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As a significant public health problem with high morbidity and mortality

worldwide, tumor is one of the major diseases endangering human life.

Moreover, metastasis is the most important contributor to the death of

tumor patients. Epithelial-mesenchymal transition (EMT) is an essential

biological process in developing primary tumors to metastasis. It underlies

tumor progression and metastasis by inducing a series of alterations in tumor

cells that confer the ability to move and migrate. Tumor-associated

macrophages (TAMs) are one of the primary infiltrating immune cells in the

tumor microenvironment, and they play an indispensable role in the EMT

process of tumor cells by interacting with tumor cells. With the increasing

clarity of the relationship between TAMs and EMT and tumor metastasis,

targeting TAMs and EMT processes is emerging as a promising target for

developing new cancer therapies. Therefore, this paper reviews the recent

research progress of tumor-associated macrophages in tumor epithelial-

mesenchymal transition and briefly discusses the current anti-tumor

therapies targeting TAMs and EMT processes.
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Introduction

Tumor metastasis is the leading cause of cancer-related death, accounting for

approximately 90% of deaths, yet the process is still poorly understood (1). Metastasis

is a dynamic, multi-step, and complicated process. The invasion-metastasis cascades

consist of the following steps: (1) Epithelial-mesenchymal transition (EMT) of cancer

cells; (2) Invasion of the surrounding extracellular matrix (ECM) and stromal cell layer;

(3) Intravasation of tumor cells into the vascular lumen; (4) Transport through the

circulatory system; (5) Extravasation in distant tissues and organ parenchyma; (6)
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Survival in the microenvironment of distant tissues; (7)

Colonization and growth at metastatic sites (2, 3)(Figure 1).

As one of the hallmarks of cancer (4), metastasis is driven not

only by intrinsic changes in tumor cells but also by interactions

be tween tumor ce l l s and the components o f the

microenvironment in which they reside, known as the “seed

and soil” doctrine. This theory was first proposed by Stephen

Paget in 1889 and is now widely accepted as a critical theory

related to metastasis (5). The components that make up the

“soil” are termed the tumor microenvironment (TME).

Although widely studied, only part of it is understood

because TME is highly intricate. Currently, known

components include tumor cells, fibroblasts, inflammatory

mediators, immune cells, reactive oxygen species, and tumor-

associated cytokines.

Tumor-associated macrophages (TAMs) are one of the

ma j o r i nfi l t r a t i n g immun e c e l l s i n t h e t umo r

microenvironment. Studies have revealed that TAMs

orchestrate almost all of the above cascade steps of tumor

metastasis (6). EMT is a vital biological process in the

progression of primary tumors to metastasis. EMT, as the

primary central part of tumor metastasis, endows tumor cells

with the ability of migration, invasion, anti-nesting apoptosis

(7), evading immune surveillance (8), and chemotherapy

resistance (9). EMT is a critical step in the acquisition of

tumor cell migration and invasion capabilities (10). TAMs

play a crucial role in regulating tumor cell proliferation,

extracellular matrix remodeling, tumor cell invasion and

metastasis , lymphangiogenesis, and angiogenesis by

producing various cytokines, growth factors, chemokines,

protein hydrolases, and inhibitory immune checkpoint
Frontiers in Oncology 02
proteins. In this review, we present the progress of TAM in

tumor ep i the l i a l -mesenchyma l t r ans fo rmat ion in

recent years.
EMT and tumor metastasis

Epithelial-mesenchymal transition (EMT) refers to a

series of biological processes in which polarized epithelial

cells attached to the basement membrane undergo a variety of

biochemical and molecular changes and transform into

mesenchymal-like cells. As a physiological process, EMT

performs an important role in organogenesis, tissue

development, and wound healing (11). Also, pathologically,

EMT is the basis of tumor progression and metastasis, which

endows tumor cells with the ability of migration, invasion,

anti-nesting apoptosis, and chemotherapy resistance (12).

Studies have shown that EMT is also one of the most

important biological processes in inducing stem cell

properties, meaning that non-cancer stem cells can be

induced into a cancer stem cell (CSC)-like state (13).

However, some studies have questioned the necessity of

EMT in tumor metastasis (14). Zheng et al. (15)reported

that tumor cells can metastasize without activating EMT in

genetically engineered mice with pancreatic cancer and mice

with spontaneous metastasis of breast cancer. Similarly,

Fischer et al. (16)showed that EMT is not necessary for

lung metastasis. Nevertheless, these few findings have been

challenged by other researchers, and it is still widely accepted

that EMT is needed in the process of tumor metastasis. EMT

is divided into three types: type 1 EMT is involved in
FIGURE 1

Schematic representation of the tumor invasion-metastasis cascade and the role of tumor-associated macrophages (TAMs) in tumor metastasis.
The tumor invasion-metastasis cascade includes tumor cell EMT, invasion of the surrounding extracellular matrix and stromal cell layer,
intravasation, survival and transport in the circulatory system, extravasation, survival in the distant tissue microenvironment, and colonization and
growth at the metastatic site. TAMs are involved in regulating almost every step of the tumor invasion-metastasis cascade through the secretion
of multiple factors.
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embryonic implantation, embryogenesis , and organ

development; type 2 EMT is related to the processes of

wound healing, tissue regeneration, and organ fibrosis; and

type 3 EMT is associated with cancer progression and

metastasis (17).

