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A B S T R A C T   

Pediatric brain imaging holds significant promise for understanding neurodevelopment. However, the require
ment to remain still inside a noisy, enclosed scanner remains a challenge. Verbal or visual descriptions of the 
process, and/or practice in MRI simulators are the norm in preparing children. Yet, the factors predictive of 
successfully obtaining neuroimaging data remain unclear. We examined data from 250 children (6–12 years, 197 
males) with autism and/or attention-deficit/hyperactivity disorder. Children completed systematic MRI simu
lator training aimed to habituate to the scanner environment and minimize head motion. An MRI session 
comprised multiple structural, resting-state, task and diffusion scans. Of the 201 children passing simulator 
training and attempting scanning, nearly all (94%) successfully completed the first structural scan in the 
sequence, and 88% also completed the following functional scan. The number of successful scans decreased as 
the sequence progressed. Multivariate analyses revealed that age was the strongest predictor of successful scans 
in the session, with younger children having lower success rates. After age, sensorimotor atypicalities contributed 
most to prediction. Results provide insights on factors to consider in designing pediatric brain imaging protocols.   

1. Introduction 

Pediatric brain imaging has made significant advances in non- 
invasively capturing in vivo the brain organization in typical and 
atypical youth using MRI (Oldehinkel et al., 2013; Craddock et al., 2013; 
Di Martino et al., 2014). Although promising, progress remains chal
lenged by artifacts, most notably, head motion. Even submillimeter head 
motion has been shown to introduce false findings that can affect 
between-group analyses and replicability (Yuan et al., 2009; Power 
et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013; Yendiki et al., 
2014; Zuo et al., 2014; Alexander et al., 2017; Oldham et al., 2020). 
Such artifacts are particularly notable for children with neuro
developmental conditions, such as autism spectrum disorder (ASD) or 
attention- deficit/hyperactivity disorder (ADHD) (Yerys et al., 2009). As 
a result, continued progress depends on the need to collect high quality 
imaging data, which can only be obtained when children keep their 

heads virtually motionless when being scanned in a given session. 
Multiple methods for addressing motion artifacts post-scan exist, but 

they inevitably limit both data and sample size, and thus degrees of 
freedom (Yan et al., 2013; Bright et al., 2017; Ciric et al., 2017; Sat
terthwaite et al., 2019; Eklund et al., 2020). As a result, the prevailing 
wisdom remains – the best way to handle motion is to prevent it (Ai 
et al., 2020). In this regard, efforts to minimize motion during MRI 
scanning such as passive movie viewing (Vanderwal et al., 2015), 
real-time motion monitoring and/or feedback (Dosenbach et al., 2017; 
Greene et al., 2018; Krause et al., 2019), prospective motion correction 
(Ai et al., 2020), and head stabilizers (Power et al., 2019) have been 
reported to be effective. However, they may not all apply across the 
broad range of MRI modalities and specialized sequences, the list of 
which continues to emerge (e.g., fMRI, diffusion MRI, MR spectroscopy, 
quantitative T1-weighted/T2 mapping, arterial spin labeling). Solutions 
that can impact the broad range of brain imaging modalities are needed, 
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as studies increasingly seek to obtain multiple structural and functional 
metrics to support biomarker discovery and/or delineate pathophysio
logical mechanisms. Similarly, in clinical settings, multimodal imaging 
is commonly used to increase diagnostic precision and guide treatment 
such as pre-surgical MRI for epilepsy or tumor removals (Jung and Lee, 
2010). Additionally, the tolerability and utility of emerging motion 
prevention approaches during scan sessions for more challenging pop
ulations, such as those with neurodevelopmental conditions, have yet to 
be comprehensively established. 

To bypass these challenges, preparing children before scanning re
mains a critical requisite for pediatric brain imaging. Numerous studies 
have shown that preparation improves compliance and reduces anxiety 
related to the unfamiliar MRI scan environment (Gabrielsen et al., 2018; 
Ashmore et al., 2019). Preparation protocols have included showing 

child friendly books or videos (Barnea-Goraly et al., 2014), playing with 
MRI toys (Cavarocchi et al., 2019), immersion in virtual reality (Ash
more et al., 2019; Garcia-Palacios et al., 2007), or practicing in an MRI 
simulator or “mock scanner.” MRI simulators are widely used and, un
like most other preparation methods, also allow direct training for 
motion control. As summarized in Table 1, to date, 12 studies using MRI 
scan simulator training have reported their utility in obtaining good 
quality data in one or two MRI brain scans collecting one (7 studies) or 
more (5 studies) MRI modalities in one session (Rosenberg et al., 1997; 
Epstein et al., 2007; De Bie et al., 2010; Barnea-Goraly et al., 2014; 
Theys et al., 2014; Nordahl et al., 2016; Gabrielsen et al., 2018; Thieba 
et al., 2018; Sandbank and Cascio, 2019; Horien et al., 2020; Pua et al., 
2020; Yamada et al., 2020). However, factors predicting successful 
completion of multiple scans in an MRI session remain largely unknown. 

