
Submitted 30 March 2014
Accepted 29 May 2014
Published 10 June 2014

Corresponding author
Susan M. Bertram,
sue.bertram@carleton.ca

Academic editor
Dezene Huber

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.437

Copyright
2014 Pacheco and Bertram

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

How male sound pressure level influences
phonotaxis in virgin female Jamaican
field crickets (Gryllus assimilis)
Karen Pacheco and Susan M. Bertram

Department of Biology, Carleton University, Ottawa, ON, Canada

ABSTRACT
Understanding female mate preference is important for determining the strength
and direction of sexual trait evolution. The sound pressure level (SPL) acoustic
signalers use is often an important predictor of mating success because higher sound
pressure levels are detectable at greater distances. If females are more attracted to
signals produced at higher sound pressure levels, then the potential fitness impacts
of signalling at higher sound pressure levels should be elevated beyond what would
be expected from detection distance alone. Here we manipulated the sound pressure
level of cricket mate attraction signals to determine how female phonotaxis was influ-
enced. We examined female phonotaxis using two common experimental methods:
spherical treadmills and open arenas. Both methods showed similar results, with
females exhibiting greatest phonotaxis towards loud sound pressure levels relative
to the standard signal (69 vs. 60 dB SPL) but showing reduced phonotaxis towards
very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL).
Reduced female phonotaxis towards supernormal stimuli may signify an acoustic
startle response, an absence of other required sensory cues, or perceived increases in
predation risk.

Subjects Animal Behavior, Ecology, Entomology, Evolutionary Studies
Keywords Kramer spherical treadmill, Trackball, Female preference, Phonotaxis, Age,
Locomotion compensator, Gryllus assimilis, Teleogryllus, Loudness, Amplitude

INTRODUCTION
Acoustic communication in many anurans and insects is an essential part of courtship

and reproductive behaviour (Alexander, 1975; Wells, 1977; Gerhardt, 1991; Gerhardt

& Huber, 2002). Acoustic sexual signalling serves to attract receptive females from a

distance (Walker, 1957; Alexander, 1962; Gerhardt, 1991; Ryan & Keddy-Hector, 1992).

Behavioural studies have identified several specific parameters of male acoustic signals

used for species recognition and to confer attractiveness (Rand & Ryan, 1981; Gerhardt,

1982; Simmons & Zuk, 1992; Wilczynski, Rand & Ryan, 1995), with a broad assessment of

the literature revealing that females generally prefer more energetic signallers (reviewed by

Ryan & Keddy-Hector, 1992).

Sound pressure level (SPL) can be an important predictor of mate choice (Stout &

McGhee, 1988; Castellano et al., 2000; Klappert & Reinhold, 2003; Hedwig & Poulet,

2005) with females tending to prefer more intense signals when given the choice
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Table 1 Variation in the sound pressure levels used in female field cricket preference studies.

Study Species SPL (dB) Speaker
distance (cm)

Scheuber, Jacot & Brinkhof, 2004 Gryllus campestris 80* 10.0

Lickman, Murray & Cade, 1998 Gryllus texensis 82–85* 35.4

Bailey, 2008 Teleogryllus oceanicus 70

Prosser, Murray & Cade, 1997 Gryllus texensis 83* 35.4

Wagner, Murray & Cade, 1995 Gryllus texensis 84.6 35.5

Hedrick, Hisada & Mulloney, 2007 Gryllus integer 72

Olvido & Wagner, 2004 Allonemobius socius 66 ± 2 5.0

Gray & Cade, 2000 Gryllus texensis 84

Gray & Cade, 2000 Gryllus rubens 84

Notes.
* Reference is made to the natural range of sound pressure levels.