During EMT, the epithelial cytoskeleton is reorganized,

and the cell morphology is changed from squamous, cuboidal,

or columnar to a spindle-shaped and elongated shape;

epithelial cell-cell adhesion is reduced, and intercellular

junctions are deconstructed, including tight junctions,

adherent junctions, and gap junctions; the Crumbs, PAR,

and Scribble (SCRIB) polarity complexes are disrupted,

resulting in the loss of apical-basal polarity in epithelial

cells (18). At the same time, epithelial cell markers such as

E-cadherin, b-catenin, Desmosomes, and cytokeratin are

decreased, while mesenchymal cell markers such as N-

cadherin, fibronectin, vimentin, and a-smooth muscle actin

(a-SMA) are increased; actin is remodeled so that cells can

elongate dynamically and move directionally (19). These

phenotypic changes are driven by alterations in the

signaling pathways that activate EMT-related transcription

factors. EMT-inducible transcription factors (EMT-TFs)

mainly include the zinc finger E-box-binding transcription

factors ZEB1 and ZEB2, SNAIL (also known as SNAI1),

SLUG (also known as SNAI2), and the helix-loop-helix

(HLH) transcription factors TWIST1 and TWIST2.

Activation of these transcription factors can repress the

expression of epithelial cell-associated genes and promote
Frontiers in Oncology 03
the expression of mesenchymal cell-associated genes

(Figure 2). Extracellular signals that induce EMT in tumor

cells, such as tumor necrosis factor-a (TNF-a), transforming

growth factor-b (TGF-b), hepatocyte growth factor (HGF),

epidermal growth factor (EGF), fibroblast growth factor

(FGF), mitogenic growth factor (MGF), vascular endothelial

growth factor (VEGF), IL-6, IL-1b, Etc., which act on EMT-

related transcription factors through activation of TGF-b,
Wnt-b-catenin, Notch, Hedgehog, PI3K-AKT, NF-kB,
MAPK, and other signaling pathways, leading to down-

regulation of epithelial cell markers and up-regulation of

mesenchymal cell markers (18).

EMT has long been considered a binary process consisting of

two distinct cell populations, epithelial and mesenchymal (20);

that is, cancer cells undergoing EMT completely lose epithelial

phenotypes and fully acquire mesenchymal phenotypes.

However, there is growing evidence that this is not the case. It

has been found that the transition from the epithelial state to the

mesenchymal state of cancer cells with EMT is usually

incomplete, resulting in cells in the intermediate state

retaining the characteristics of both epithelial and

mesenchymal cells, which is called partial, incomplete, or

mixed EMT state (21–23). “Partial EMT” (pEMT) has been

widely observed in a variety of cancers, such as lung cancer (24),

colorectal cancer (25), and prostate cancer (26). Recent studies

have found that cells in the pEMT state exhibit higher tumor

metastatic potential, stem cell properties, and drug resistance

than epithelial or mesenchymal cells alone (27, 28).
FIGURE 2

Schematic diagram of epithelial-mesenchymal transformation. Apical-basal polar epithelial cells are attached by tight junctions, gap junctions,
desmosome, and adhesion junctions, and to the basement membrane by Hemidesmosome; epithelial cells express epithelial cell markers such
as E-cadherin, Occludins, Claudins, and Cytokeratins. Induction of epithelial-mesenchymal transition (EMT) leads to the expression of the EMT
transcription factors (EMT-TF) ZeB, Snail, and Twist, which repress the expression of epithelial cell-associated genes and simultaneously activate
the expression of mesenchymal cell-associated genes. These changes in gene expression result in morphological alterations of epithelial cells,
deconstruction of intercellular junctions, the acquisition of front-rear polarity, and the ability of cells to become motile and invasive. During the
transition from epithelial to mesenchymal cells, the cells undergo a “partial EMT” state, in which the cells are intermediate between a fully
epithelial and fully mesenchymal state, retaining both epithelial and mesenchymal characteristics. EMT is reversible, and the process of
mesenchymal-epithelial transformation (MET) allows the cells that have undergone EMT to return to the epithelial state.
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Tumor-associated macrophages
(TAMs)
As a type of intrinsic immune cell, macrophages perform a wide

variety of functions, including regulating tissue homeostasis,

defending against pathogens, and promoting wound healing.

Macrophage monitoring is critical to prevent tumor growth, and

there is evidence that activated macrophages can recognize and kill

transformed and mutated cells in humans (29). Initially, it was

thought that macrophages were mainly derived from circulating

monocytes of bone marrow hematopoietic stem cell origin (30).

