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ABSTRACT

Microarray gene expression data becomes more
valuable as our confidence in the results grows.
Guaranteeing data quality becomes increasingly
important as microarrays are being used to diag-
nose and treat patients (1–4). The MAQC Quality
Control Consortium, the FDA’s Critical Path
Initiative, NCI’s caBIG and others are implementing
procedures that will broadly enhance data quality.
As GEO continues to grow, its usefulness is
constrained by the level of correlation across
experiments and general applicability. Although
RNA preparation and array platform play important
roles in data accuracy, pre-processing is a user-
selected factor that has an enormous effect.
Normalization of expression data is necessary, but
the methods have specific and pronounced effects
on precision, accuracy and historical correlation.
As a case study, we present a microarray calibration
process using normalization as the adjustable
parameter. We examine the impact of eight
normalizations across both Agilent and Affymetrix
expression platforms on three expression read-
outs: (1) sensitivity and power, (2) functional/
biological interpretation and (3) feature selection
and classification error. The reader is encouraged
to measure their own discordant data, whether
cross-laboratory, cross-platform or across any
other variance source, and to use their results to
tune the adjustable parameters of their laboratory
to ensure increased correlation.

BACKGROUND

Expression arrays have progressed to a point where low
technical variance, low background noise and a high
degree of accuracy have encouraged the development
of array-based medical devices that predict drug
response, relapse potential or general prognosis (2–4).
Normalization is a critical pre-processing step for
most array technologies, due to the known biases.

As normalization methods get more sophisticated and
perhaps more specialized, the list of pros and cons for
each grows. The array user should be aware of the
bottom-line consequences of the normalization methods
available today.
Affymetrix (Affymetrix Inc, Santa Clara, CA, USA)

and Agilent (Agilent Technologies, Santa Clara, CA,
USA) are leaders in expression array manufacturing.
They use quite different approaches to the construction,
layout, optimization, hybridization, image acquisition and
data extraction methods. Much of the difference that
we see is attributable to the difference between in situ
probe synthesis—photolithography (light-directed) versus
liquid-based (ink-jet) oligonucleotide synthesis. Reports
have found both poor (5–10) and good (6,11–22) cross-
platform correlation, but the MAQC consortium have
generally found that proper sample preparation is
sufficient to dramatically enhance multi-lab and multi-
platform correlations (16,23,24). Quality control rules
(25–27) tell us that one could fix a high-quality RNA
source and identify all other variables that could cause
discordant data. With that logic, we propose a system that
fixes the RNA source and changes data normalization
methods in order to estimate their effect on data precision,
classifier error and biological interpretation. The system
we developed is a simple analysis that both graphically
and quantitatively shows how adjustable parameters
(in this case normalization) affect discordance. Although
many publications have proposed somewhat esoteric
methods for measuring cross-platform reproducibility,
we believe that a simple, easy-to-understand analysis will
not only highlight most sources of variance, but will
also enable the user to visualize how process-control
techniques improve reproducibility.

Normalization methods and cross-platform comparisons

How two arrays from different manufacturers correlate
with each other depends in large part on how they
respond to factors that cause ectopic hybridization.
Agilent arrays have mostly full-length 60-mer probes
versus mostly525-mers on Affymetrix arrays, the differ-
ence primarily being due to the stepwise yield between
shadow-masking and liquid in situ synthesis. Long oligo
probes tend to disallow mishybridization due to increased
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hybridization and wash stringency; 25-mers and shorter
are less well adapted to discriminate short mishybridiza-
tion products, often showing up in partially degraded
samples. Normalization cannot fix data obtained from
degraded samples, but the analyses we propose enable one
to spot patterns that implicate degraded RNA, and to pick
a normalization method that may mitigate the most
egregious effects.
For Affymetrix arrays, dChip PM and dChip PM–MM

(28) are very popular model-based approaches (MBEI)
that rely on weighted average of PM–MM differences,
or an adjusted PM value (Perfect Match/MisMatch).
dChip can either include or exclude mismatch data
and then normalize using an invariant set method
or quantile:quantile; both accommodate deviations in
intensity-dependent variance quite well. GC-RMA and
RMA (Robust Multi-Array Averaging) (29–32) apply
a type of variance stabilization that sums probes from all
experiments in an analysis set and computes an average.
GC-RMA weights the stronger G:::C bonds over A::T,
yielding moderately higher precision in cases where the
thermodynamics of the probe:target complex play a major
role in hybridization. MAS5 (Microarray Suite 5) is
a fairly conservative method that represents the manu-
facturer’s suggested correction for mishybridization that
occurs on the order of single mismatch destabilization
energy, �G¼�3.2 kCal. Signals from a mismatch probe
are subtracted from a perfect match probe and total signal
is calculated using a one step Tukey’s biweight estimate
after the highest and lowest probe values are discarded.
RAW Affymetrix data, summarized by taking the
median of all PM probes, make an excellent control for
our comparisons since the biases that make normalization
so important become abundantly clear. Many of these
algorithms are included in the Affycomp library in
Bioconductor (33).
Agilent arrays were originally optimized for two-color

analysis but a one-color protocol is now available that
includes a different panel of spike-in reagents for better
optimization of single-color mode (34). Although this
method would have been appropriate for a truly cross-
platform comparison, we instead wanted to estimate error
separately for each of the two Agilent channels, so we
extracted each channel separately from a two-color
experiment. Mean signal (MEAN) is most similar to
RAW Affymetrix data, background subtracted (BSUB)
is most similar to MAS5 and dChip PM–MM and
processed (PROCESSED) is most similar to GC-RMA
and dChip PM. These three normalization steps are all
found in Agilent’s feature extraction output file.

