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Abstract Knowledge of the uncertainty in model param-

eters is essential for decision-making in drug development.

Contrarily to other aspects of nonlinear mixed effects

models (NLMEM), scrutiny towards assumptions around

parameter uncertainty is low, and no diagnostic exists to

judge whether the estimated uncertainty is appropriate.

This work aims at introducing a diagnostic capable of

assessing the appropriateness of a given parameter uncer-

tainty distribution. The new diagnostic was applied to case

bootstrap examples in order to investigate for which dataset

sizes case bootstrap is appropriate for NLMEM. The pro-

posed diagnostic is a plot comparing the distribution of

differences in objective function values (dOFV) of the

proposed uncertainty distribution to a theoretical Chi

square distribution with degrees of freedom equal to the

number of estimated model parameters. The uncertainty

distribution was deemed appropriate if its dOFV distribu-

tion was overlaid with or below the theoretical distribution.

The diagnostic was applied to the bootstrap of two real data

and two simulated data examples, featuring pharmacoki-

netic and pharmacodynamic models and datasets of 20–200

individuals with between 2 and 5 observations on aver-

age per individual. In the real data examples, the diagnostic

indicated that case bootstrap was unsuitable for NLMEM

analyses with around 70 individuals. A measure of

parameter-specific ‘‘effective’’ sample size was proposed

as a potentially better indicator of bootstrap adequacy than

overall sample size. In the simulation examples, bootstrap

confidence intervals were shown to underestimate inter-

individual variability at low sample sizes. The proposed

diagnostic proved a relevant tool for assessing the appro-

priateness of a given parameter uncertainty distribution and

as such it should be routinely used.

Keywords Parameter uncertainty distributions �
Bootstrap � Model diagnostics � Nonlinear mixed-effects

models

Introduction

The utilization of non-linear mixed effects models

(NLMEM) in drug discovery and development has

increased in the last decades. In a recent white paper aimed

at both decision makers and practitioners, the importance

and implementation of Model-Informed Drug Discovery

and Development (MID3) was outlined [1]. As exemplified

and stressed in this consensus paper, understanding and

quantifying model uncertainty has a central role in model-

informed decision-making. Model uncertainty includes

qualitative aspects, mainly the adequacy of the assumptions

underpinning the model(s), but also quantitative aspects,

mainly the joint uncertainty of the estimated parameters of

the model(s). A number of methods to quantify parameter

uncertainty are available. The most commonly used

method is to derive standard errors around the parameters

from the asymptotic covariance matrix, which is provided

as a standard output of most software. A drawback of this

uncertainty estimate is that parameter confidence intervals

(CI) as well as simulation and prediction uncertainties

require additional assumptions about the shape of the

uncertainty distribution. Most often a multivariate normal
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distribution is used, which provides CI that are symmetric

around the point estimate. To relax the assumption of

symmetric CI, likelihood profiling is sometimes used [2].

However, while applicable to the uncertainty of each

parameter separately, likelihood profiling does not allow

the use of the combined uncertainty around all model

parameters for simulations or predictions. The most fre-

quently used method for generation of parameter uncer-

tainty without symmetry constraint is the nonparametric, or

‘‘case’’, bootstrap [3]. Case bootstrap of independent data

consists of estimating model parameters on a number of

datasets obtained by resampling with replacement ‘‘pairs’’

of dependent and independent variables. It is often con-

sidered as the gold standard for estimating parameter

uncertainty. Occasionally, other bootstrap variants are

used, for example nonparametric and parametric residual

bootstrap [4]. Sampling Importance Resampling (SIR) has

recently been proposed for improving the estimation of

parameter uncertainty in NLMEM [5]. Lastly, for models

estimated by Bayesian methods, the full posterior param-

eter distribution is typically used to represent parameter

uncertainty [6].

Case bootstrap is not devoid of limitations. It is for

example not suitable for ‘‘small’’ or highly designed

datasets for which stratification is impossible (such as

model-based meta-analysis [7]) or leads to too small sub-

groups. Using bootstrap in these cases has a high risk of

leading to biased uncertainty estimates. Models relying on

frequentist parameter priors for parameter estimation [8]

are also not suited for bootstrap, as the uncertainty of

parameters featuring highly informative priors and low

information in the data will be underestimated. In the

particular context of NLMEM, what represents a too small

dataset is not well known. In any case, a minimum dataset

size would need to take model complexity into account. As

models typically grow in complexity with increasing

dataset sizes in order to maximize the amount of infor-

mation extracted from the data, one might suggest that

datasets are often small with regards to the developed

models. In addition, typically each individual, or ‘‘case’’,

only provides incomplete information about the parameters

that are to be estimated. Likewise, individuals contain

different amounts of information and are thus not fully

exchangeable. Reasons for this may be different designs

(doses, number or timing of observations) and different

covariate values, but even with the same design and

covariate values, the information about a parameter will be

linked to the individual’s value for that parameter and thus

differ between ‘‘cases’’.