However, a large body of evidence suggests that the majority of

tissue-resident macrophages originate from yolk sac progenitors,

such as alveolar macrophages, brain macrophages, Kupffer cells,

abdominal macrophages, epidermal Langerhans cells, and brain

microglia (6). According to the function of macrophages,

macrophages are divided into classically activated M1

macrophages and alternatively activated M2 macrophages. M1

macrophages secrete pro-inflammatory cytokines such as IL-12,

tumor necrosis factor (TNF)-a, CXCL-10, and interferon (IFN)-g,
and produce high levels of nitric oxide synthase (NOS), which

promote inflammatory response, pathogen clearance, and anti-

tumor immunity. In contrast, M2 macrophages secrete anti-

inflammatory cytokines such as IL-10, IL-13, IL-4, arginase-1,

mannose receptor (MR, CD206), and scavenger receptor, which

tend to exert an immunosuppressive phenotype that benefits tissue

repair and tumor progression (31). In tumor microenvironment

(TME), CD163 and CD206 are commonly used to identify M2

macrophages, while CD86 is a standard M1 marker. The biological

process of switching between M1 (anti-tumorigenic) and M2 (pro-

tumorigenic) is called “macrophage polarization”. Macrophage

polarization is regulated by many microenvironmental cytokines,

chemokines, growth factors, and other signals from tumor and

stromal cells. Macrophages infiltrating in tumor tissue or

aggregating in the solid tumor microenvironment are defined as

tumor-associated macrophages (TAMs), which are one of the

central infiltrating immune cells in the tumor microenvironment.

It is commonly accepted that tumor-associated macrophages

(TAMs) are highly similar toM2-polarizedmacrophages. In the past

few decades, many studies have shown a significant positive

correlation between the number and density of TAMs infiltration

and poor patient prognosis in most tumor types (32, 33). One of the

mechanisms of TAMs enhancing cancer cell invasion involves the

paracrine loop, in which macrophages and tumor cells interact with

each other. The colony-stimulating factor-1 (CSF-1) produced by

tumor cells binds to CSF-1R on the surface of macrophages, thus

promotingmacrophage proliferation, migration, and polarization to

the M2-like phenotype (34). Meanwhile, macrophages release

epidermal growth factor (EGF), which enhances tumor cell

invasion and migration, and further stimulates tumor cells to

secrete CSF-1, thus forming a positive feedback loop between

tumor cells and macrophages (35). TAMs in the tumor
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microenvironment promote the immunosuppressive tumor

microenvironment by expressing chemokines and cytokines (36).

For example, chemokines CCL5, CCL22, and CCL20 secreted by

TAMs can recruit regulatoryT(Treg) cells. TAMscanalso inhibit the

antitumor activity of infiltratedNK cells and T cells and promote the

immunosuppressive tumor microenvironment combined with

myeloid suppressor cells (MDSCs), tumor-associated dendritic

cells, and neutrophils (37). In addition, M2 macrophages can also

promote the migration of tumor cells and tumor stromal cells by

secreting matrix metalloproteinases (MMPs), serine proteases, and

cathepsin that disrupt the basement membrane and extracellular

matrix (38). Several studies have provided strong evidence that the

presence of TAM during metastatic extravasation is critical for the

successful formation of metastatic foci. Qian et al. (39)demonstrated

in an animal model of breast cancer metastasis, using an intact lung

imaging system, that macrophages are required for tumor cell

extravasation; more importantly, ablation of this macrophage

population resulted in a significant decrease in the rate of tumor

cell extravasation, thus inhibiting the growth of metastatic tumors.

The same conclusion was obtained by Penny et al. in pancreatic

ductal adenocarcinoma (PDAC), where TAM enhanced the

extravasation of tumor cells from blood vessels and induced higher

levels of EMT compared to steady-state macrophages (40).

Mechanistically, it has been shown that at metastatic sites, tumor

cell-derived CCL2 recruits inflammatory monocytes to metastatic

sites, where they differentiate into metastasis-associated

macrophages that produce vascular endothelial growth factor-A

and cathepsin S, thereby promoting cancer cell extravasation

(41, 42).

The tumor metastatic microenvironment (TMEM) is an

anatomical structure composed of three parts: TAMs, tumor cells,

and endothelial cells, and identifiable on tissue sections. TMEM is a

predictor of increased hematogenous metastasis and poor prognosis

and can predict the metastatic ability of breast cancer (43). Tumor

hematogenous metastasis is the main pathway of malignant tumor

metastasis. When the solid tumor grows to a specific size, a process

called “angiogenesis switch”will be initiated by various mechanisms

to trigger the high-density vascular system to provide nutrition and

waste removal for tumor cells (44). In addition to contributing to

the establishment of the immunosuppressive microenvironment

and the degradation of the extracellular matrix, TAMs also support

tumor growth by inducing angiogenesis. There is an increasing

number of evidence that TAMs play an essential role in regulating

the “angiogenic switch” by secreting various pro-angiogenic

mediators, such as vascular endothelial growth factor A (VEGF-

A), thymidine phosphorylase, urokinase-type fibrinogen activator

(uPA), and adrenomedullin (ADM) (45, 46). It was found that

macrophages express ligands for two inhibitory receptors,

programmed cell death protein 1 (PD-1) and cytotoxic T

lymphocyte antigen 4 (CTLA-4). In areas of tumor hypoxia,

hypoxia can inhibit intratumor cytotoxic T cell responses by

upregulating the expression of PD-L1 on the surface of TAMs via

hypoxia-inducible factor 1-a (HIF-1a) (47).
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The role of TAMs in epithelial-
mesenchymal transition of tumors

Apart from accumulating intrinsic changes within the

malignant tumor cells, the tumor microenvironment also

provides a fertile ground for tumor progression and metastasis.