Practical aspects of expression profiling

We define an expression profiling system as the array,
scanner, RNA preparation techniques and the general
laboratory infrastructure. Thus, when we use the term
‘biosignature’, we are really referring to the entire system
that was involved in the generation of the data. Agendia’s
70-gene Agilent-based MammaPrint� (2–4), aka the
‘Amsterdam Signature’, Veridex’s 76-gene signature, aka
the ‘Rotterdam Signature’, Genomic Health’s 21-gene

RT-PCR-based Oncotype DXTM (1,35) and a 41-gene
expression set by Ahr et al. (36,37) have no gene in
common, although all classify breast cancer profiles.
Given zero-error measurements, a perfect signature
could be found, but in reality gene-specific imprecision
exists depending on the platform. In the clinic, misclassi-
fication can be potentially life threatening when false
negatives predominate, and costly and uncomfortable
for the patient when false positives predominate.
With proper calibration and selection of platform-neutral
gene expression profiles, one can expect good classification
performance on a given expression platform, if one can
validate biosignatures on public expression data (38–40).
Shyamsundar et al. (41) addressed the calibration problem
by correlating fluorescence intensity to copy number
using genomic DNA (present at two copies per gene) as
a baseline. Although mid- and high-concentration end-
points would have been valuable, it remains a promising
calibration method.

One of the most relevant tests of expression data quality
is how well one can identify genes that participate
in gene regulatory and metabolic networks that change
between healthy and diseased samples. Cancer is often
cited as the archetype of a process that redirects
transcriptional signals, originally designed to maintain
homeostasis, into new developmental pathways specializ-
ing in proliferation and survival (15). Classification of
biological samples into distinct subtypes based only on
the transcriptome is often able to predict disease progres-
sion, drug response and even survival (3,42–44). Gene
Ontology analysis has been shown to correlate well
with changes in cellular physiology due to disease (45).
Similarly, whole regulatory pathway analysis is informa-
tive when filtered for false positives. Pathway software
includes Stratagene’s Pathway Architect, Ingenuity’s IPA,
GeneGo’s Metacore and open source Cytoscape,
GenMapp, Kegg and Biocarta.

Three analytical methods

We propose three tests that generally provide expression
data performance values; in our case we used these
tests to decide which normalization method is most
appropriate for the task at hand. We created an
experimental design that compares three functionally
different normal tissues: human liver, lung and spleen.
The design was kept intentionally simple in order to
facilitate this example, but note that the selection of
functionally divergent tissues places a burden on normal-
ization methods that assume minor changes in expression
across samples. However we believe this design is superior
for the current task than more complex designs (11–17,46–
52). The analysis is simple enough to do without
specialized software, and high quality RNA samples are
readily obtained (Stratagene, La Jolla, CA). The tissue
samples are normal healthy human samples rather
than diseased tissues (15,53–55), and provide a large
range of differential expression values. These results
should be comparable to the same analysis performed
in any lab, which is our definition of standardized
methodology. We describe each analysis in terms of the
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genei, tissuej and casek. The gene is the individual probe or
averaged probeset targeting a single gene transcript. The
tissue is one of three human commercial samples, in this
case spleen, lung or liver. The case is one of three possible
ratios, spleen:lung, lung:liver and spleen:liver. At least
three replicates per tissue per platform were run, with
three normalization methods for Agilent and five for
Affymetrix. Twenty-four distinct data sets (Table 1) were
analyzed.

RESULTS

Power analysis and distributional tests (statistical)

Data was structured as follows: data sets were log10
(intensity) and log2 (ratio) transformed as needed.
Figure 1 summarizes the reproducibility and dispersion
for each platform and tissue combination across most of
the twenty-four conditions. Agilent CY3 was left out for
brevity, but plots were very similar to the CY5 data.
The first three columns are the intensity replicates (e.g. liver
sample 1 versus liver sample 2) and graphically illustrate
technical variability as a function of fluorescence intensity.
Background-subtracted methods in general tended to
show the highest apparent dispersion (MAS5 and dChip
PM–MM) while GC-RMA, dChip PM and most of the
Agilent data showed much less scatter. The third, fourth
and fifth columns show the MvA (Bland–Altman) plots,
indicating the degree of correlation between variance and
intensity. Only the Affymetrix MAS5 and GC-RMA data
have substantial scatter, indicating a disjunction between
intensity and variance. The ratio replicate plots in columns
seven, eight and nine indicate how precisely each pair of
tissue samples can be used in ratios for each of the three
pairwise cases. MAS5 and dChip PM–MM show compara-
tively high scatter, indicating higher variability across
replicate ratio calculations, especially at ratios near one.
The dChip PM and RAW plots, and to a lesser extent
MAS5, highlight the problem of using either under-
normalized or imperfectly estimated mismatch data as