The appropriateness of the point estimates of model

parameters is typically scrutinized using a variety of

graphical diagnostics based on predictions, residuals and

simulations. The choice of models and estimation methods

in an analysis is typically driven by such diagnostics. The

same is not true for estimates of parameter uncertainty.

Typically, the appropriateness of the uncertainty estimates

is not investigated. Instead, the choice of method for the

estimation of parameter uncertainty is usually based on the

expectation of performance combined with practical

aspects (runtime, model stability, etc.). In the present work,

we propose a diagnostic for estimates of parameter

uncertainty. The intention for its use is mainly to allow

assessment of the appropriateness of estimated parameter

uncertainty in relation to the underlying real dataset, but its

properties will also be explored in relation to simulated

data. For illustration of the parameter uncertainty diag-

nostic we have chosen to apply it to case bootstrap

estimates.

Methods

NLMEM

A NLMEM is a statistical model which typically describes

how an endpoint changes over time in different individuals.

It is usually defined by a set of differential equations and

comprises Npar population parameters. The vector of pop-

ulation parameters P comprises both fixed and random

effects, which can be combined to obtain vectors of indi-

vidual parameters Pi. Estimates of the population param-

eters, P̂, can be obtained from a dataset D containing a total

number of observations Nobs arising from Nid individuals

by minimization of the objective function value (OFV),

which is equal (up to a constant) to minus two times the

log-likelihood of the data given the parameters.

Bootstrap setup

Uncertainty in the population parameters estimated on

dataset D can be obtained via bootstrap. Bootstrap results

considered in this work consisted of Nboot = 1000 param-

eter vectors obtained by fitting the model, i.e. estimating

the population parameters, in Nboot bootstrapped datasets.

The bootstrapped datasets were obtained from the original

data using case bootstrap, where the full data of one indi-

vidual was resampled with replacement to obtain boot-

strapped datasets containing the same number of

individuals as the original dataset. Some individuals are

thus present multiple times within a bootstrapped dataset,

in which case they are treated as independent individuals;

oppositely, some individuals are not present at all. Strati-

fication, i.e. the classification of individuals into subgroups

prior to resampling, was not used here. Model fitting of the

bootstrapped datasets was performed the same way as with
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the original dataset, with initial parameter estimates set to

P̂. Nonparametric percentiles-based CI were derived for

each parameter from all available bootstrap parameter

vectors, regardless of their termination status (i.e. runs with

and without successful minimization were used to compute

bootstrap CI).

dOFV distribution diagnostic

A diagnostic was developed to assess whether the uncer-

tainty of NLMEM parameter estimates, as obtained by the

bootstrap procedure described above, was appropriate.

The new diagnostic is based on the comparison of the

distribution of the differences in OFV (dOFV) for a pro-

posed uncertainty estimate, in this case the bootstrap, to a

theoretical dOFV distribution. The two dOFV distributions

are generated according to the following procedure:

Bootstrap dOFV distribution

The bootstrap dOFV distribution is derived from the results

of the bootstrap of the original dataset, which consist of

Nboot parameter vectors. Each one of the Nboot parameter

vectors has been estimated on a different bootstrapped

dataset. Each of these vectors is then used to evaluate the

likelihood of the original data given this particular vector.

For one vector, this means that the OFV of the original data

is calculated by fixing all model parameters to their value

in the vector (in the NONMEM [13] software, this corre-

sponds to using the bootstrap parameter vector as initial

estimates in $THETA, $OMEGA and $SIGMA and setting

MAXEVAL = 0 in $EST). This is done for each of the

Nboot vectors, leading to Nboot OFVs. Next, the final OFV

of the original model, obtained with the final parameter

estimates on the original data (using MAXEVAL = 9999

in $EST), is subtracted from each of the Nboot OFVs. One

thus obtains Nboot dOFVs (Eq. 1).

dOFVbootN ¼ OFVP̂bootN ;D
� OFVP̂D;D

ð1Þ

where dOFVbootN is the N-th bootstrap dOFV. The first

index of the OFV corresponds to the parameter vector used,

and the second to the dataset the parameter vector is esti-

mated (MAXEVAL = 9999 in NONMEM) or evaluated

(MAXEVAL = 0) on. P̂bootN is the parameter vector esti-

mated on the N-th bootstrap dataset, and P̂D is the

parameter vector estimated on the original dataset D.

Theoretical dOFV distribution

The second dOFV distribution, referred to as the theoretical

dOFV distribution, corresponds to a Chi square distribution

with degrees of freedom (df) equal to the number of esti-

mated model parameters Npar (Eq. 2).

dOFVtheoreticalN ¼ randomðv2
NparÞ ð2Þ

where dOFVtheoreticalN is the N-th Chi square dOFV

obtained by random sampling from a Chi square distribu-

tion with Npar degrees of freedom.

The proposed diagnostic displays the quantile functions,

also known as the inverse cumulative distribution func-

tions, of the two dOFV distributions as illustrated in Fig. 1

(left panels—the bootstrap dOFV distribution is displayed

in blue and the theoretical dOFV distribution is displayed

in green). The quantile function specifies, for a given

probability in the probability distribution of a random

variable, the value at which the probability of the random

variable being less than or equal to this value is equal to the

given probability.