The “dialogue” between tumor cells and various stromal cells in the

tumor microenvironment is of great importance in tumor

progression and metastasis (48). The interaction between tumor

cells and TAMs plays a pivotal role in the epithelial-mesenchymal

transition (EMT) process. TAMs induce EMT in tumor cells by

secreting a host of cytokines and growth factors, such as

transforming growth factor-beta (TGF-b), tumor necrosis factor-

a (TNF-a), interleukin-6 (IL-6), and interleukin-8 (IL-8), thereby

promoting tumor invasion and metastasis. The relevant

intracellular signal pathways involved in the promotion of EMT

in tumor cells by TAMs are shown in Figure 3.
TGF-b

The TGF-b family is a group of extracellular growth factors,

including TGF-bs, activins, and bone morphogenetic proteins

(BMPs), which are involved in regulating tumor growth,

migration, angiogenesis, and immune response (49). TGF-b
has dual effects on tumor behavior. In the early stages of

tumorigenesis, TGF-b, as a potent growth inhibitor, can
Frontiers in Oncology 05
inhibit the epithelial cell cycle and promote apoptosis, thus

suppressing tumorigenesis and progression (50). In the middle

and late stages of the tumor, however, TGF-b becomes a

“catalyst” for cancer progression, inducing and promoting

epithelial-mesenchymal transition (EMT), enhancing the

invasiveness of tumor cells, and participating in the malignant

progression of tumors (51, 52). Some studies have provided

reasonable explanations for the above phenomenon. In the early

stages, TGF-b is involved in tumor cell inhibition and apoptosis

as the main tumor suppressor. In the middle and late stages of

tumors, tumor cells become resistant to TGF-b or are

reprogrammed by tumor cells to promote tumor growth (53).

In the tumor microenvironment, TGF-b1 is generated by

tumor cells and infiltrating immune cells, such as TAMs,

myeloid-derived suppressor cells (MDSC), and regulatory T cells

(Treg). TGF-b1 can induce EMT in tumor cells, promote tumor

cells to evade immune surveillance, and facilitate tumor spread and

metastasis (54). By binding to a complex of transforming growth

factor-beta receptor 1 (TGFbR1) and transforming growth factor-

beta receptor 2 (TGFbR2), TGFb1 leads to phosphorylation of

SMAD2 and SMAD3 and combines with SMAD4 to form a SMAD

trimeric complex, which translocates to the nucleus and acts as a

transcription factor to regulate the expression of EMT-

related genes.

The TGF-b1-induced SMAD complex activates the expression

of mesenchymal genes, such as vimentin and fibronectin, as well as

EMT transcription factors, and represses the expression of the

epithelial gene E- cadherin. Simultaneously, EMT-TF can
FIGURE 3

Schematic diagram of signal pathways in which TAMs promotes EMT in tumor cells. TAMs activate EMT- IF by secreting various factors, such as
TGF-b, TNF-a, and IL-8, which act on intracellular related signaling pathways, including TGF-b- SMAD signaling pathway, MAPK signaling
pathway, WNT-b-Catenin signaling pathway, NF-KB signaling pathway, and PI3K-AKT signaling pathway. EMT-IF can inhibit the expression of
epithelial cell markers and promote the expression of mesenchymal cell markers, which leads to EMT in tumor cells.
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upregulate the expression of the TGF-b ligand, thus establishing a

positive feedback loop between EMT-TF and TGF-b pathway,

which is beneficial for cells to maintain the EMT state (18).

Cheng et al. (55)found that pancreatic ductal adenocarcinoma

(PDAC) cells incubated with TAMs or TAM cell-conditioned

cultures (TAM-CM) showed higher migration and invasion rates

than controls, and further demonstrated that TAMs induced EMT

in PDAC cells via the TGF-b-Smad2/3/4-Snail signaling axis,

leading to tumor cell migration. In contrast, the tumor-promoting

effect of TAMs was eliminated after the application of TGF-b
signaling pathway inhibitors and neutralizing TGF-b antibodies.