(Whitney & Krebs, 1975; Sullivan, 1983; Wells & Schwartz, 1984; Ryan, 1985; Gerhardt,

1991). For example, Arak (1988) revealed that female natterjack toads (Bufo calamita)

can perceive small differences in male sound pressure levels and typically prefer males

that signal at higher sound levels. Female wax moths (Achroia grisella) also prefer

males that produce ultrasound signals that contain higher acoustic energy and power

(Jang & Greenfield, 1996).

Males that produce signals at a higher sound pressure level should be detectable at

greater distances; males that signal with high sound pressure level should therefore receive

a selective advantage over males that signal with low sound pressure level and subsequently

have a shorter detection distance (Forrest & Green, 1991; Forrest & Raspet, 1994). However,

if females also prefer higher sound pressure level males over lower sound pressure level

males then the potential fitness impacts of higher sound pressure level signalling should

be elevated beyond what would be expected from detection distance alone. It is therefore

important to quantify female preference functions for sound pressure level to gain insights

into the evolutionary consequences and patterns of selection on this trait.

Female preference functions for sound pressure level have been understudied in crickets

despite extensive studies on female preference for other male signal components. Adult

male field crickets produce long distance acoustic mate attraction signals (also known

as calls) by rubbing their modified forewings together (Alexander, 1962). When a male

closes his wings, the scraper of one wing hits the teeth of the file on the other wing causing

the harp to resonate and produce a single pulse of sound (Bennet-Clark, 2003). Males

concatenate these pulses into chirps (Alexander, 1962; Bennet-Clark, 2003) and females use

these long distance acoustic signals to both orient towards signalling males (phonotaxis)

and choose between potential mates (Alexander, 1962). To date, only a handful of the

experiments quantifying female cricket preference for sound pressure level have explored a

broad range of sound levels (Table 1). Even fewer have explored the extremes of the natural

range of sound pressure levels available to females. Further, most studies examining female

preference for sound pressure level often simultaneously manipulate other signalling
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parameters, making it difficult to tease apart the influence that sound pressure level alone

has on female preference. For example, Stout & McGhee (1988) examined the relative

importance of pulse + interpulse duration (syllable period), chirp rate and signal sound

pressure level on female mate preference. Unfortunately, Stout & McGhee (1988) made

no reference to the natural range of sound pressure levels found in nature. Instead, they

quantified female phonotactic response at a 2 dB, 5 dB and 10 dB SPL increase above their

standard male signal of 65 dB SPL. By presenting female European house crickets (Acheta

domesticus) with a pair of male signals differing in one or more of these parameters, Stout

& McGhee (1988) concluded that sound pressure level was more important than chirp

rate, but that syllable period was more important than sound pressure level in influencing

female mate choice. While there is emerging interest in determining how multiple signal

parameters interact to influence patterns of selection and the evolutionary consequences of

signalling (Brooks et al., 2005), it is first worth examining how sound pressure level alone

shapes female preference functions.

Here we quantify female Jamaican field crickets (Gryllus assimilis) phonotactic response

to variation in male long distance acoustic mate attraction signal sound pressure level

using two standard research methods, a spherical treadmill and open arena. These two

methods fall within two broader categories of testing: open-loop and closed-loop methods,

respectively. Open-loop methods (Kramer spherical treadmill also called a trackball or

locomotion compensator) tether a female in one place, so that she does not experience

changes in sound pressure level as she walks ‘toward’ the mate attraction signal (Kramer,

1976; Weber, Thorson & Huber, 1981; Doherty, 1985; Doherty & Pires, 1987; trackball:

Hedwig & Poulet, 2005; Hedwig, 2006). Closed-loop methods (open arena) allow the female

to move within the enclosed space, thereby allowing her to experience natural changes

in sound pressure level as she approaches the mate attraction signal. Quantifying female

preference for the sound pressure level of the acoustic mate attraction signal provides

a powerful comparison of whether one technique quantifies female phonotaxis more

effectively than the other because sound pressure level is one of the primary components

that differ between the two techniques. The focus of our study was therefore two-fold:

(1) to examine female phonotaxis toward long distance acoustic mate attraction signals

that vary in sound pressure level across the natural range of this species, and (2) to compare

female phonotaxis on the spherical treadmill to the open arena.