The principle behind the dOFV diagnostic is that if the

parameter vectors (obtained by performing a bootstrap for

example) were representative of the true uncertainty, their

dOFV distribution should follow a Chi square distribution

with a certain degrees of freedom. For unconstrained fixed

effects models, asymptotically the degrees of freedom of

the Chi square distribution should be equal to the number

of estimated parameters [9], and thus the bootstrap dOFV

distribution should overlay the theoretical dOFV distribu-

tion. However for NLMEM the exact degrees of freedom is

unknown. It could be equal or inferior to the number of

estimated parameters, notably due to the estimation of

random effects and other bounded parameters, which may

not account for full degrees of freedom. Other factors

influencing the dOFV distribution may be properties of the

estimation method (e.g. first or second-order approxima-

tions of the likelihood [10]) and the presence of model

misspecification. Because the true degrees of freedom is

unknown, the bootstrap dOFV distribution is not neces-

sarily expected to collapse to the theoretical dOFV distri-

bution when the uncertainty is appropriate. In the absence

of model misspecification, it is however expected to col-

lapse to the dOFV distribution obtained by stochastic

simulations and estimations (SSE, as described below). The

SSE dOFV distribution takes all model properties such as

the presence of random effects, boundaries, or the esti-

mation method into account, and thus represents the

expected dOFV distribution in the absence of model mis-

specification. The SSE dOFV distribution was computed

for the purpose of evaluating the proposed diagnostic, but it

is important to note that it is not part of the diagnostic in

practice due to its high computational burden. Instead, it is

computed here to evaluate whether the theoretical distri-

bution is a good enough surrogate for the SSE dOFV
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distribution for the investigated NLMEM. The SSE dOFV

distribution is obtained as follows:

SSE dOFV distribution

NSSE = 1000 datasets are simulated based on the given

model, with simulation parameters equal to the parameters

P̂D estimated on the original data. For each simulated

dataset, two OFVs are computed: the OFV obtained by

estimating model parameters on the simulated dataset

(using the simulation parameters as initial estimates in

$THETA, $OMEGA and $SIGMA and setting MAX-

EVAL = 9999 in $EST), and the OFV obtained by eval-

uating the simulation parameters on the simulated dataset

(using the simulation parameters as initial estimates in

$THETA, $OMEGA and $SIGMA and setting MAX-

EVAL = 0 in $EST). A dOFV is then computed for each

dataset as the difference between the second and the first

OFV. One thus obtains NSSE SSE dOFVs (Eq. 3).

dOFVSSEN ¼ OFVP̂SSEN ;SSEN
� OFVP̂D;SSEN

ð3Þ

dOFVSSEN is the N-th SSE dOFV. The first index of the

OFV corresponds to the parameter vector used, and the

second to the dataset the parameter vector is estimated

(MAXEVAL = 9999 in NONMEM) or evaluated (MAX-

EVAL = 0) on. P̂SSEN is the parameter vector estimated on

the N-th SSE dataset, and P̂D is the parameter vector

estimated on the original dataset D.

The dOFV diagnostic assesses whether a given uncer-

tainty method is appropriate for a given dataset and model:

the uncertainty is considered appropriate if its dOFV dis-

tribution is at or below the theoretical distribution. In

addition, in this work we evaluated whether using the

theoretical dOFV distribution as a surrogate for the SSE

distribution was appropriate.

The adequacy of parameter uncertainty obtained by

bootstrap was evaluated based on two real data examples and

two simulation examples using the new dOFV distribution

diagnostic as well as other parameter distribution metrics.

For the real data examples, bootstrap dOFV distribu-

tions were assessed for (i) the original dataset, (ii) 10

datasets simulated with the final model and parameters

estimates using the original design, and (iii) 10 datasets

simulated with the final model and parameters estimates

using the original design but with an 8-fold increase in

the number of individuals. From these investigations both

the influence of dataset size (original size for i and ii,

increased size for iii) and model misspecification (po-

tential misspecification for i, no misspecification for ii and

iii) on bootstrap uncertainty adequacy could be assessed.

SSE and theoretical dOFV distributions were assessed for

all scenarios. Note that SSE dOFV distributions are

identical for i and ii, and that theoretical dOFV distri-

butions are identical for i, ii and iii.

For the simulation examples, bootstrap dOFV distribu-

tions were assessed for 100 simulated datasets for each

dataset size. SSE and theoretical dOFV distributions were

also assessed. The adequacy of parameter uncertainty was

further evaluated based on parameter CI, using parameter

CI obtained from the SSE (using 1000 samples) as the

reference. Coverage at the 90 % level was investigated for

each parameter by calculating the percentage of datasets

for which the 90 % CI included the true simulation value

for that parameter.

Fig. 1 dOFV distribution plots

for the two real data examples.