a reliable estimate of background. The Agilent data shows
a slight trend to higher dispersion with the BSUB and
PROCESSED signals showing the impact of subtracting
background. The boxplots shown in Figure 2 (top) indicate
the relative data spread, another graphical estimate of
precision. Agilent MEAN and Affymetrix GC-RMA and
RAW show the lowest quartile ranges, suggesting high
precision. The bottom plots show the relative compression
of un-normalized signals, explaining the illusion of preci-
sion due to the low dynamic range of near-RAW data.
Figure 3 shows the effect of normalization on hierar-
chical clustering (Euclidean distance, average linkage,
1000 ANOVA-selected genes, GeneSpring 7.2, Agilent
Technologies, Palo Alto, CA). Affymetrix data tends to
form clusters based on the (relatively greater) effect of
normalization while Agilent data tends to cluster by tissue
regardless of the channel or normalization. The Venn
diagram shows the overlap of genes for each cluster
experiment; there were 699 common genes out of 1000
based on RefSeq. Precision estimates such as these are
always imperfect in some way, but when taken together
they provide a good estimate of relative precision.
Sensitivity was calculated in several ways. We first
estimated the power using normal.sample.size() in Sþ or
power.t.test() in R. We computed � (the minimum
detectable fold change) at an arbitrary threshold of
one potential false positive per array, or a¼ 1/Nprobes.
The p-value threshold used throughout this article often use
1/Nprobes, or p¼ 5.3� 10�5 for Agilent and p¼ 4.5� 10�5

for Affymetrix. Calculations of delta used N¼ 3 replicates,
b¼ 0.80 for every pairwise gene expression value across
each unique tissuej casek, per platform and per normal-
ization. Figure 4 shows the sorted � (black curve)
calculated for each probei casek with the actual ratios
between the two tissues plotted as blue bars. If abs(log2
geneii/geneij)4�, then genei is significant by definition,
as indicated by the red circles. Some circles lie below
the curve � because the significance was calculated by
a t-test using log10 intensities rather than the log2 ratios

Table 1. Sample size, normalization methods, platform and tissues used

Platform Normalization methods Probes (genei) overlap Tissues (samplej) Nj

Agilent Human 1Av2 BSUB (gBGSubSignal col62 and rBGSubSignal
col63 Feature Extraction 8.1)

18703 11504 Liver, lung, spleen 6

Agilent Human 1Av2 MEAN (gMeanSignal col33 and rProcessed col34
Feature Extraction 8.1)

18703 11504 Liver, lung, spleen 6

Agilent Human 1Av2 PROC (gProcessed col23, 80 and rProcessed col 24,
81 Feature Extraction 8.1)

18703 11504 Liver, lung, spleen 6

Affymetrix U133Av2 MAS5 (GCOS 1.2) 22215 11504 Liver, lung, spleen 6
Affymetrix U133Av2 GC-RMA (GeneSpring 7.2) 22215 11504 Liver, lung, spleen 6
Affymetrix U133Av2 RAW (Bioconductor Affy package, mean PM) 22215 11504 Liver, lung, spleen 6
Affymetrix U133Av2 PM (dChip 2006 Perfect Match only model) 22215 11504 Liver, lung, spleen 6
Affymetrix U133Av2 PM–MM(dChip 2006 Perfect Match – Mismatch

difference model)
22215 11504 Liver, lung, spleen 6

Agilent’s MEAN value is the signal intensity per channelþ local and global background. BSUB is MEAN — local background. Local background is
calculated using negative controls, mean local background and a spatial detrending calculation based on scanner-induced low frequency
multiplicative noise. PROC is background subtracted, spatially detrended, lowess normalized and error modeled data. The error model separates the
lower additive components error for low intensity, the multiplicative components for high intensity, and adds the squared results of all error terms
plus the error from the simple background subtracted signal. Affy MAS5 is the mismatch-subtracted data from GCOS. GC-RMA is the GC-modified
robust multi-array variance stabilizing method. dChip PM and PM–MM methods are iterative, model-based methods that automatically exclude high
error datapoints.
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in the power calculation. This is formalized below in
Equation (1.1):

If
1

mj

Xm

ij

xij �
1

mj0
xij4 log2

ij

ij0
then geneij is significant:

ð1:1Þ

Table 2 shows the results from three methods for
calculating sensitivity. Column 1 shows the mean delta
þ/� the standard deviation computed by calculating
power from every possible pairwise casek, column 2 shows
the average minimum-detectable fold-change (MDFC)
across replicate measures at the 95th percentile. Equation
(1.2) is the method for averaging delta for each casek.
Column 3 shows the median MDFC across replicate
measures at the 95th percentile. Equation (1.3) clarifies
the calculation for delta across the ith gene and the kth

sample where m¼ 22 215 for Affymetrix and 18703
for Agilent.