METHODS
Cricket rearing
Our founding population of Gryllus assimilis was originally collected in Bastrop County,

Texas, United States (latitude ∼ 30◦17′N, longitude ∼ 97◦46′W, elevation ∼ 145 m) from

15 to 24 September, 2008. We did not require specific permits for collecting invertebrates

because these crickets are neither endangered nor protected. We imported adult crickets

and eggs to the greenhouse laboratories at Carleton University, Ottawa, Canada (Canadian

Food Inspection Agency permit #2007-03130). Our greenhouse facilities are Plant Pest

Containment Level 1 certified (Canadian Food Inspection Agency permit #P-2012-03836).
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Our study was conducted in accordance with the guidelines of the Canadian Council on

Animal Care.

The crickets were reared in communal plastic bins (L × W × H = 64 cm × 40 cm

× 42 cm) with a 14:10 h L : D illumination period (lights on at 0600 h, off at 2000 h)

at 28 ± 2 ◦C. They were fed ad libitum food (Harlan Teklad Rodent diet 8604M, Harlan

Laboratories, Indianapolis, IN, USA: 24.3% protein, 40.2% carbohydrate, 4.7% lipid,

16.4% fiber, 7.4% ash). Water was provided in plastic containers filled with marbles to

provide a surface to perch on to minimize drowning. In late 2012 (12–16 generations after

field collection) we haphazardly collected 30 4th instar females from the communal cricket

bins (no wing bud development; ovipositor had just become visible). These juveniles were

housed together in a separate communal bin (same conditions as described above) and

monitored daily for imaginal eclosion. Within 24 h of imaginal eclosion we transferred

the adult females to individual 520 mL (D × H = 11 cm × 7 cm) clear plastic circular

containers with screened lids (4 cm × 4 cm). Each female was provided with a small piece

of cardboard egg container for shelter, ad libitum food, and 4–5 water gels every 2–3 days

(created by soaking 2–4 mm sized water polymer crystals in distilled water for 4–6 h;

Feeder Source, Cleveland, GA, USA). The light cycles and temperatures were identical to

the communal rearing environment.

Standard and focal mate attraction signals
We created our standard and focal mate attraction signals using Adobe Audition CS5.5

software (Adobe Systems Incorporated, San Jose, California, USA). We fashioned our

signals after results published in Whattam & Bertram (2011). Because Whattam and

Bertram’s (2011) study revealed that long distance acoustic mate attraction signaling

was influenced by diet, we selected our signals’ parameters to reflect the mean from a

population of males reared on high quality food (recordings made at 26 ◦C). The signaling

parameters we used for both standard and focal signals were: carrier frequency = 3,719 Hz,

pulse duration = 10.14 ms, interpulse duration = 15.21 ms, pulses per chirp = 8, and

interchirp duration = 1,055 ms (signal available at Figshare DOI http://dx.doi.org/10.

6084/m9.figshare.1037378). Whattam & Bertram (2011) revealed that well-fed male

crickets signal at 60.60 ± 8.45 dB SPL (X̃ ± 1 SD), ranging 34–72 dB SPL. We therefore

always set our standard signal to broadcast at 60.6 dB SPL (re: 20 µPa RMS). We used

four focal sound pressure levels which we labelled very quiet, quiet, loud, and very

loud, broadcast at 43 dB ∼= X̃ − 2 SD, 52 dB ∼= X̃ − 1 SD, 69 dB ∼= X̃ + 1 SD, and 77 dB
∼= X̃ + 2 SD SPL, respectively. Our focal sound pressure levels thus spanned the natural

range and slightly beyond that which females are accustomed to hearing. We measured

sound pressure level using an EXTECH Digital Sound Level Meter (Model #407768; FLIR

Systems, Waltham, MA, USA).