Table 1 
Overview of MRI simulator training studies in children.   

Sample Simulation training MRI protocol and outcomes 

Author, Year na Age (M 
± SD) 
[range]e 

DX IQ (M ± SD)e Head 
motion 
track 

Duration 
(min) 

Repeated 
visits 

Completion 
(%) 

MRI 
session 

MRI QC 
(quantitative) 

MRI success 
rateh 

Rosenberg 
et al., 1997 

32 12 ± 3.7 
[6–17] 

OCD 
(16), TD 
(16) 

– N 15–30 N 100% T1 (13’) N T1: 100% 

Epstein et al., 
2007 

23 17.3 ±
1.2 

ADHD 
(12), TD 
(11) 

– Y 30 N 100% T-fMRI 
(30’) 

Y T-fMRI: 89% 

De Bie et al., 
2010 

90 6.5 ±
3.2. 
[3–14] 

TD – N 30–60 Y 94% T1, T-fMRI 
(20’–45’) 

Y T1: 90%, T- 
fMRI: 70% 

Barnea-Goraly 
et al., 2014 

226 6.7 ± 1.7 
[4–10] 

TD – N 30–60 N 98% T1, DTI 
(25’) 

Y T1: 92%, DTI: 
78% 

Theys et al., 
2014 

76 6.2 ±
0.3. 
[6–7] 

TD – N 30–45 N 100% DTI, R- 
fMRI (30’) 

Y DTI: 79%, R- 
fMRI: 82% 

Nordahl et al., 
2016 

17 11 ± 1.4 
[9–13] 

ASD 67.8 ± 24.2 Y < 120 Y 100% T1, DTI 
(15’) 

Y T1:100%, DTI: 
94% 

Gabrielsen 
et al., 2018 

56 12.2 ± 3 
[7–17] 

ASD 
(37), TD 
(19) 

LVCP: 54 ±
18, HVCP: 
107 ± 14, 
TC: 112 ± 13 

N – N – T1, R- 
fMRI (20’) 

Y R-fMRI: 100% 

Thieba et al., 
2018 

20 3.3 ± 0.7 
[2–5] 

TD f N 30–40 N 100% DTI, T1, 
T2 (15’)g 

Y 40% passed 
all, 50% 
passed at least 
one scan 

Sandbank and 
Cascio, 2019 

2 C1:6, 
C2:8 

ASD C1:65, 
C2:123 

Y 60’ Y 100% DTI (20’) N NR 

Pua et al., 2020 12b 9.9 ± 2.2 
[7–13] 

ASD 
(9), TD 
(3) 

– N 30 N 100% T1, R- 
fMRI (45’) 

Y fMRI: 96% 

Yamada et al., 
2020 

241 [4–17] TD 
(102), 
NDD 
(139)d 

– N 40–60 N 99% T2, DTI, R- 
fMRI 
(30–60’) 

Y R-fMRI 98% 
TD; 94% NDD 

Horien et al., 
2020 

37c 11.2 ±
2.5 

ASD 
(5), TD 
(32) 

Formal: 112 
± 14, 
Informal: 
113 ± 13 

Y Formal: 
45–50’; 
Informal: 
15’ 

N Formal:86%; 
Informal: 
100% 

T-fMRI, R- 
fMRI (60’) 

Y fMRI > 0.1 
mm motion =
71% informal 
vs. 32% 
formal group 

Abbreviations: ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; DD, developmental disability, DX, diagnosis; IQ, intelligence quotient, 
n, number of subjects; N, no; TD, typically developing; Y, yes. 