�� ¼
1

3
ð�case1 þ�case2 þ�case3Þ ð1:2Þ

��k ¼
1

m

Xm

i¼1

�ik ð1:3Þ

Mean and median fold-change values across ratio
replicates were averaged across all casek for all ratio
calculations used in sensitivity calculations. Sensitivity
estimates correlate well with the replicate scatterplots in
Figure 1. Agilent methods BSUB and PROCESSED have
the highest sensitivity followed by Agilent MEAN,
Affymetrix GC-RMA and dChip PM, with the worst
precision and sensitivity seen with MAS5 and dChip
PM–MM normalizations. The fact that dChip PM

Figure 1. Graphical view of precision. Intensity replicates (left three columns) are log10 scatter plots of technical replicates for each normalization
and tissue. Low scatter indicate higher precision. MvA plots (center three columns) are Bland–Altman charts showing variability (M¼ log2 (S1/S2))
as a function of the average intensity (A¼ log2 sqrt(S1/S2)) where S1 and S2 are the two replicate samples for each normalization and tissue. Linearity
and low spread indicate high precision without intensity-sourced bias. Ratio replicates (right three columns) are log2 plots of tissue:tissue ratio
replicates for each combination of tissue.
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Figure 2. Intensity plots using boxplots (top) and line-plots (bottom). Top: boxplots of each array are colored by normalization type. Top boxplots
show Agilent data arranged from left to right from the CY3 and CY5 channels, respectively. Lower boxplots show Affymetrix data.
Lower figures show the log10-transformed intensity values as line-plots. High intensity genes are colored red, low intensity genes are colored green.
All data is log10-transformed and median normalized.
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produced better sensitivity results than dChip PM–MM is
likely due to the scatter that the mismatch subtrac-
tion causes, similar to the problem that MAS5 has.
Algorithms that use background subtraction methods
cause low-intensity imprecision when MM 4 PM.
This effect is manifested in MAS5 and dChip PM–MM
data by a minimum detectable fold change near 2-fold,

while GC-RMA and Agilent data show 1.3-fold or less
MDFC.

Biological interpretation (Gene Ontology)

We tested Gene Ontology functions by computing lists
of genes differentially expressed across each pair of

Figure 3. Hierarchical grouping of 1000 genes selected using a Model I ANOVA for tissue differences ignoring the normalization class.
Data was clustered using Euclidean distance to create the gene and experiment trees. Colored bars at the bottom of each dendrogram
indicate the normalization method, tissue type or channel where appropriate. Vertical colored bars represent the Euclidean-based k-means
gene clusters. Gene overlap was determined sequentially, using probename to RefSeq to HUGO Gene Symbol inside GeneSpring (translate
genome function).
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tissues (Table 3). Each gene list was tested for unusual
abundance using GO categories, as calculated in
GeneSpring 7.2 with corroborative results obtained from
OntoExpress (56). Nearly identical results were obtained
across the Agilent normalizations (columns 3, 5 and 7),
less so among the Affymetrix normalizations, with dChip
PM identifying functions that are quite unique. MAS5 and
GC-RMA showed the greatest similarity to the Agilent
results, suggesting that differentially expressed genes
identified using GC-RMA and the Agilent samples led
to a common biological interpretation. Subsequently, we
wanted to see the extent of overlap given a common set of
genes across the two platforms. We converted probe name
to RefSeq, then to Hugo Gene Symbol, then to HUGO
gene name and selected the intersection between the two
platforms. We also used GeneSpring’s Translate Genome
function, and obtained a similar overlap. Using this
common genome of probes, we selected the 1000 most
significant genes from a Model I ANOVA (Figure 5). The
highest overlap across the two platforms exists between
Affymetrix dChip PM–MM and Agilent PROCESSED
(243 genes out of 1000, Figure 5G) which, given the
precision results, was a little surprising. Overall the
overlap among MAS5, PM–MM and RAW (127 genes,
Figure 5K) is higher than across dChip PM and GC-RMA
(39 genes, Figure 5I). The Agilent normalizations were
very similar to each other, with MEAN having the highest
unique set of genes (288, Figure 5B) among the three
normalizations. An interesting finding is the relatively
high overlap between the Affymetrix background subtrac-
tion methods (dChip PM–MM and MAS5) versus the
Agilent data (Figure 5C). In contrast, the more precise
measures of dChip PM and GC-RMA versus the Agilent
data (Figure 5I) showed very little overlap, again
suggesting that the most aggressive and platform-
specific normalizations improved precision at the cost of
accuracy. The highest overlap between GO functions
was found between MAS5 or dChip PM–MM and Agilent
PROCESSED, again suggesting that high Type I error
may not affect a GO analysis as dramatically as Type II
errors. Using more detailed GO nodes did not clarify the
differences between our normalizations, nor did it change
the rank of best–to–worst. We feel this functional analysis
is suitable as a 10 000 foot view of biological consistency.
However, we wished to examine another biological
analysis, and GenMapp, Biocarta, Kegg and Cytoscape
all yield sufficient discrimination to quantify biological
differences based on gene lists. We performed pathway

Figure 4. Power calculations indicate limits of detection. The log2 ratio
between the three tissues is plotted as blue bars along the X-axis.
The X-axis is the probe number sorted by the calculated delta, the
Y-axis is the log2 fold-change. Red circles indicate statistical
significance at P50.00001. The black curve is each probe’s delta
(the minimum detectable difference expressed as a log2 ratio) calculated
by computing the post-hoc power for each probe at a¼ 0.05, b¼ 0.20
and N¼ 3 per tissue. The lower the delta, the less difference must be
seen between tissues for a ratio to be significant. Wider delta curves
imply that a ratio must be large in order to reach significance.