Left panels provide bootstrap

dOFV distributions for the real

data (blue), the theoretical

dOFV distribution (green) and

the SSE dOFV distribution

(pink). Middle and right panels

provide bootstrap dOFV

distributions for the simulated

datasets of equal and 8-fold

increased size (colors), as well

as the theoretical dOFV

distribution (black solid line).

Pheno. phenobarbital, Pef.

pefloxacin
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Investigated examples

Table 1 provides a summary of all investigated examples.

Phenobarbital

The phenobarbital dataset [11] consisted of 155 observa-

tions from 59 infants. Phenobarbital pharmacokinetics

(PK) were described by a one-compartment model with

multiple i.v. bolus administration and linear elimination.

The model included seven parameters: clearance (CL) and

volume of distribution (V) with inter-individual variability

(IIV), two covariate relationships (body weight on CL and

V), and additive residual unexplained variability (RUV).

Pefloxacin

The pefloxacin dataset [12] consisted of 337 observations

from 74 critically ill patients. The PK of pefloxacin was

described by a one-compartment model with multiple i.v.

bolus administration and linear elimination. The model

included ten parameters: CL and V with IIV and inter-occa-

sion variability (IOV) with correlations between the vari-

abilities of CL and V within a level, one covariate relationship

(creatinine clearance on CL), and proportional RUV.

Simulation 1

Data was simulated from a one-compartment PK model

with a single i.v. bolus administration of 100 and linear

elimination. The model included five parameters: CL and

V, equal to 1 and each displaying 30 % exponential IIV,

and an additive RUV on the log scale with a standard

deviation of 0.2. Three different dataset sizes were inves-

tigated: 20, 50 and 200 individuals, with four observations

each at 0.25, 0.5, 1 and 2 units post dose.

Simulation 2

Data was simulated from a pharmacodynamic (PD) dose–

response sigmoidal Emax model with baseline. The model

included seven parameters: a baseline (E0) of 10, an

additive maximum effect (EMAX) of 100 with a dose

leading to half the maximum effect (ED50) of 5, a Hill

factor (HILL) of 0.7, 30 % exponential IIV on E0 and

ED50, and a proportional RUV with a standard deviation of

10 %. Three different dataset sizes were investigated: 20,

50 and 200 individuals with four observations each at doses

of 0, 2.5, 5 and 15.

Software

Data simulation and analysis including parameter estima-

tion and evaluation was performed with NONMEM 7.2

[13] using PsN [14] as a modelling environment. The

dOFV diagnostic is fully automated for bootstrap using the

-dOFV option in PsN. Post-processing and graphical output

was performed in Rstudio 0.99.484 with R 3.2.1 [15].

Results

Real data examples

In the two investigated real data examples, theoretical and

SSE dOFV distributions were almost superimposed

whichever dataset size (Fig. 1). Bootstrap dOFV distribu-

tions showed different patterns for different dataset types

(observed vs. simulated data) and sizes.

For the original datasets (left panel of Fig. 1), bootstrap

dOFV distributions deviated clearly from the theoretical

dOFV distributions, with dOFVs consistently higher than

expected from the theoretical distribution. Estimated

degrees of freedom were 4–7 df (i.e. around 65 %) higher

Table 1 Summary of the investigated real data and simulation examples

Example Model Total number

of parameters

Number of random

effect parameters

(proportion)

Number of

individuals

Number of

observations

Number of

observations/

individual

Phenobarbital [11] 1-compartment PK model, multiple

i.v. doses, linear elimination

7 3 (0.43) 59, 472a 155, 1240a 2.6

Pefloxacin [12] 1-compartment PK model, multiple

i.v. doses, linear elimination

10 7 (0.70) 74, 592a 337, 2696a 4.6

Simulation 1 (PK) 1-compartment PK model, single i.v.

dose, linear elimination

5 3 (0.60) 20, 50, 200 80, 200, 800 4

Simulation 2 (PD) Emax PD model with baseline 7 3 (0.43) 20, 50, 200 80, 200, 800 4

PK pharmacokinetic, PD pharmacodynamic, i.v. intravenous
a Simulated data (8-fold increase in the number of individuals compared to the original dataset)
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than their reference, at 11.4 and 16.5 instead of 7 and 10 for

phenobarbital and pefloxacin, respectively (Table 2).

For the simulated datasets of equal size (middle panel of

Fig. 1), bootstrap dOFV distributions also deviated from

the theoretical dOFV distributions, although the extent of

deviation was reduced. The median degrees of freedom

was 8.8 instead of 7 for phenobarbital (i.e. around 26 %

higher) and 11.3 instead of 10 for pefloxacin (i.e. around

13 % higher). Differences in degrees of freedom between

datasets were high, with degrees of freedom spanning

5.5–7.5 df.

For the simulated datasets of eight-time increased size

(right panel of Fig. 1), bootstrap dOFV distributions were

much closer to the theoretical dOFV distributions: the

median degrees of freedom was 7.4 instead of 7 for phe-

nobarbital (i.e. around 6 % higher) and exactly 10 for

pefloxacin (i.e. no increase). Differences in degrees of

freedom between datasets were less marked than with

datasets of equal size, with degrees of freedom spanning

1–2 df.