These results suggest that TAMs promote PDAC progression

through the TGF-b signaling pathway. In addition, the TGF-b/
SMAD signaling pathway also “cooperates” with other non-SMAD

signaling pathways, such as ERK, p38MAPK, PI3K-AKT, and Rho-

like GTPases, to participate in the regulation of EMT (56). TGF-b
can also induce EMT by regulating microRNA (microRNA) and

long-stranded non-coding RNA (LncRNA). TGF-b can also induce
EMT by regulating microRNA and long-stranded non-coding RNA

(LncRNA) (57). Moreover, TGF-b1 can promote tumor invasion

and metastasis by affecting the tumor microenvironment, for

example, through immunosuppression and angiogenesis (58).
TNF-a

The tumor necrosis factor (TNF) family is an important class of

cytokines, which plays a role in regulating a range of physiological

and pathological responses, including cell proliferation,

differentiation, apoptosis, immune response, and inflammation.

As a critical pro-inflammatory cytokine in the tumor

microenvironment, TNF-a is mainly secreted by macrophages

and tumor cells. Initially, exogenous TNF-a was observed to

cause hemorrhagic necrosis of tumors and promote tumor

vascular destruction, so it was considered one of the anti-cancer

cytokines that could inhibit tumor progression (59, 60). Follow-up

studies have found that endogenous TNF-a derived from tumor

cells and macrophages at the tumor site does not have antitumor

activity but rather promotes tumor growth and metastasis (61, 62).

TNF-a belongs to the cytokine TNF/TNFR superfamily and is

a type II transmembrane protein. It can act as a membrane-

integrated protein or as a soluble molecule to induce EMT by

interacting with its two specific receptors, TNFR1 and TNFR2, to

initiate different signaling pathways. TNF-a can induce EMT in

tumor cells by inhibiting the expression of epithelial marker E-

cadherin, upregulating the expression of mesenchymal markers

such as vimentin, N-cadherin, and fibronectin, and activating

matrix metalloproteinase-9 (MMP-9), thus enhancing tumor

invasion and migration activity (60). A study showed that TNF-a
derived from M2TAMs promotes EMT and tumor stem cell

properties in hepatocellular carcinoma cells via the Wnt/b-
catenin pathway (63). Furthermore, TNF-a and TGF-b released

from macrophages interact during EMT, jointly regulating tumor
Frontiers in Oncology 06
invasion and metastasis (64). For example, EMT in breast cancer

cells is regulated by the TGF-b/SMAD pathway and activated by

TNF-a/NF-kB/Twist, both of which synergistically promote breast

cancer cell migration and metastasis (65, 66). Likewise, in cervical

cancer, TNF-a and TGF-b collaboratively induce EMT and tumor

stem cell-like properties through the NF-kB/Twist axis (67). Song

et al. (68) found that in colorectal cancer cell lines, TNF-a and

TGF-b induced EMT-like changes through NLRP3/Snail1 axis-

dependent manner or by increasing the expression of claudin-1. At

the same time, TNF-a and TGF-b are also antagonistic under some

microenvironmental conditions. It has been reported that in

hepatocellular carcinoma, TGF-b treatment upregulates

autophagy gene expression, which strongly activates autophagy

and induces EMT. However, TNF-a suppresses TGF-b-induced
EMT levels by inhibiting autophagy (69).
Other cytokines inducing EMT

Several studies have found that mesenchymal cancer cells

promote macrophage activation to a TAM-like phenotype by

secreting GM-CSF. In turn, TAMs can induce EMT in

neighboring epithelial cancer cells by producing CCL-18, thus

forming a positive feedback loop between TAMs and EMT (70).

Interleukin-8 (IL-8 or CXCL8), a granulocyte chemokine, has

multiple functions in the tumor microenvironment (TME), such

as recruitment of immunosuppressive cells, promotion of tumor

angiogenesis, and EMT (71). Deng et al. (72)demonstrated that

IL-8 overexpression promotes EMT and migration of triple-

negative breast cancer cells (TNBCs) through PI3K-Akt

signaling pathway and E-cadherin downregulation. In ovarian

cancer, IL-8 mediates tumor cell EMT via the Wnt/b-catenin
pathway to promote ovarian cancer metastasis (73).

Studies have indicated that the concentration of macrophage-

derived IL-10 is almost ten times higher than that of leukocyte-

derived IL-10 in tumors (74). IL-10 is involved in the induction of

EMT in tumor cells. A study proved that when M2-type TAMs

were co-cultured with pancreatic cancer cell lines PANC-1 and

BxPC-3, it increased the fibroblast morphology of pancreatic cancer

cells, with reduced expression of the epithelial marker E-cadherin

and increased expression of the mesenchymal markers Vimentin

and Snail. In contrast, the application of RNAi technology to

interfere with TLR4 or anti-TLR4 and IL-10 neutralizing

antibodies significantly inhibited the downregulation of E-

cadherin and reduced the upregulation of Vimentin and Snail,

suggesting that TAMs promote EMT in pancreatic cancer cells

partly through TLR4/IL-10 signaling (75).

Interleukin-6 (IL-6), another inflammatory cytokine secreted

by TAM, is upregulated in most common human tumors. Elevated

serum levels of IL-6 indicate a poorer prognosis for tumor patients

(76). Research revealed that in the interaction betweenmacrophages

and lung cancer cells, IL-6 promotes the translocation of b-catenin
from the cytoplasm to the nucleus via the COX-2/PGE2 pathway,
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which induces EMT and promotes tumor cell invasion (77). Since

IL-6 concentration in the serum of patients is associated with

advanced tumor stage and overall survival, it may be used as a

biomarker for preoperative assessment of prognosis.