a Number of children attempting MRI simulator training protocol. 
b n = 6 pairs of monozygotic twins concordant (3 pairs) or discordant (3 pairs) for ASD. 
c Included a sample of 21 children (n = 14 with a formal MRI simulator training, 7 without) and another sample of 16 children (all undergoing a formal training and 

used as a replication sample). 
d NDD included congenital genetic syndromes, ADHD, ASD, mild intellectual disability with unknown etiology, other behavioral and developmental disorders. 
e Mean (M) and standard deviation (SD) and/or range are provided as available/derivable. 
f Used the Developmental NEuroPSYchological Assessment (NEPSY) (Korkman et al., 2007) and the Bayley Scales of Infant Development instead of standard IQ 

scores (Lennon et al., 2008). 
g Resting-state fMRI (R-fMRI) was also acquired as time permitted but not analyzed. 
h The criteria for MRI data success varied by study. They are largely based on visual inspection for T1 except for Nordahl that used quantitative metrics of motion for 

functional MRI and DTI. 
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Understanding the specific role of predictive features can guide the 
development of child-specific protocols for MRI data collection, as well 
as MRI simulation training. These insights will be particularly relevant 
for children with neurodevelopmental conditions. 

Eight of the 12 studies summarized in Table 1 included children with 
neurodevelopmental conditions. Most of them have not characterized 
their samples in regard to behavioral, clinical or cognitive features. Of 
three notable exceptions (Nordahl et al., 2016; Thieba et al., 2018; 
Sandbank and Cascio, 2019), only one examined the relation between 
children’s characteristics and MRI success (Thieba et al., 2018). Spe
cifically, in 20 typically developing preschoolers children completing 
three structural MRI scans Thieba and colleagues found that children 
with higher language and cognitive skills were more likely to have 
successful scans following training (Thieba et al., 2018). Whether these 
findings extend to a wider age range and to children with neuro
developmental conditions remains unexamined. Further, while 62% of 
the neuroimaging studies reviewed in Table 1 focused on either ASD or 
ADHD and/or other neurodevelopmental conditions, none has exam
ined children with ASD and with ADHD in the same study, despite 
accumulating evidence of their frequent co-occurrence (Reiersen et al., 
2008; Simonoff et al., 2008; Rommelse et al., 2010; Grzadzinski et al., 
2011; Leitner, 2014; Kern et al., 2015; Joshi et al., 2017). 

With these considerations in mind, here we report our effort to assess 
the role of a range of symptom domains in predicting completion of 
multiple scans in one session across N = 250 verbally fluent school-age 
children with ASD and/or ADHD. Besides child characteristics, we also 
examined the contribution of MRI simulator training performance. In 
prior literature MRI simulator training protocols have varied in terms of 
equipment, duration, frequency of the training sessions, as well as spe
cific objectives. Specifically, while all prior studies aimed to acclimate 
children to the MRI environment by using in-house or commercial MRI 
simulators, some explicitly included training to decrease in-scanner 
motion (Nordahl et al., 2016; Sandbank and Cascio, 2019; Horien 
et al., 2020). Such motion training has been accomplished using verbal 
or visual feedback following qualitative direct observation or based on 
quantitative data from motion sensors. To date, only three studies used 
motion sensors to train either typically developing or children with ASD, 
albeit in small samples (n = 2–19) (Nordahl et al., 2016; Sandbank and 
Cascio, 2019; Horien et al., 2020). Thus, along with the child’s clinical 
characteristics, the present study assessed to what degree motion during 
the MRI simulator training would contribute in predicting successful 
MRI data collection. 

2. Methods 

2.1. Participants 

We examined data from 250 children aged 5.5–11.9 years partici
pating in an ongoing study (NIH R01MH105506) of the neurobiological 
underpinnings of autistic traits in ADHD and/or ASD. Sample recruit
ment and characterization are detailed in the Supplementary methods 
and Guttentag et al. (2021). During the course of the study, the enroll
ment and behavioral assessment site was transferred from the NYU Child 
Study Center, NYU Grossman School of Medicine, to the Child Mind 
Institute (CMI) when the principal investigator (ADM) moved to a new 
position. As detailed below, no demographic, nor clinical differences 
were noted across sites (Supplementary Table 1); nevertheless potential 
batch effects were addressed using the Bayesian method combating 
batch effects, ComBat (Johnson et al., 2006; Fortin et al., 2017). The 
study protocol was approved by the institutional review boards of NYU 
Grossman School of Medicine, and Advarra, Inc at CMI. Written parent 
informed consent and verbal assent were obtained for all participants 
and written assent was also collected for children older than seven years. 
All data were collected prior to the COVID-19 pandemic. 