Simulation examples

As for the real data examples, theoretical and SSE dOFV

distributions were almost superimposed whichever dataset

size (Fig. 2), and bootstrap dOFV distributions showed

different patterns for different dataset sizes. Bootstrap

dOFV distributions behaved similarly for the two simula-

tion examples.

The range of bootstrap dOFV distributions decreased

with increasing dataset size, and approached more and

more the theoretical dOFV distribution. For the smallest

dataset size of 20 patients (left panel of Fig. 2), the mean

bootstrap degrees of freedom was 25 % higher than the

theoretical for the PK example and 20 % higher for the PD

example (Table 2). With 50 patients (middle panel of

Fig. 2), discrepancies were reduced to 10 % increases over

the theoretical for both examples. At the highest sample

size of 200 patients (right panel of Fig. 2), discrepancies

had almost disappeared. As previously observed with the

real data examples, differences in degrees of freedom

between datasets also decreased with increasing dataset

size. Ranges decreased from 6 to 1.5 df in the PK example

and from 8 to 2 df in the PD example, approximately

halving at each dataset size.

For the simulation examples, further properties of the

bootstrap could be investigated as the true uncertainty

distribution could be estimated from the simulations. Fig-

ure 3 displays the 90 % coverage of model parameters for

each dataset size. Trends with increasing dataset size were

similar between the two examples: bootstrap coverage was

always satisfactory for fixed effects, but deviations from

the expected coverage were observed for random effects at

the lowest sample size and to a lesser extent at the middle

sample size. Coverage of IIV and RUV were between 0.70

and 0.80 instead of 0.90 for datasets with 20 patients in

both examples. With 50 patients, coverage increased to

0.85 except for the RUV of the PK example, which peaked

at 0.95. Coverage of all random effects was close to the

expected level with 200 patients.

Figure 4 displays the outer bounds of increasing CI

levels of the IIV parameters of the PD example based on

the bootstrap and on the reference SSE for each dataset

size. Values were normalized by the true simulation value

of each parameter. Discrepancies between the bootstrap

and the reference CI bounds were apparent at low sample

sizes, but disappeared as sample size increased to 50

patients for IIV E0 or to 200 patients for IIV ED50. With

20 patients, bootstrap underestimated the uncertainty of all

IIV parameters. Both bounds were underestimated, mean-

ing that the CI were not only too narrow but also shifted

down. Medians of the bootstrap distributions (i.e. CI = 0)

were 20–25 % lower than the true simulation parameter.

Some downward bias was also observed for the medians of

the SSE. Bootstrap upper bounds were consistently below

the reference bounds, with differences increasing with

increasing CI: the upper bound of the 95 % CI of IIV E0

was 35 % above the simulation value with bootstrap, ver-

sus 70 % with the reference. For IIV ED50, this value was

60 % with bootstrap instead of 120 % with the reference.

Table 2 Degrees of freedom of

the dOFV distributions for the

real data and simulation

examples

Real data examples Df Chi square

(theoretical)

Df original Df sim 19

median (range)

Df sim 89

median (range)

Phenobarbital [11] 7 11.4 8.81 (6.86, 14.3) 7.35 (6.45, 8.45)

Pefloxacin [12] 10 16.5 11.3 (8.48, 14.0) 10.0 (9.78, 10.9)

Simulation

examples

Df Chi square

(theoretical)

Df 20-4

median (range)

Df 50-4

median (range)

Df 200-4

median (range)

Simulation 1 (PK) 5 6.25 (4.32, 10.6) 5.48 (4.10, 7.15) 5.07 (4.42, 5.94)

Simulation 2 (PD) 7 8.39 (5.74, 14.4) 7.55 (6.22, 9.93) 7.15 (6.24, 8.08)
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Lower bounds were also below the reference bounds, but

differences decreased with increasing CI and were less

marked. For IIV E0, the lower bound of the 95 % CI was

60 % below the simulation value with bootstrap, versus

55 % with the reference. For IIV E0, the lower bound of

the bootstrap 90 % CI converged to the lower bound of the

reference, 80 % below the simulation value. With 50

patients, bootstrap and reference CI bounds for IIV E0

overlapped at all CI and medians were at the true simula-

tion value. This was not the case for IIV ED50, which

displayed similar patterns with 50 patients than with 20

patients, even if differences between the bootstrap and the

reference were less marked. With 200 patients, bootstrap

and reference CI bounds overlapped for all CI for both IIV.

Discussion

The dOFV diagnostic enabled to assess whether a given

uncertainty estimate could be considered adequate. When it

was not, i.e. when the dOFV distribution of the bootstrap

was above the theoretical distribution, it translated into

suboptimal coverage of the random effects, for which both

the medians and the CI widths were underestimated.