M2-polarized TAMs regulate the microenvironment by

increasing the secretion of cytokines and chemokines and

activating the AKT3/PRAS40 signaling pathway to promote

EMT in intrahepatic cholangiocarcinoma cells (78). Zhang

et al. (79)have indicated that a HIF-1a/IL-1b signaling loop

exists between cancer cells and tumor-associated macrophages

in a hypoxic microenvironment, which leads to EMT in

hepatocellular carcinoma cells.
Antitumor therapy targeting TAMs
and EMT

In recent years, with intensive study of TAMs and EMT in

tumor metastasis, the role of TAMs in tumor development has

received increasing attention. TAMs are considered as a

potential biomarker for cancer diagnosis and prognosis, as

well as a potential target for cancer therapy. At present, many

therapeutic strategies have been developed for targeting TAMs

and EMT processes, as shown in Table 1.
Targeting TAMs

Given the tumor-promoting effects of TAMs, a multitude of

strategies have been devised to counteract the impact of TAMs.

Generally speaking, these strategies can be classified into two

categories: reducing the number of TAMs in the tumor or

altering the function of TAMs in the TME.

Limiting the number of TAMs in the tumor can be achieved by

eliminating existing TAMs and inhibiting TAMs recruitment. The

most established approach to reduce TAM viability is currently by

blocking the CSF-1 (also known as MCSF)/CSF-1R axis, as colony-

stimulating factor-1 (CSF-1) is consideredone of themost important

recruitment factors for macrophages and TAM polarization factors

(92). This method not only reduces the source of TAMs by blocking

monocyte differentiation but also reduces the survival rate of existing

TAMs. Therefore, several inhibitors targeting the CSF-1/CSF1R axis

have been developed and are being studied in clinical trials as

monotherapy or in combination with chemotherapeutic agents.

For example, Gomez-Roca et al. (80)found that Emactuzumab

alone or coupled with paclitaxel for advanced or metastatic solid

tumors significantly reduced thenumber ofTAMs in tumors.Also, it

was shown that blockade of CSF1/CSF1R increased the sensitivity of

tumors to other immunotherapies, such as anti-PD-L1 antibody

therapy (81). Because of the role of chemokine CCL2 in the

recruitment of circulating monocytes to tumors, much work has

been done to inhibit the CCL2/CCR2 axis (93). Hui et al. (82)found
Frontiers in Oncology 07
that blocking the CCL2-CCR2 axis can significantly reduce

tumorigenesis by preventing the recruitment of TAMs and

enhancing the antitumor effect of CD8+ T cells in the tumor

microenvironment. However, removal of CCL2 blockade

treatment resulted in the resumption of tumor progression since

TAMs have recruited to the tumor site again (94).

As M1 and M2 macrophages are highly plastic and can

transform into each other in response to changes in the tumor

microenvironment or therapeutic intervention, “reprogramming”

TAMs into an anti-tumor phenotype is a promising therapeutic

strategy. Anti-tumor macrophages (M1 type) have the ability to

eliminate and destroy tumor cells. Toll-like receptors (TLR) are a

family of receptors involved in innate immunity, which can alter the

phenotype of macrophages. These pattern recognition receptors can

react to bacterial particles or bacterial and viral genomes (e.g., DNA

or RNA) to trigger the release of pro-inflammatory cytokines (95).

Studies have shown that TLRs located in cells (TLR3, TLR7, TLR8,

or TLR9) are more effective in triggering anti-tumor immune

responses than extracellular TLRs (TLR1, TLR2, TLR4, or TLR6)

(96). Therefore, several studies have focused on assessing the ability

of intracellular TLR agonists to induce reprogramming of TAMs. At

present, there have been some successes in this field, such as

Imiquimod (TLR7 agonist), which has passed Phase III clinical

trials and received FDA approval for the treatment of squamous

and basal cell carcinomas (97). RP-182 is a synthetic peptide analog

that selectively induces conformational transitions of the mannose

receptor CD206 expressed onM2-type TAMs, thus reprogramming

M2-like TAMs to an anti-tumor M1-like TAM phenotype (83). It

has been found that ERK5 plays a role in determining macrophage

polarity, and the growth of transplanted tumors in ERK5 gene-

deficient mice is inhibited. Further studies have confirmed that

STAT3 activation via phosphorylation of Tyr705 is reduced in

ERK5-deficient TAMs. Thus, inhibiting STAT3-induced gene

expression by blocking ERK5 may be a strategy to treat cancer by

reprogramming macrophages into an anti-tumor state (84). The

phagocytic function of macrophages is regulated by the inhibitory

receptor signaling regulatory protein a (SIRPa) expressed on

macrophages, whose ligand is CD47, a “do not eat me” signal,

overexpressed on tumor cells. The CD47/SIRPa axis is the

predominant mechanism by which tumor cells resist macrophage

phagocytosis (98). Kuo T C et al. (85)found that blocking the CD47/

SIRPa signaling pathway effectively promoted phagocytosis of

macrophages against tumor cells and enhanced innate and

adaptive immune responses to promote anti-tumor activity.