2.2. MRI simulator training protocol 

The MRI simulator training session aimed to familiarize participants 
with the MRI scanning environment and protocol while training them to 
minimize head motion in the MRI simulator environment. To this end, 
we used an MRI simulator, a Siemens-32-channel mock head coil with 
mirror to see a screen on the back of the bore used to project the visual 
stimuli, a head motion tracking system, and the corresponding software 
package, all acquired from Psychology Software Tools Inc. (Sharpsburg, 
PA). The head motion tracking system relied on sensor hardware based 
on the Ascension Technology Corporation (now part of Northern Digital 
Inc., Waterloo, ON) Flock of Birds real time motion tracking system. Its 
accuracy is specified as 1.8 mm root-mean-square (RMS) and 0.5◦ RMS; 
we confirmed spatial resolution was approximately 0.77 mm and 0.2◦ at 
a sampling rate of approximately 9 Hz. Similar MRI simulator equip
ment from the same vendor was used at both enrolling sites. 

For all participants, an MRI simulator training session occurred at the 
first in-person diagnostic visit. The training consisted of five increasingly 
demanding steps during which children were asked to keep their head 
still. As illustrated in Fig. 1, the training protocol began with a review of 
two social stories with text and pictures (Gray, 2000). The first one 
described the MRI scan environment and requirements; the second one 
described the MRI simulator training. This first step was followed by the 
child laying on the bed of the MRI simulator while listening to 30 s of 
scanner gradient noises corresponding to the multimodal MRI sequences 
used in the real MRI session. This allowed the child to begin acclimation 
to the mock scan environment and scanner noise. Then, participants 
wore the motion sensor with a band on their forehead, while the mock 
Siemens 32 channel head coil and mirror were positioned. Afterwards, 
when the child agreed to do so, the MRI table was slowly moved inside 
the simulator bore. Once inside the MRI simulator, children practiced 
controlling head motion for increasing durations of time using different 
audio visual stimuli and feedback. Each step was increasingly similar to 
a real MRI session by either increasing the time children were asked to 
stay still (from 2 to 6 min), and/or by removing the target visual feed
back used in response to forehead movements greater than 1.5 mm, the 
minimum motion detectable by the sensor. During the first and least 
demanding step, children completed a target game for two minutes. 
During that game they were asked to keep a white dot, representing the 
position of their forehead, in the center of a target projected on the 
screen. During the last two and most realistic steps, children watched a 
black screen with a centered white cross, reproducing the stimulus used 
for the R-fMRI scan in the real MRI session. The child moved from one 
step to the next when limited or no motion events > 1.5 mm were 
detected in a given task. Otherwise, each step was repeated until motion 
events > 1.5 mm ceased or became minimal. Once each of the five steps 
was completed successfully, a piece of a virtual puzzle projected on the 
computer screen was awarded. Upon completion of the whole virtual 
puzzle, children chose a toy from a box of rewards. A complete training 
session lasted approximately 30–60 min, including breaks as needed. If 
the child was unable to complete the training protocol in the first ses
sion, they were invited back until they successfully completed it. Only 
children who successfully completed a full MRI simulator training pro
tocol were invited to a real MRI session. 

2.3. MRI protocol 

All MRI images were collected at the NYU Center for Brain Imaging 
on a 3T Siemens Prisma scanner with the Siemens 32-channel head coil 
(Siemens, Erlangen, Germany). The study utilized a multimodal imaging 
protocol consisting of structural T1-weighted (T1w), T2 weighted 
(T2w), functional (rest and task), and diffusion MRI scans (see Box 1 for 
definition of most used MRI scanning terms in the manuscript). MRI scan 
parameters are detailed in Supplementary Table 2. The MRI session 
followed the same order of scan administration, always starting with a 
T1-weighted scan, followed by a set of functional scans alternating rest 
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and task scans, a T2w and a DTI scan completed the session (Fig. 2 and 
Supplementary method). All children were invited and encouraged to 
complete all scans in the sequence until they were no longer able to 
continue. Head motion during the structural and diffusion scans was 
visually monitored through the operator window and via eye tracker 
camera positioned inside the MRI bore. During the functional scans, real 
time motion monitoring was also used. Children unable to complete all 
or some of the MRI scans in the first session were invited back for ‘make- 
up’ sessions, when possible. For consistency, the data analyzed pre
sented here are based on the first MRI session. 