The delta curves roughly recapitulate the precision seen in Figure 1,
but also provide a graphical view of the distribution and magnitude
of ratios versus proportion of significant genes. GC-RMA tends to
show ratios close to the calculated delta; MAS5 shows many high ratios
but fewer actual significant genes, implying false positives are a
concern. PM only shows good stability across the tissue replicates. The
Agilent data shows a uniform distribution of high and low ratios and
many significant genes, implying low false positives and due to the
number of significant genes, likely low false negatives. Raw Affymetrix
data has seemingly high precision but analysis shows high false
negatives and ratios that often disagree in magnitude and direction
with other highly correlative probes across both Affymetrix and
Agilent data.
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analysis of 100 significant genes from each list (Table 4)
using www.biorag.org. Interestingly, once again we see
that MAS5 and to a lesser extent dChip PM–MM match
the Agilent data well, with Affymetrix RAW consistently
identifying pathways outside consensus. By comparing
the pathways from Table 4, we find that the pathways tend
to validate the GO analysis from a different biological
and mathematical perspective.

Feature selection and classification (Error based)

We demonstrate how feature selection and classification
can be compromised by comparing classifier error rates
across platforms and normalizations (57). We used a two-
feature sequential forward floating search (58,59)
with bolstering error estimation to score the feature sets,
and linear discriminant analysis (LDA) as the classifica-
tion rule (60). Overall error was estimated using cross
validation with 500 replicates to reduce internal
variability. Initially, we applied the selection routine to
whole data sets containing the full complement of genes,
obtaining in all cases zero misclassification error. In order
to introduce some variability, we iteratively removed 500
of the most significant (by t-test) probes until less than 500
probes remained for both platforms; removal was
done within the cross-validation step to reduce error.
In Figure 6, we show the error rates per normalization and
per case for lung:spleen, liver:spleen and liver:lung, and in
Table 4 we compute the area under each curve as a relative
rank of error. The Y-axis is the classifier error; the X-axis
is the percentage of probes removed per iteration. In all
cases the trends are generally consistent; Agilent data
(dashed lines) are generally below the dChip PM–MM
and RAW Affymetrix normalization methods, and are
similar to GC-RMA. It is likely that a rapid increase in
error indicates that the best predictive genes were removed
fairly quickly, implying that good predictive features are
not necessarily those with high statistical significance.
Another characteristic of this group is the instability in
error after �40% of the most significant probes were
removed. The error rate for MAS5 shows a linear increase
in error suggesting that this gene list contains features that
contribute evenly to classification, whereas other groups

rise and fall quite suddenly. This variability in error is
likely not due to cross-validation since we performed
500 replicates, sufficient to converge to a stable error
estimate. This instability likely results from the disconnect
between a classifier error and the distributional tests we
used in the removal step. A random removal method with
more replication might have yielded a better estimate of
error, but the computation time would be excessive. The
areas under the curve (Table 5, columns 2, 4, 6) show
Agilent MEAN data to be marginally better than
PROCESSED and BSUB, but the confidence intervals
overlap indicating that these three normalizations are
equivalent. MAS5 and RAW tended to show the highest
Affymetrix error while GC-RMA showed the lowest,
again reflecting improvements caused by technical preci-
sion, but also on bias, since the RAW data was much
more precise than the MAS5 data. The percent of total
genes that are significant at p55.3� 10�5 for Agilent and
p54.5� 10�5 for Affymetrix reflects the pool of genes
tested in the classifier. The Affymetrix RAW data which is
known to be biased also contains many significant genes,
showing that our classifier is not compromised by
inaccurate and biased signals. The RAW classification
resulted in high error, seen in Figure 6. GC-RMA had
lower misclassification than any group or platform,
but we were less convinced that this was the best
normalization scheme for these tissues since the GO and
pathway GC-RMA results differed from consensus.
We wanted to determine the probe position for the best
and worst correlated probes for the best normalizations
for classifier error: GC-RMA and PROCESSED (12,18).
We sorted the probes for the best and worst correlation
across Agilent’s CY5 PROCESSED data and Affymetrix’s
GC-RMA data for liver and spleen. We determined
the probe location by identifying the probe sequence
(or exemplar) on Human Build 36 using BLAT. In
nearly all of the best and worst correlated cases,
discrepancy occurred when the probes were physically
separated (Figure 7), but the degree to which this was the
case varied. Within an Affymetrix probeset, physical
distance often resulted in poor intra-probe correlation
as well.