Furthermore, in many tumor types, CD24 is an anti-phagocytic

signal expressed on the surface of tumor cells. It helps tumor cells to

avoid macrophage attack by interacting with inhibitory sialic acid-

binding Ig-like lectin 10 (Siglec-10) expressed by TAMs (99). Barkal

et al. (86) found that blocking the CD24-Siglec10 interaction with

anti-CD24 monoclonal antibody significantly increased

phagocytosis of macrophages to tumor cel ls . The

immunosuppressive phenotype of TAMs is controlled by long-

chain fatty acid metabolism (especially unsaturated fatty acids),
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which allows bone marrow-derived macrophages (BMDM) to

polarize into M2 phenotypes with suppressive capacity; therefore,

chemical inhibitors can effectively block TAM polarization in vitro

and tumor growth in vivo (100).

At the same time, the Exos from M1 macrophages (M1-

Exos) have been proved to polarize macrophages into M1

phenotype (101–103). Recently, Wang et al. (104)showed that

Thymosin a-1 (Ta-1) was internalized by TAMs by binding

to phosphatidylserine (PtdSer) on the surface of apoptotic

tumor cells and then combined with TLR7 and TLR8 on the

lysosomal membrane to stimulate the downstream Myd88/

SHIP1 and Myd88/IRAK4 signaling pathways, respectively,

thereby reversing the M2 polarization of efferocytosis-

activated macrophages and improving chemotherapeutic

efficacy. In addition, Gunassekaran et al. (105)transfected

M1 exosomes with NF-kB p50 siRNA and miR-511-3p to

enhance M1 polarization and surface-modified M1 exosomes

with IL4RPep-1, an IL4 receptor binding peptide, to target

IL4R in TAMs (named IL4R-Exo (si/mi)). IL4R-Exo (si/mi)

reprogrammed TAMs into M1 macrophages to inhibit tumor

growth by downregulating target genes, reducing M2 markers

and increasing M1 markers in M2 macrophages. This method

may be a new approach for tumor immunotherapy. It is

known that M2 polarization of macrophages is controlled
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by several transcription factors, such as signal transducer and

activator of transcription 6 (STAT6), STAT3, and CCAAT/

enhancer binding protein b (C/EBP b) (106). Therefore,

Kamerkar et al. (107)designed and engineered exosome of

antisense oligonucleotide (ASO) targeting STAT6 (exoASO-

STAT6) and then transferred the exosome into TAMs. The

results demonstrated that exoASO-STAT6 could induce the

expression of M1 macrophage marker nitric oxide synthase 2

(NOS2), leading to TME remodeling, thereby reprogramming

TAMs to a pro-inflammatory M1 phenotype and inducing

CD8+ T cell-mediated adaptive immune responses.
Targeting EMT

Due to the fact that EMT is a critical step in the process of

tumor metastasis, targeting transcription factors of EMT or

EMT-related pathways by miRNA and reversing the EMT

process have been demonstrated to be effective strategies for

the treatment of tumor metastasis. The miR-138 expression

has been reported to be downregulated in a variety of cancers,

such as colorectal cancer (108), melanoma (109), and ovarian

cancer (110), suggesting that it is a tumor suppressor. Zhu

et al. (87)showed that miR-138-5p inhibited EMT, growth,
TABLE 1 Antitumor therapy targeting TAMs and EMT.

Study
sponsor

Tumor type Mechanism Approach Reference

Targeting TAMs

Gomez-
Roca et al.

Metastatic solid tumors Blocking the CSF-1/CSF1R axis Reduces the number of TAMs in tumors (80)

Zhu et al. Hepatocellular
carcinoma

Blocking OPN/CSF1/CSF1R axis Prevents TAMs trafficking and sensitizes HCC to anti-
PD-L1 blockade

(81)

Hui et al. Esophageal squamous
cell carcinoma

Blocking the CCL2-CCR2 axis Prevents the recruitment of TAMs and enhances the
antitumor effect of CD8+ T cells

(82)

Jaynes et al. Solid tumors Induces of conformational conversion of mannose
receptor CD206 expressed on M2 TAMs

Reprograms M2-like TAMs to anti-tumor M1-like
TAM phenotype

(83)

Giurisato
et al.

Solid tumors Blocks ERK5 to suppress STAT-induced gene expression Reprograms macrophages toward an antitumor state (84)

Kuo et al. Solid tumors Blocking the CD47/SIRPa signaling pathway Promotes phagocytosis of macrophages to tumor cells
and enhances immune response

(85)

Barkal et al. Ovarian cancer and
breast cancer

Blocking the CD24/Siglec-10 Increases phagocytosis of macrophages to tumor cells (86)

Targeting EMT

Zhu et al. Lung adenocarcinoma Inhibiting ZEB2 Targets EMT-inducible transcription factors (87)

Castaneda
et al.

