACE2
and kininogen expression. In addition, authors highlighted
overexpression of kallikrein enzymes and both BK receptors
(12). In contrast, our data showed low levels of ACE2 plasma
June 2022 | Volume 13 | Article 909342
FIGURE 3 | KKS association with inflammation, coagulation, and
lymphopenia. Heatmap representing Spearman’s correlation coefficients
between BK cascade components and inflammation, coagulation, or
lymphopenia markers. HK, high–molecular weight kininogen; BK, bradykinin;
BK1-8, bradykinin1-8; CPN1 carboxypeptidase N subunit 1; BDKRB1,
bradykinin receptor B1; CRP, C-reactive protein; IL, interleukin; TNF, tumor
necrosis factor; TF, tissue factor, GSDMD, Gasdermin D. Significant
associations are marked by asterisks. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001.
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protein expression; this disagreement might be due to the
difference of biological samples (BALF vs. plasma).
Interestingly, other studies have shown elevated ACE2 in
postmortem lung samples (13). On the other side, Lipcsey and
colleagues reported evidence of activation of KKS and
complement in 66 critically ill patients with COVID-19.
Indeed, this activation was related with the clinical outcome
(14). In line with this, our data also suggest that the KKS
dysregulation in patients with COVID-19 is potentially
associated with COVID-19 severity.

Our study has several limitations, which we recognize. First, we
did not used specific tubes containing precise protease inhibitors for
KKS assessment. Contact activation could alter HK, BK, and BK1-8
concentrations if samples are not adequately stabilized immediately
at the time of blood collection. Second, healthy controls cohort
information was limited. Third, limited sample size and lack of
follow-up time restrained the potential identification of robust
prognostic events. Fourth, this is an observational study carried
out in patients with severe COVID-19 pneumonia treated according
to conventional clinical practice, so the non-randomization does not
allow us to infer the efficacy of different clinical approaches.

Altogether, we have observed that KKS is dysregulated in
patients with COVID-19. Interestingly, the most relevant finding
of this study is the relation of soluble plasma concentrations of
BK1-8 and BK with COVID-19 severity, suggesting these two
kinin components as possible biomarkers of COVID-19 severity
and additional study of this possibility is promising. BK1-8 was
associated to COVID-19 hyperinflammatory and prothrombotic
state as well as lymphopenia. However, we acknowledge that the
mechanistic and functional relation of BK1-8 and COVID-19
pathophysiology remains mostly unclear and must be further
addressed. Our results contribute to the rising interest in KKS
signaling in patients with COVID-19 due to its implication in
thromboinflammation and pulmonary edema complications.
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