Preference trials
Each female’s phonotaxis was tested using two-choice trials where the standard signal was

simultaneously presented against one of the four focal signals. Each female was tested

across all four focal signals in both the arena and the spherical treadmill, for a total of
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8 tests. These comparisons occurred across four consecutive days, 10–13 days post imaginal

moult (hereafter referred to as 10–13 days old) because this is the age range when female

G. assimilis are most phonotactically responsive (Pacheco et al., 2013). On a single test day,

an individual female was tested once on the spherical treadmill and once in the arena,

each to randomly assigned focal signals. Females were always given at least 1 h of rest

prior to switching methods. The order of the method the female was tested on first was

randomized.

In both spherical treadmill and open arena trials females were given 60 s to acclimatize

in silence (detailed below). Each signal was then broadcast on its own for 30 s (order

and speaker side randomized) to ensure the female heard both the focal and standard

signals prior to starting the trial. Both signals were then broadcast simultaneously from the

speakers with the signal chirps interleaved (alternating), so that a female had the potential

to identify which signal was coming from which speaker. Once both focal and standard

signals were being broadcast, the trial began and female phonotaxis was recorded (detailed

below). Every trial ran a total of 5 min. All trials were run in the evening (between 5:00 PM

and 8:00 PM) under a 75 wattage red light.

Spherical treadmill preference trials
We ran all spherical treadmill trials in a chamber (L × W × H = 86 × 87 × 57 cm) lined

with sound-attenuating foam. The spherical treadmill was located in the middle of the

chamber with two speakers on either side of it, each 17 cm from the center of the sphere

and directly across from each other. Prior to mounting the female onto the spherical

treadmill we ensured the standard and focal signal would broadcast at the correct sound

pressure level by pointing the sound level meter probe directly at the active speaker, directly

above the spherical treadmill, 17 cm from the active speaker, and setting the volume of the

standard or focal signal accordingly.

To mount the female on the spherical treadmill we attached a coil- (micro-compression)

spring (diameter: 3 mm, length: 8 mm; spring constant: 210.15 N/m) to each female’s

pronotum using low melting point wax. Coil springs were attached on day 9 post final

moult (one day prior to the first trial, sensu Pacheco et al., 2013). We mounted each focal

female on the treadmill by attaching her spring to a magnetic rod above the treadmill.

This mounting ensured that while the female cricket was held firmly in place on the top

of the polystyrene ball, she could freely turn 360 degrees, as well as walk or run using

natural motions (photos in Pacheco et al., 2013). We adjusted the air pressure flowing to

the polystyrene ball such that, with the cricket in position, the ball was able to rotate freely

in all directions in response to the cricket’s walking, running, or turning movements. We

oriented all females in the same neutral position at the start of their trial: tethered on the

spherical treadmill facing straight ahead between the two speakers.

Once the female was mounted on the spherical treadmill, but prior to the start of

data collection, the female experienced 60 s of silence, then 30 s of the focal sound

and 30 s of the standard sound (order and speaker side randomized). The female was

free to walk during this acclimatization period. We then broadcast both the focal and
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standard signals, with the signal chirps interleaved. Data collection on female phonotaxis

began as soon as both the focal and the standard signals were being broadcast. Female

phonotaxis was recorded relative to the focal speaker. Both standard and focal signals were

presented continuously throughout the 5 min trial, and the female’s locomotor behavior

was recorded from the treadmill at a sample rate of 20 samples per second. Each 5 min

trial yielded a total of 6000 samples of cricket X,Y positions. Temperature was held at

22–23 ◦C in the trial room and was monitored with a Fisher Scientific Traceable Digital

Thermometer (Model #15-077-20; Fisher Scientific, Toronto, Ontario, Canada).