Table 2. Sensitivity results

Data set Average �ik Average MDFC
(95th percentile ratio)

Median MDFC
(95th percentile ratio)

Nj

Agilent BSUB 1.13� 0.03 1.37� 0.08 1.34 3
Agilent MEAN 1.14� 0.08 1.30� 0.07 1.15 3
Agilent PROCESSED 1.28� 0.07 1.61� 0.13 1.37 3
Affymetrix MAS5 1.99� 0.69 2.38� 0.52 2.16 3
Affymetrix GC-RMA 1.32� 0.21 1.31� 0.26 1.43 3
Affymetrix RAW 1.56� 0.21 1.58� 0.14 1.19 3
Affymetrix PM 1.85� 0.19 2.3� 0.14 2.16 3
Affymetrix PM–MM 1.65� 0.11 2.01� 0.25 1.99 3

Delta is the minimum detectable difference at a¼ 0.05, b ¼ 0.20, N¼ 3, in fold-change units. Delta was averaged per probe, per case and per tissue
with the standard deviation shown. The minimum detectable fold-change is the ratio of two technical replicates at the 95th percentile probe.
The average was taken across all probes, all tissues and all possible technical replicates. The median MDFC was the middle value across all possible
casesk.
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MATERIALS AND METHODS

Commercial RNA from Stratagene (La Jolla, CA; liver
#540017, lung #540019, spleen #540187) enabled us to
minimize variability in RNA quality. We ran each set
of replicates on the same day and in the same laboratory,
and followed the manufacturer’s hybridization and
scanning protocols precisely. We used three pooled
human tissuesj (liver, lung, spleen) and all three pairwise
casesk using three normalization methods for Agilent and
five for Affymetrix yielding the twenty-four separate
measurements per genei (Table 1). Affymetrix data was
processed using default values inMicroarray Suite 5.0; Affy
data had low noise (RawQ515), low background (5600)
and low 30 to 50 ratio of actin and GAPDH (ratio 52).
Agilent arrays were scanned on an Agilent scanner and
processed using default values in Feature Extraction

version 8.1. Raw Affy Images were processed using default
settings, resulting in .CHP and .CEL files. CEL files were
used to generate MAS5, dChip, GC-RMA and RAW data
using AffyComp package in Bioconductor. dChip can use
or ignore MM data when building its model; we selected
both PM and PM–MM settings, and ‘invariant set
normalization’ in dChip 2006 (February 16, 2006 build).
GC-RMA requires that an entire data set (experiment)
be defined in order to estimate a grand mean and
variance estimate, so we included all tissues as a defined
experiment. All Agilent normalizations were performed
using default settings in Feature Extraction (61).
Expression data was loaded into GeneSpring 7.2 to
perform median normalization on 22215 probes for
Affymetrix and 18703 probes for Agilent. Clustering,
ANOVA, t-tests and Venn diagrams were all done in
GeneSpring. t-tests always used a homoscedastic

Figure 5. Overlap between Agilent and Affymetrix data. Using a Model I ANOVA we identified 1000 genes that are most differentially expressed
across the three tissues tested. This analysis identifies the influence of normalization on the amount of overlap. (A) shows the most unmodified data
(MEAN and RAW) versus a strong background subtraction method (MAS5). (B) is a comparison among the Agilent normalization methods. (C)
and (D) compare highly processed Affymetrix data with Agilent methods. (E) and (F) compare four Affymetrix normalization methods to RAW data.
(G) and (L) show the highest Affymetrix/Agilent overlaps occur between PROCESSED or BSUB and PM-MM normalizations. (H), (I), (J) and (K)
illustrate the various overlaps between and among Agilent and Affymetrix normalizations.
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Welch correction with no familywise error rate (FWER)
correction. Significance level was set at the critical
values of p55.3� 10�5 for Agilent and p54.5� 10�5

for Affymetrix, which is that value where one false
positive is expected. Ratio calculations, power analysis,
regression and other statistical calculations were done in
Sþ 7.0.4. Feature selection and classification were done on
custom C and Cþþ programs run in parallel using MPI
messaging on an IBM 1350 Linux cluster running
RedHat EL3. Each of the 512 nodes contained 2
Intel Xeon 2.4GHz CPUs with 4G RAM. Processing
time ranged between 1 and 30 h depending on the
number of genes used per analysis and cross-validation
method.

DISCUSSION

Intra-lab and intra-platform correlation and calibration
can optimize data quality and reduce lab- and

platform-dependent biases. In industrial Six Sigma
Quality Control, the most influential parameters affect-
ing process quality are identified to reduce faults in
order of importance. In the case of expression data,
poorly correlated data is often caused by RNA quality.
This is prevalent even given the differences in probe
location (Figure 7) and platform idiosyncrasies. Array
users may be unable to obtain the advertised perform-
ance figures for a commercial microarray due to
difficult-to-extract tissues, such as plant cells. We
propose that precision, power and pathway analysis
can pinpoint samples that lie outside a consensus,
especially in large experiments or with public data.
Clustering has seen a backlash against graphical
interpretation of data, but taken in context and with
an understanding of the limitations, it presents array
data in a richly informative way. Degraded RNA
causes signal compression and high background which
show clearly in clustering analysis. Power and sample
size calculations also pinpoint degraded RNA or poor