Fig. 2 dOFV distribution plots

for the two simulation

examples. Grey shaded areas

represent the range of dOFV

curves for n = 100 bootstraps,

with the theoretical dOFV

distribution superimposed (solid

black line). One panel

corresponds to one simulation

example and dataset size. Sim

simulation, pat. patients

Fig. 3 90 % coverage for all

parameters of the two

simulation examples. One panel

corresponds to one simulation

example and dataset size. CL

clearance, V volume of

distribution, IIV inter-individual

variability, RUV residual

unexplained variability, E0

baseline, EMAX maximum

effect, ED50 dose leading to

half the maximum effect, HILL

Hill factor, Sim simulation, pat.

patients
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Difference of about 1.5 df led to an underestimation of the

90 % coverage by 5–20 %, and to underestimations of

medians and 90 % CI widths by about 20 %. Diagnosing a

priori in which cases bootstrap is inadequate based on

sample size proved inappropriate for NLMEM, as will be

discussed below. An a posteriori method, based on

parameter-specific ‘‘effective’’ sample sizes, will be pro-

posed. In the investigated examples, effective sample sizes

greater than 45 individuals led to good coverage and CI,

and could be used to identify parameters which uncertainty

was not well described by the bootstrap. Depending on the

purpose of the modelling, this could for example be

addressed by using a different uncertainty method less

sensitive to sample size, such as SIR [5].

Development and use of the dOFV distribution

diagnostic

To the authors’ knowledge, this is the only currently

available diagnostic of this kind for NLMEM, and poten-

tially for other types of models as well. The dOFV diag-

nostic is a global test: as the dOFV distributions do not

differentiate between parameters, it does not indicate for

which parameter(s) the uncertainty is not well described.

The diagnostic was exemplified on bootstrap, but it can be

applied to any method for assessing parameter uncertainty,

provided parameter vectors can be drawn from the pro-

posed uncertainty distribution (which is not the case for

likelihood profiling for example). The developed diagnos-

tic is based on evaluating the likelihood of the data at hand

for a number of parameter vectors drawn from the pro-

posed uncertainty. If the proposed uncertainty is the true

uncertainty, differences between these likelihoods and the

likelihood of the final parameter estimates, summarized by

the dOFV distribution, are expected to follow a Chi square

distribution. Given the importance of parameter uncertainty

in decision-making, there is no reason why scrutiny

towards uncertainty estimates should be ignored. Along

with other efforts towards a standardization of model

building and evaluation procedures [16], the dOFV diag-

nostic should be an integral part of model assessment. This

is particularly true as the performance of the different

methods to obtain estimates of parameter uncertainty

remains unclear. The methods themselves are not stan-

dardized: bootstrap for example can be done in many dif-

ferent ways [17], both in the computation of the

bootstrapped datasets (nonparametric and parametrics

methods, stratification strategy) and in the computation of

the resulting uncertainty (for example handling of sam-

ples for which minimization was not successful, bias-cor-

rection [18], Winsorization [19]). Recent work based on

extensive simulations [20, 21] has investigated the per-

formance of the covariance matrix and different bootstrap

methods and provided some guidance towards in which

settings to use which method. However, simulation studies

will never be able to cover the full space of possible

designs, models and methods. A diagnostic for assessing

the appropriateness of a particular method with a particular

model and data is thus greatly needed.

Limitations of the dOFV distribution diagnostic

Two assumptions were made when using the theoretical

distribution as reference distribution in the dOFV

Fig. 4 Comparative CI bounds

between the bootstrap and the

reference (SSE) at different

confidence levels for the IIV

parameters of the second

simulation example. Values

were normalized by the true

simulation value. For the

bootstrap, median values over

all simulation are displayed. IIV

inter-individual variability, E0

baseline, EMAX maximum

effect, ED50 dose leading to

half the maximum effect, CI

confidence level, pat. patients,

obs. observations

604 J Pharmacokinet Pharmacodyn (2016) 43:597–608

123



diagnostic: that the dOFV distribution follows a Chi square

distribution at the investigated sample sizes, and that the

degrees of freedom of this distribution corresponds to the

total number of estimated parameters for NLMEM. These

assumptions were tested by computing the SSE dOFV

distributions, which correspond to the empirical dOFV

distributions obtained by fitting the model on data simu-

lated from that model. In all investigated examples, the

SSE dOFV distributions did not differ from the theoretical

dOFV distributions and followed a Chi square distribution

with degrees of freedom equal to the total number of

estimated parameters. This allowed the use of the theo-

retical distribution in the investigated settings. Generaliz-

ing these results, it was expected that the dOFV distribution

would follow a Chi square distribution at commonly used

sample sizes in NLMEM. However, it remains question-

able whether the degrees of freedom would always be

equal to the number of estimated parameters, in particular

under higher nonlinearity or additional parameter con-

straints. In any case, the degrees of freedom can only be at

or below the number of parameters, so any dOFV distri-

bution above the theoretical distribution is known to be a

suboptimal description of parameter uncertainty. If the

dOFV distribution of a proposed uncertainty were to be

below the theoretical, the authors recommend performing

an SSE-type exercise in order to obtain a more precise

estimate of the expected dOFV distribution. No formal test

such as the Kolmogorov–Smirnoff test was performed to

assess whether the dOFV distribution was significantly

different than the theoretical distribution. Such a test was

not considered for two reasons. First, it was uncertain to

which extent the theoretical distribution would correspond

to the true empirical distribution for all NLMEM. Second,

the degrees of freedom was judged to provide more

information on the extent of the inadequacy than a yes/no

answer from a formal hypothesis test.