We calculated instantaneous displacement (cm) and velocity (cm/s) vectors from the

positional data (X,Y coordinates). Total path length was calculated as the sum of all vector

lengths over the 6000 samples. Female preference was quantified using net vector score

(after Huber et al., 1984). Net vector score is the female’s net movement toward or away

from the focal signal during the 5 min trial and takes into account the female’s direction

(vector angle) and the vector length of every recorded leg movement:

Net Vector Score =

6000
t=1

[cos(vector angle(t)) × vector length(t)].

We defined the angle of the focal speaker as 0◦. Females moving directly toward the focal

speaker (0◦) had positive vector scores [cos(0◦) = 1], females moving directly away from

the focal speaker (180◦) had negative vector scores [cos(180◦) = −1], and females moving

perpendicular to the focal speaker (90◦or 270◦) had vector scores of 0 [cos(90◦ or 270◦) =

0]. By multiplying this value by each vector length, and summing over the trial duration,

we quantified the female’s relative attraction to the focal signal. A large positive net vector

score indicated that the female moved quickly toward the focal speaker, a small positive

score indicated the female moved slowly toward the focal speaker, a large negative score

indicated the female moved quickly away from the focal speaker, and a small negative score

indicated the female moved slowly away from the focal speaker (Huber et al., 1984).

Open arena preference trials
We conducted the open arena trials in the same room and temperature conditions as

spherical treadmill trials. We ran all trials in a chamber (L × W × H = 111.7 cm × 50 cm

× 25 cm) with the walls lined with sound-attenuating foam. Speakers were located at

opposite ends of the arena (lengthwise). We ensured the standard and focal signal would

broadcast at the correct sound pressure level by pointing the sound level meter probe

directly at the active speaker from the center of the arena, 55 cm from the active speaker,

and setting the volume of the standard or focal signal accordingly. We demarcated a

semicircle “choice zone” (radius = 28 cm) in front of each speaker. We then placed the

female in the center of the arena (exactly 55 cm from each speaker) under an opaque

plastic container (L × W × H = 10 cm × 8.5 cm × 11 cm). Prior to the start of data

collection, the female experienced 60 s of silence, then 30 s of the focal sound and 30 s of

the standard sound (order and speaker side randomized). We then broadcast both the focal

and standard signals simultaneously, with the signal chirps interleaved. As soon as both
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signals were being broadcast, we carefully and silently raised the opaque plastic container

by pulling on its attached string. Data collection on female phonotaxis began as soon as the

opaque container was removed.

Each trial ran for a total of 5 min. The following female responses were recorded: the

amount of time spent stationary in the middle of the arena without moving after the

opaque plastic container was removed, time spent in the arena outside of the choice zones

(no-choice zone) after moving from the acclimatization location, time spent in focal choice

zone, time spent in standard choice zone, and number of switches made between focal and

standard choice zones. The base of the arena was vacuumed and wiped down after each

trial.

Because of the varying amount of time spent in focal and standard choice zone, females

were classified as ‘preferring’ a particular focal signal treatment if, over the course of the

trial, she spent relatively more time in the zone with the focal signal than in the zone

with the standard signal (i.e., time outside choice zones were not included to determine

female choice) sensu Bischoff, Gould & Rubenstein (1985) and Dugatkin & Godin (1992). To

quantify female preference we calculated the proportion of time spent in the focal choice

zone relative to the proportion of time spent in both choice zones combined. A number

close to one indicates a strong phonotaxis response from the female with much more time

spent in the focal zone than the standard zone; conversely, a number close to zero indicates

much more time was spent in the standard zone than in the focal zone.