Table 4. GeneMapp, Biocarta and Kegg metabolic pathways

Data set Database Liver:Spleen (case1) Liver:Lung (case2) Spleen:Lung (case3)

Agilent BSUB BioCarta Intrinsic prothrombin
activation

Intrinsic prothrombin activation NFAT and hypertrophy

GenMapp Blood clotting cascade Blood clotting cascade Inflammatory response
KeGG Complement and

coagulation
Complement and coagulation Cytokine–cytokine receptor

Agilent MEAN BioCarta Complement pathway Intrinsic prothrombin activation Nuclear receptors in lipid
metabolism and toxicity

GenMapp Ribosomal proteins Blood clotting cascade GPCRDB Rhodopsin-like
KeGG Complement and

coagulation
Complement and coagulation Cell communication

Agilent PROCESSED BioCarta Fibrinolysis Complement pathway NFAT and hypertrophy
GenMapp Blood clotting Complement activation classical Inflammatory response
KeGG Complement and

coagulation cascade
Complement and
coagulation cascade

Cytokine–cytokine receptor

Affymetrix MAS5 BioCarta Intrinsic prothrombin pathway Intrinsic prothrombin pathway Oxidative stress-induced
gene expression

GenMapp Ironotecan pathway Ironotecan pathway Inflammation response
KeGG Complement and

coagulation cascade
Complement and coagulation
cascade

Cell communication

Affymetrix GC-RMA BioCarta Intrinsic prothrombin activation T Helper cell surface molecules Role of Src kinases in
GPCR signaling

GenMapp Irinbotecan pathway GPCRDB Rhodopsin-like GPCRDB Class A
Rhodopsin-like

KeGG Complement and
coagulation cascade

Neuroactive ligand receptor
interaction

Cytokine–cytokine
receptor interaction

Affymetrix RAW BioCarta TSP1 Induced apoptosis Toll-like receptor pathway Regulation of splicing
GenMapp Smooth muscle contraction Apoptosis Smooth muscle contraction
KeGG MAPK signaling MAPK signaling MAPK signaling

Affymetrix PM–MM BioCarta Intrinsic prothrombin
activation pathway

Intrinsic prothrombin
activation pathway

B lymphocyte surface
molecules

GenMapp Blood clotting cascade Blood clotting cascade GPCRDB Class A
KeGG Complement and

coagulation cascade
Complement and
coagulation cascade

Rhodopsin-like Cell
communication

Affymetrix PM BioCarta METS effect on macrophage
differentiation

Fc epsilon receptor I
signaling in Mast cells

T-cell receptor
signaling pathway

GenMapp Apoptosis GPCRDB Class A
Rhodopsin-like

GPCRDB Class A
Rhodopsin-like

KeGG Cell cycle Leukocyte transendothelial
migration

Insulin signaling pathway

Each case was used to select 100 significant genes which were tested for the most obvious gene regulatory pathway.
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Figure 6. Classifier error rates for tissue comparisons for Agilent and Affymetrix platforms and the associated normalizations. For each iteration, 500
of the most significantly differentially expressed genes were removed until less than 500 genes remained. A two-feature forward floating search with
bolstering error estimation scored the features, linear discriminant analysis was the classifier rule. Overall error was estimated using cross validation
with 500 replicates. (A) shows the lung versus spleen error rates. (B) shows the liver versus spleen and (C) the liver versus lung error. Dashed lines in
all cases correspond to the Agilent normalization methods, solid lines correspond to the Affymetrix normalizations. Area under the curve was used to
establish the rank order.
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labeling by showing greatly reduced sensitivity and
delta values.

Classification has become a much-used method in
disease prognosis and diagnosis (62); it is therefore
important to understand the causes of misclassification.
Microarray normalization methods, especially loess (63)
and model-based (28), often cause large non-linear
changes that attempt to improve the reliability of
measuring relative differences across samples (64).
High precision methods like GC-RMA can affect the
classifier, resulting in very low error, but classifiers are
less affected by highly biased data than significance
tests. As seen in Figure 3, highly aggressive normal-
izations combined with very differential tissues, can
cause mis-clustering. However, genes identified as either
up or down between tissues across normalization
methods can be quite comparable if one quantizes to
the level of ‘up’, ‘down’ and ‘unchanged’ by using the
appropriate confidence interval. Agilent data is almost
unaffected by channel and normalization effects, but
the normalizations were much more subtle than
Affymetrix methods. Normalized expression data often
exaggerates the magnitude of ratios and inflates false
positives over comparable qRT-PCR data (54,65). That
effect alone will change the rank of genes, and will
change the biological pathways identified (Table 4). It
is increasingly difficult to identify biomarkers that work
independently of the platform (44,55,66,67), but appro-
priate normalization choice may ameliorate this effect
somewhat. Affymetrix MAS5 and Agilent MEAN share
256 genes, MAS5 and BSUB share 261 genes and PM–
MM and PROCESSED share 243 genes, the highest
overlap between platforms. These low-precision but
high-accuracy methods, while often underpowered, can
also provide genes that are more platform-neutral.
Although the background subtraction methods gener-
ally provide the highest false positives, their conserva-
tive nature tends to avoid strong and potentially
inaccurate biases (Tables 3 and 4). Based on these
outcomes, we recommend MAS5 or dChip PM–MM
and Agilent PROCESSED normalizations for feature
selection and classification, and for biological pathway
analysis, especially when identifying platform-neutral
biosignatures. If comparisons across laboratories or
expression platforms will be done, the most conserva-
tive estimate of Affymetrix data is best. We caution the