Bootstrap adequacy in real data examples

In addition to the development of the dOFV diagnostic, this

work also provided insight on the performance of case

bootstrap in a number of scenarios. Bootstrap proved

unsuitable for the real data examples investigated. The

estimated degrees of freedom of the dOFV distributions

were more than 1.5-fold their expected value. The data

contained moderate numbers of individuals (59–74), but

few observations per individual as well as unbalanced

designs. Regarding the models, their structures were simple

(linear processes and well informed covariate relation-

ships) but featured many random effects, especially in the

pefloxacin example. It is important to note that no strati-

fication was performed here. Stratification on the number

of observations per individual could have been beneficial in

both examples, as the number of observations per patient

spanned rather heterogeneous ranges (between 1 and 6 for

phenobarbital and between 3 and 9 for pefloxacin). How-

ever, the number of strata to use would not have been

straightforward and would potentially have led to too small

subgroups. Stratification on other variables such as

covariates included in the model or dose were not con-

sidered here as their distribution was homogenous or

irrelevant. In the pefloxacin example, 5 % of the bootstrap

runs failed and 50 % had one or more unestimable variance

parameters, highlighting further limitations of the bootstrap

when minimization is problematic. The dOFV distribution

using only successful runs without boundary issues differed

from the presented distribution, which included all runs

(data not shown). Excluding problematic runs lead to a

distribution closer to the Chi square distribution, with a

degrees of freedom of 14 instead of 16.5. CI were also

modified, confirming that the way bootstrap runs are han-

dled can influence the results. Lastly, simulations based on

the published models and realized designs were performed

to test the influence of model misspecification in the

observed inadequacy of the bootstrap: inadequacy was still

apparent, but to a lesser extent. These results confirmed

that the performed bootstrap was suboptimal, but showed

that part of the discrepancy seen with the real data was due

to model misspecification.

Bootstrap adequacy in simulation examples

Compared to the real data examples, data in the simulation

examples was richer and more balanced, with the number

of individuals varying from 20 to 200. The PK model was

similar to the real data example, but the PD model, a sig-

moid Emax function, contained more nonlinear parameters.

Both examples showed similar increases in degrees of

freedom at low sample size as the simulations based on the

real data examples, i.e. increases around 25 % over the

expected value. The simulation examples enabled to link

the global adequacy of the uncertainty estimated by the

bootstrap (over all parameters), as measured by changes in

dOFV distribution, to the local adequacy of this uncertainty

(for each parameter separately). The observed inadequacy

of the bootstrap at low sample size could thus be attributed

to a suboptimal estimation of the uncertainty of the random

effects parameters only, as shown by less datasets than

expected including the true simulation value (i.e. subopti-

mal coverage). Focusing on these parameters, it became

apparent that at low sample sizes bootstrap CI around

random effects were decreased as well as shifted down-

wards, underestimating both the actual values of the ran-

dom effect and their uncertainty, especially in the upper

bounds.
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Difficulty of defining sample sizes sufficient

for the bootstrap to be adequate

The performance of case bootstrap is expected to depend

on the number of ‘‘cases’’, i.e. individuals in typical

NLMEM settings, which is why the simulations investi-

gated the impact of increasing number of individuals.

However, the investigated examples highlighted the com-

plexity of defining an appropriate dataset size for bootstrap:

similar changes in degrees of freedom were observed for

datasets with 20 individuals as for datasets with 60–70

individuals. The performance of bootstrap thus does not

only depend on the number of cases. It also depends upon

the homogeneity of the information content between the

cases, or an appropriate stratification strategy under

heterogeneity, so as to preserve the overall information

content of the bootstrapped dataset. However, stratification

decreases the effective sample size and introduces vari-

ability. In addition, the definition of strata may indeed not

be straightforward in many clinical settings where design

parameters are very different between individuals, and may

thus lead to different results under different stratifications.

Another issue for mixed models is that the information

contained in an individual about a parameter does not only

depend on the design, but also on the individual’s param-

eter value. Stratification at the individual parameter level is

however highly problematic. Lastly, the information con-

tent of the data always needs to be related to the size and

complexity of the model. Typically, richer datasets lead to

more complex models and thus the effective information

content may actually be similar between datasets of various

sizes for models of various sizes. In addition, the different

parameters of nonlinear models are not informed equally

by a given design, and thus in theory the adequacy of

uncertainty estimates should be defined at the parameter

level.