Statistical analysis
All data were analyzed using JMP 10.0.0 statistical software (SAS Institute Inc., 100

SAS Campus Drive, Cary, North Carolina, USA). Female phonotaxis data (net vector

scores from the spherical treadmill and proportion of time spent in focal zone from

the open arena) were analyzed using repeated measures general linear mixed models

(GLMM) that included sound pressure level, age, and the interaction between sound

pressure level and age as fixed effects; body size (maximum head width) was included

as a covariate; individual was treated as a random effect. To compare experimental

methods, we converted all phonotaxis data into z scores. Z scores were then analyzed

using a repeated measures GLMM. We included experimental method, sound pressure

level, age, experimental method × sound pressure level, sound pressure level × age,

experimental method × age, and experimental method × sound pressure level × age as

fixed effects; body size was included as a covariate; we treated individual as a random

effect. Because none of the interactions were significant in any of the models we re-ran all

models without interactions per Engqvist (2005). We only present the results of the partial

models (excluding interactions) because partial F-tests revealed that the full models did

not explain significantly more variation in female phonotaxis. We used one sample t-tests

to determine which sound pressure levels invoked significantly different female phonotaxis

levels relative to the standard. We used Tukey’s post-hoc HSD tests to compare phonotaxis

across different focal sound pressure levels.
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Figure 1 Female phonotaxis under different sound pressure levels on the spherical treadmill. Phono-
taxis was quantified using net vector scores (net movement toward or away from the focal signal; direct
movement towards the focal speaker resulted in positive vector scores while direct movement away from
the focal speaker resulted in negative vector scores). Letters represent significant differences across sound
pressure levels (Tukey’s post-hoc HSD analysis). Asterisks represent significant differences between the
focal and standard signal (above median = phonotaxis toward focal signal; below median = phonotaxis
toward standard signal). Box plots: horizontal line within each box = median phonotaxis measure; top of
each box = 3rd (75%) quartile phonotaxis measure; bottom of each box = 1st (25%) quartile phonotaxis
measure; whiskers represent the outermost data point that falls within the distances 1st quartile –
1.5*interquartile range or 3rd quartile + 1.5*interquartile range; whiskers are determined by the upper
and lower data point values (excluding outliers) when the data points do not reach the above computed
ranges; light grey dots represent outliers, when present.

RESULTS
Females in the spherical treadmill trials exhibited highly variable phonotaxis in response

to the different focal sound pressure levels. Some females walked substantially farther

than others, with distance covered ranging from 60 cm to 4,900 cm. Females had over a

60-fold difference in their velocity magnitudes, with the slowest moving at only 0.12 cm/s

and the fastest moving at 8.22 cm/s. Females also moved in all directions during trials

relative to the focal speaker. There was a 4-fold difference in net vector scores, indicating

large variation in the strength of female phonotaxis on the spherical treadmill. Sound

pressure level significantly influenced net vector scores, with females exhibiting highest

phonotaxis towards the loud 69 dB ∼= X̃ + 1 SD SPL treatment relative to all other

focal sound pressure level treatments (Fig. 1; Table 2). Age and size did not significantly

influence female phonotaxis. Further, although individuals were included as a random

effect in the GLMM, they did not explain any of the variation in phonotaxis. Post hoc

one-way comparisons revealed that phonotaxis towards the loud 69 dB ∼= X̃ + 1 SD SPL

was significantly higher than towards the standard 60.6 dB SPL (t = 3.66, p = 0.0010).

Phonotaxis did not significantly differ relative to the standard sound pressure level in the

other three focal treatments (all p > 0.25).
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Table 2 Repeated measures GLMM results for factors affecting female phonotaxis. The spherical
treadmill model used net vector scores to quantify phonotaxis and had an R2

adj = 0.0495. The open model

used proportion of time spent in focal choice zone relative to time spent in both focal and standard choice
zones to quantify phonotaxis and had an R2

adj = 0.0356. The method comparison model used z scores to

quantify phonotaxis and had an R2
adj = 0.0626. Female phonotaxis was significantly influenced by sound

pressure level but was not influenced by female age, female body size, or experimental method. Individual
was identified as a random effect in all models, but did not explain any of the phonotaxis variation.