user that the power of detection drops considerably
with MAS5 and dChip PM–MM, and more technical
replicates should be used to obtain the same detection
limit as GC-RMA or dChip. Most public expression
databases provide the MAS5-normalized data (e.g. the
SOFT file format from GEO), but increasingly the
.CEL files are being made available. We recommend
GC-RMA normalization when large data sets are used,
high sensitivity is needed, and samples are not terribly
different from one another. GC-RMA provides a good
signal that has been shown to have good sensitivity
and accuracy in the context of distinguishing disease
subtypes or other subtle phenotypes. When a moderate-
to-small number of samples are used, dChip PM is an
excellent choice since it strikes the best compromise
between variance reduction methods and background
subtraction methods. If single-color analysis is needed,
extracting one of the two Agilent channels works well,
but Agilent recognized the need for a single-color
product and now offers one-channel protocols.
In Figure 7, we show the relationship between probe

distance and the correlation between liver:spleen ratios
between Agilent CY5 (PROCESSED) and Affymetrix
(GC-RMA). In general, the best correlation occurred
when the probes were relatively close to one another,
the worst correlations occurred when the probes
were distant, an effect previously reported (12,18,20).
This effect actually occurs within a probeset on the
Affymetrix platform, but the effect is not as pronounced.
This effect is easy to measure since the probe sequences
for these arrays are available from the manufacturer.
When contrasting qRT-PCR and array data, one
should carefully design RT primers that are uniformly
spaced across the gene, rather than a single probe
in the same location as the microarray. This principle
reveals array limitations, but also gives the best RT
results.
In summary, we provide three simple, qualitative

methods of analysis to identify discrepancy in expression
data sets. Precision and sensitivity measurements are
useful in finding the minimal detectable fold-change
and raw performance values for an array platform
(or qRT-PCR). Biological comparisons such as the
Gene Ontology and pathway analyses are a valuable
way of examining and comparing the actual biological
interpretation. Differences in pathways indicate

Table 5. Area under the error curves (Figure 6) and the corresponding proportion of significant genes at p55.3� 10�5 for Agilent and p54.5� 10�5

for Affymetrix (called%5Pcrit), N¼ 3 samples

Data set Area liver:spleen %4 Pcrit liver:spleen Area liver:lung %4 Pcrit liver:lung Area spleen:lung %4Pcrit spleen:lung

Agilent BSUB 0.06 72% 0.05 62% 0.17 78%
Agilent MEAN 0.04 80% 0.02 75% 0.16 87%
Agilent PROCESSED 0.06 73% 0.05 63% 0.19 81%
Affymetrix MAS5 0.35 90% 0.24 46% 0.19 42%
Affymetrix GC-RMA 0.21 88% 0.03 95% 0.02 98%
Affymetrix RAW 0.37 94% 0.23 90% 0.15 87%
Affymetrix PM–MM 0.25 88% 0.29 67% 0.10 78%
Affymetrix PM 0.22 90% 0.17 87% 0.24 82%
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consistency problems. This inconsistency can be quantified
by counting the differentially expressed genes between
platforms that move in different directions. Finally,
classifier error provides a way of identifying misleading
transcriptional signals. When sufficiently large
numbers of informative genes exist, one can identify a

platform-neutral set of genes that provide both low error
across multiple platforms and low classifier error by
utilizing the selection criteria mentioned above. Taken
together, precision, biological interpretation and multiple
platform data sets will allow better selection of genes that
yield clinically useful biosignatures

Figure 7. Probe distance comparisons. Probe location for the 11 Affymetrix 25-mers and the single Agilent 60-mer are plotted along the target gene
on the X-axis. Color in this case indicates the average log2 ratio between liver and spleen for two single normalizations, GC-RMA (Affymetrix)
and PROCESSED CY5 (Agilent). Other normalizations and tissues produced similar results. Red indicates high relative signal in liver, green
indicates high relative signal in spleen. Length of the probe is proportional to the amount of gene sequence shown in the diagram, which in turn is
defined by the distance between the most distant probes. Blue triangles indicate introns; numbers along the bottom of each graph indicate
the amount of gene up- and downstream of the current window. Y-axis (temp) is the Tm for each probe calculated in standard salt conditions.
Left column contains genes that correlated well across Agilent CY5 PROCESSED and Affymetrix GC-RMA. Right column contains genes with
poor correlation. Other normalization/tissue combinations produced lists of different genes that were either well or poorly correlated, but the pattern
seen here was conserved.
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