Solid tumors Degrading FOXC2 and inducing cadherin switch Reverses EMT process and inhibits tumor metastasis (88)

Herbertz
et al.

Solid tumors Inhibiting the activation of the typical TGF-b pathway Targets EMT-related pathways (89)

Liu et al. Breast cancer Targeting the EMT inducer CD146 Reverses EMT process (90)

Jonckheere
et al.

Solid tumors Inhibiting LSD1 Inhibits EMT process (91)
fro
CSF-1, colony-stimulating factor-1; OPN, osteopontin; HCC, Hepatocellular carcinoma; ERK5, extracellular-regulated protein kinase 5; SIRPa, Signal regulatory protein a; Siglec-10, sialic
acid-binding Ig-like lectin 10; FOXC2, Fork head box protein C2; LSD1, Lysine-specific histone demethylase 1.
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and metastasis of lung adenocarcinoma cells by targeting

ZEB2. The transcription factor fork head box protein C2

(FOXC2) is required in the initiation and maintenance of

EMT and in the acquisition of traits in CSCs, which enables

cells to acquire higher motility, invasiveness, self-renewal,

and drug resistance (111). One study reported that MC-1-F2,

a small molecule inhibitor of FOXC2, reverses EMT and

inhibits tumor metastasis by degrading FOXC2, blocking its

nuclear localization, and inducing calmodulin conversion

(88). As mentioned above, the TGF-b signaling pathway has

a significant effect on EMT induction; for this reason,

targeting this pathway is also an important means to

prevent the occurrence of EMT. Glyunisertib (also known

as LY2157299), an orally administered small molecule

inhibi tor of TGF-b receptor I kinase , spec ifica l ly

downregulates the phosphorylation of smad2, thereby

inhibiting the activation of the typical TGF-b pathway (89).

Also, TGF-b plays a vital role in embryonic development and

normal cell physiology, making it a problematic anti-cancer

therapeutic target. Liu et al. (90)have shown that targeting the

EMT inducer CD146 by using engineered black phosphorus

nanosheets (BPNSs) and mild photothermal treatment can

convert highly metastatic mesenchymal breast cancer cells to

an epithelial phenotype, while downregulating mesenchymal

markers and upregulating epithelial markers, that is, the EMT

in tumor cells is reversed, leading to tumor cell migration to

be ceased entirely.

Besides, some drugs such as polyphenols, resveratrol,

cellulose, lignans, and genistein flavonoids have also been

proven to inhibit EMT and tumor progression (112). Zhang

et al. (113)have studied that cellulose can enhance the

radiosensitivity of SGC7901 cells and inhibit radiation-induced

EMT and metastasis in both in vitro and nude mouse models,

possibly due to inactivation of Notch-1 signaling and

upregulation of miR-410. Lysine-specific histone demethylase

1 (LSD1), an epigenetic regulator that binds SNAIL and ZEB,

demethylates H3K4 and H3K9. In many different types of

cancer, LSD1 expression is associated with poor patient

survival. LSD1 is recruited by EMT-TFs to their promoter

regions, leading to epigenetic alterations that promote EMT

(114). Several preclinical studies have shown that inhibition of

LSD1 can effectively block EMT (91).
Conclusion and future prospects

In this review, we briefly discuss the origin, classification,

and potential mechanisms involved in tumor metastasis of

TAMs, as well as the relevant molecular changes occurring in

cells during EMT. We focus on the role of TAMs in promoting

EMT in tumor cells and the current major anti-tumor therapies

targeting TAMs and EMT.
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With the further elucidation of the mechanisms of tumor

metastasis, our understanding of the importance and molecular

drivers of TAMs and EMT in cancer metastasis has been notably

improved. The occurrence of tumor metastasis is influenced mainly

by the various components of the tumormicroenvironment (TME).

TAMs, as the main components of TME, closely regulate tumor

growth, immune escape, angiogenesis, and metastasis by secreting

numerous factors. In recent years, targeting TAMs as a treatment

strategy to prevent tumor progression and metastasis has drawn

increasing attention from researchers. These strategies are based on

TAMs depletion, inhibition of TAMs recruitment, and

reprogramming TAMs. However, due to the significant

heterogeneity of TAMs in regulating tumor metastasis; secondly,

preclinical data obtained from the laboratory have not yielded

satisfactory results when translated into clinical studies. Therefore,

it is necessary to continue to explore more unknown mechanisms

by which TAM promotes tumor metastasis. At the same time,

because EMT gives tumor cells the ability to migrate and invade,

therapeutic approaches that target the EMT process to stop tumor

metastasis are currently under investigation. However, EMT also

facilitates tissue development and wound healing under normal

physiological conditions, so targeting the EMT process with anti-

EMT drugs will inevitably bring some side effects to the organism.

Therefore, it is essential to further in-depth studies on EMT and its

molecular regulation during normal development, physiological

state, and malignant transformation. Only then can potential

therapeutic targets be identified to reduce possible side effects

for patients.
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