Method Source DF F P

Spherical treadmill Age 3,84 0.8947 0.4475

Sound pressure level 3,84 5.7035 0.0013

Body size 1,28 0.1983 0.6595

Open arena Age 3,79 0.7662 0.5164

Sound pressure level 3,79 5.3900 0.0020

Body size 1,29 0.3029 0.5864

Both methods Age 3,192 0.7747 0.5094

Sound pressure level 3,192 9.5844 <0.0001

Technique 1,193 0.0392 0.8433

Body size 1,29 0.4584 0.5035

Females in the open arena trials also exhibited highly variable phonotaxis in response to

the different focal sound pressure levels. In 17/120 of the open arena trials (14%) females

failed to move out of the no-choice zone; these trials were excluded from analysis. Females

usually spent time in both standard and focal choice zones in the remaining open arena

trials. Sound pressure level significantly influenced female phonotaxis (relative time spent

in focal choice zone). Females were most phonotactic towards the loud 69 dB ∼= X̃ + 1 SD

SPL, relative to all other focal sound pressure level treatments (Fig. 2; Table 2). Age and

size did not significantly influence proportion of time spent in focal choice zone. Further,

individuals being included in the GLMM as a random effect did not explain any of the

variation in phonotaxis. Post hoc one-way comparisons of the open arena data revealed

that females spent significantly more time in the loud 69 dB ∼= X̃ + 1 SD SPL choice zone

than the standard 60.6 dB SPL choice zone (t = 2.47, p = 0.0197). Conversely, when the

sound pressure level was very loud 77 dB ∼= X̃ + 2 SD SPL, females avoided the focal choice

zone, instead spending significantly more time in the standard 60.6 dB SPL choice zone

(t = −4.20, p = 0.0003). Female time in the focal choice zone did not differ significantly

relative to time in the standard sound pressure level choice zone in the quiet and very quiet

treatments (all p > 0.70).

We used z scores to compare phonotaxis across the two methods (spherical treadmill

and open arena). Experimental method, age and size did not significantly influence female

phonotaxis. Further, individuals being included in the GLMM as a random effect did not

explain any of the variation in phonotaxis. Female phonotaxis was only influenced by

sound pressure level, with females exhibiting highest phonotaxis towards the loud 69 dB
∼= X̃ + 1 SD SPL treatment relative to all other focal sound pressure level treatments (Fig. 3;

Table 2).
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Figure 2 Female phonotaxis under different sound pressure levels in the open arena. Phonotaxis was
quantified using proportion of time the female spent in the focal choice zone relative to the total amount
of time spent in both the focal and standard choice zones. Box plot, asterisk, and letter descriptions
provided in Fig. 1.

Figure 3 Female phonotaxis under different sound pressure levels in both the spherical treadmill
(white bars) and open arena (grey bars). Phonotaxis was compared across the two experimental methods
by converting all phonotaxis data into z scores. Box plot, asterisk, and letter descriptions provided in
Fig. 1.
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DISCUSSION
The loud focal signal (69 dB ∼= X̃ + 1 SD SPL) invoked greater female phonotaxis than any

other sound pressure level investigated (Figs. 1–3; Table 2). Overall, our findings suggest

that males that signal at high sound pressure levels should experience a fitness advantage

over males that signal at lower sound pressure levels, provided the sound pressure level

is within the natural range of the species. This caveat is important, given females showed

reduced phonotaxis towards the very loud focal signal (77 dB ∼= X̃ + 2 SD SPL), suggesting

female preference for elevated sound pressure level is not open ended.