Using parameter-specific ‘‘effective’’ sample sizes

to better identify when bootstrap is adequate

Instead of trying to assess the adequacy of bootstrap based

on the number of individuals, one could try to quantify the

information content for each parameter separately, taking

all these factors into account. A possibility for doing so

could be to calculate an effective sample size for each

parameter. The effective sample size represents how many

individuals with perfect information the estimated uncer-

tainty for one parameter corresponds to. Calculating the

effective sample size can be done for fixed and random

effects using the formulas for standard errors of means

(Eq. 4) and variances (Eq. 5). In the simple case of a model

where all fixed effects are associated with one random

effect, the effective sample size N can then be calculated as

follows:

SE �Xð Þ ¼ SD Xð Þ
ffiffiffiffi

N
p ! N ¼ VAR Xð Þ

VAR �Xð Þ ð4Þ

where �X is the estimated fixed effect for the population, X

is the vector of the individual parameters, SDðXÞ is the

standard deviation of the individual parameters, N is the

effective sample size.VARðXÞ corresponds to the variance

of the random effect associated with �X and SEð �XÞ to the

estimate of the standard error of the fixed effect.

SE VARðXÞð Þ ¼ VAR Xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N � 1

r

! N

¼ 2
VAR Xð Þ

SE VAR Xð Þð Þ

� �2

þ 1

¼ 2
1

RSE VAR Xð Þð Þ

� �2

þ 1 ð5Þ

where VARðXÞ is the estimated random effect variance,

SE VARðXÞð Þ its estimated standard error, N is the effective

sample size, SD Xð Þ is the estimated random effect standard

deviation and RSE VAR Xð Þð Þ is the relative standard error

of VAR Xð Þ.
The effective sample size for fixed effects and inter-in-

dividual variances is expected to be at maximum the total

number of individuals in the dataset. For inter-occasion

variances, the effective sample size is at maximum the total

number of occasions (i.e. the sum of the number of occa-

sions per individual) minus the total number of individuals,

as random effects related to inter-individual variances need

to be differentiated from those related to inter-occasion

variances. Similarly, for residual error variances, N can be

as high as the total number of observations minus the

number of individuals and minus the sum of the number of

occasions per individual. Effective sample sizes were cal-

culated for the real and simulated data examples and are

displayed in Fig. 5. For phenobarbital, the number of indi-

viduals with perfect information was below 6 for CL, V and

IIV CL but at 30 for IIV V. For pefloxacin, the effective

sample size was around 30 for fixed effects, between 15 and

20 for inter-individual variances and very low for IOV V.

The effective sample size for the RUV was close to the total

number of individuals in both real examples. Such low

effective sample sizes support the fact that bootstrap was not

appropriate in these examples. Effective sample sizes with

simulated PK data ranged from 10–15 with 20 patients, to

35–45 with 50 patients and to 110–175 with 200 patients.

They were relatively homogenous between parameters. In

the PD example, effective sample sizes were lower and more

heterogeneous. ED50 presented effective sample sizes close

to 0 due to extreme values in the bootstrap driving the

standard error at low sample sizes to very high values
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[SE(ED50) = 1020 for 20 patients, 40 000 for 50 patients vs.

1 for 200 patients]. Even with 200 patients the effective

sample size was low as the standard error was still much

higher than the IIV. For the remaining parameters, effective

sample sizes were higher: N was close to the total number of

individuals for E0, between half and the total number of

individuals for IIV and less than the number of observations

minus the number of individuals for RUV. If one wants to

establish a cut-off for when the bootstrap is valid, these

results could indicate that the minimum number of effective

individuals needs to be at least 45, which is the maximum N

observed in all examples for which bootstrap was not con-

sidered appropriate (real data and simulations below 200

patients). This is a valuable result, however it is important to

point out that the concept of effective sample size was

developed in an exploratory manner here and thus more

investigations are needed if it is to become an established

diagnostic. For example, the influence of fixed effects not

related to IIV, for which N cannot be calculated, was not

investigated. The correlation of N with shrinkage could be

of interest in order to use shrinkage as an alternative,

potentially more straightforward way to estimate effective

sample sizes. A high correlation between these two metrics,

with high shrinkage corresponding to low N, was observed

in the investigated example, but the establishment of a

quantitative relationship was not attempted. The impact of

covariate effects on the N of corresponding fixed effects

may also need to be investigated: for the phenobarbital

example, N for CL and V increased 6-fold when fixing the

covariate effect instead of estimating it. Lastly, the precision

around the calculated N was not quantified in this work. N

was observed to be sometimes quite variable between sim-

ulated datasets, which may need to be considered if taking

decisions based on the calculated effective sample size.

Conclusion

A diagnostic based on dOFV distributions was developed and

is recommended to be routinely used to assess the appropri-

ateness of a given parameter uncertainty distribution. A

bootstrap dOFV distribution higher than the theoretical dis-

tribution translated into an underestimation of the medians and

the CI widths of the random effects. Case bootstrap proved

unsuitable for datasets for sample sizes up to 70 individuals,

but sample size was not deemed a good predictor of bootstrap

appropriateness. Parameter-specific ‘‘effective’’ sample sizes,

showing good bootstrap results above 45 effective individuals,

could be used instead, but require more investigation.
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