The very loud focal signal (77 dB ∼= X̃ + 2 SD SPL) may represent a novel supernormal

stimulus as it falls beyond G. assimilis’ natural range of 34–71 dB SPL (Whattam &

Bertram, 2011). Many of the females exhibited negative phonotaxis when exposed to

this supernormal stimulus (Figs. 1–3). Weber, Thorson & Huber (1981) showed a similar

response in Gryllus campestris L, with females avoiding mate attraction signals above 70 dB

SPL. This negative response to a supernormal stimuli has been observed previously, such

as when female crickets exhibit negative phonotaxis to the number of syllables (pulses) in

a chirp (Hedrick & Weber, 1998; Ryan & Keddy-Hector, 1992). Female negative phonotaxis

to very loud signals may be an acoustic startle response (Hoy, Nolen & Brodfuehrer,

1989), or the females may have a perceived increase in predation risk (Moiseff, Pollack

& Hoy, 1978; Zuk & Kolluru, 1998). It is also possible that absence of other sensory cues

(Crapon de Caprona & Ryan, 1990) invoke this negative phonotaxis. In some species,

such as Xiphophorus nigrensis and X. pygmaeus (Poeciliidae) swordtails, mate selection is

dependent on the dual effect of both visual and olfactory cues.

Surprisingly, females did not exhibit significant phonotaxis towards the standard signal

when the focal signal’s sound pressure level was less than that of the standard signal (quiet

52 dB ∼= X̃ − 1 SD SPL or very quiet 43 dB ∼= X̃ − 2 SD SPL vs. 60.6 SPL; Figs. 1–3). These

findings suggest females may not discriminate between sound levels unless one of the

signals presents a higher than average sound pressure level. Regardless, given low sound

levels may go undetected in nature due to elevated background noise levels, males should

be selected to signal with high sound pressure levels whenever possible. It is unknown

whether females can discern low sound pressure levels from the background noise level

in the testing chamber (42 ± 2 dB SPL); future tests should determine whether females

exhibit phonotaxis towards very quiet (43 dB ∼= X̃ − 2 SD SPL) signals when the alternative

is silence (Brown & Handford, 1996).

Our study compared open arena and spherical treadmill methods. Quantifying female

preference for signal sound pressure level provides a powerful comparison of whether

one experimental method quantifies female phonotaxis more effectively than the other

because sound pressure level is one of the primary components that differ between the two

methods. We found that the two methods produced virtually identical female phonotaxis

results for almost all of the sound pressure levels examined. The only sound pressure level

that evoked a slightly different phonotactic response between the two methods was the

very loud treatment (77 dB ∼= X̃ + 2 SD SPL). Females in the open arena avoided the very
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loud focal sound pressure level, spending significantly more time in the choice zone of the

standard signal. While females in the spherical treadmill also exhibited somewhat reduced

phonotaxis towards the very loud focal signal, phonotaxis did not significantly differ

from the standard signal. Overall, our findings are consistent with the handful of other

studies that compare these experimental methods. Walikonis et al. (1991), Stout, Atkins &

Zacharias (1991) and Pires & Hoy (1992) revealed female phonotaxis was the same in the

open arena and on the spherical treadmill. Similar to our study, Stout, Atkins & Zacharias

(1991) investigated female Acheta domesticus response to differing signal intensities.

Conversely, Walikonis et al. (1991) investigated female A. domesitcus response to differing

syllable periods while Pires & Hoy (1992) investigated female G. firmus response to natural

calls recorded songs at different temperatures. Given sound pressure level, syllable period,

and temperature are important predictors of mating preference, our joint findings suggest

that open arena and spherical treadmill methods may be used interchangeably to quantify

phonotaxis to acoustic signals.

Caution is warranted, however, when signals are broadcasted at unnaturally high sound

pressure levels because of fundamental methodological differences between the open

arena and the spherical treadmill. The open arena lets the female to move within the

enclosed space, thereby enabling her to experience natural changes in sound pressure level.

When individuals in the open arena run away from very loud signals, they experience a

∼6 dB drop in amplitude with every doubling of their distance from the very loud signal

(assuming a spherical, radiating sound source without obstructions). However, when

individuals on the spherical treadmill run away they do not experience a drop in amplitude

regardless of the distance they run because they are tethered in place on the spherical

treadmill. Future research should explore how important sound pressure level is relative to

other signalling parameters.
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