2.4. MRI data quality assurance 

For data quality assurance (Q/A) of the T1-weighted and T2- 
weighted structural scans, images were visually inspected for any mo
tion artifacts or abnormalities, such as blurring, ghosting, or Gibbs 
ringing artifacts and marked as passing Q/A by either one of two visual 
reviewers with excellent inter-rater agreement (see Supplementary 
methods). Rest and task functional images were inspected for major 
signal dropouts or artifacts warranting exclusion. Motion was indexed 
by median framewise displacement (FD) (Jenkinson et al., 2002). 
Resting state fMRI scans with a median FD ≤ 0.2 mm were considered 
passing Q/A. For task fMRI scans, a cutoff of median FD ≤ 0.4 mm was 

used, given the relative robustness of task-related fMRI designs (John
stone et al., 2006; Siegel et al., 2014). Diffusion-weighted images were 
preprocessed with the DTIPrep software package (Oguz et al., 2014). As 
described in Supplementary methods they were considered passing Q/A 
if more than 50% of the gradients collected met our quality criteria. 

2.5. MoTrak sensor data preprocessing 

The recorded MoTrak sensor data were quantized to match the 
sensor’s measured resolution of 0.77 mm and 0.2◦. Similarly, motion 
introduced when re-centering the sensor following subject motion or 
positional drift was also removed. For each child, the mean FD was 
calculated from the motion recorded during the final six minute MRI 
simulator session and used in statistical modeling analyses. When 
comparing recorded motion from those who passed the MRI simulator 
protocol vs. those who failed, the last available motion recording was 
used. If a six minute recording was not available, the longest data section 
available before that was used. 

2.6. Statistical analysis 

2.6.1. Sample characterization 
Groups (i.e., ASD vs. ADHD, passing vs. failing MRI simulator 

Fig. 1. Overview of MRI simulation training 
protocol. First, the examiner and participant 
reviewed two “social stories,” one about the 
upcoming MRI session, the other about the 
“mock scan” training. Second, the child listened 
to 30-s-long multimodal MRI sounds outside the 
MRI simulator. For the 2 and 4 min steps, the 
child played the target game inside the simu
lator during which children were instructed to 
keep a white dot (representing the position of 
their forehead indexed by the motion tracker) 
in the green center of the target. Between the 
two target game steps, a 2-min musical movie 
was played, stopping when head motion 
exceeded 1.5 mm. Two 6-minutes blocks of R- 
fMRI simulations followed.   

Box 1 
Definitions for selected terms most used in this report.  

Terminology most used in the manuscript:  

• MRI scan: a set of radiofrequency pulses and gradients resulting in a set of images (e.g., a T1-weighted image, a 4D fMRI time series).  
• MRI modality: a group of different specialized sequences that captures different properties of the brain (e.g., diffusion weighted, 

functional, structural).  
• MRI session: a single visit to the MRI facility that can include one or more MRI scans.  
• MRI scan sequence: the order in which scans are administered in a single session.    

Fig. 2. Scan sequence. Time is described in minutes:seconds. See Supplementary methods for further details.  
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training) were characterized and compared in regard to clinical symp
tom severity and demographics using Mann-Whitney U (Mann and 
Whitney, 1947) or chi-squared tests for continuous and categorical 
variables, respectively. To correct for multiple comparisons, we used the 
Benjamini-Hochberg false discovery rate correction (Benjamini and 
Hochberg, 1995) with an alpha of 0.05. 

2.6.2. Predictive feature selection 
We explored the importance of features predicting the ability to 

successfully complete a MRI multiscan session among a range of child 
characteristics and performance at the MRI simulator training. Training 
performance features included mean FD of the final six-minute training 
step and the number of training sessions needed to pass the MRI simu
lator training. Child characteristics included age, intelligence quotient 
(IQ), and severity indexes of ASD and ADHD core symptoms, as well as 
associated psychopathology symptoms. Given the frequent overlap and 
co-occurrence of psychiatric symptoms across ASD and ADHD (Reiersen 
et al., 2008; Simonoff et al., 2008; Rommelse et al., 2010; Grzadzinski 
et al., 2011; Leitner, 2014; Kern et al., 2015; Joshi et al., 2017), we 
leveraged a range of parent and clinician based instruments providing 
continuous measures across all children (see list in Box 2 and Supple
mentary methods). To capture the distinct components involved in the 
symptom and cognitive domains of interest, we selected subscale scores. 
For children for which one or two of the instruments used to derive the 
targeted features were missing (n = 11 ASD, n = 15 ADHD w/o ASD), 
missing values were imputed. For imputation, we computed the mean 
value of the missing measure from available data in children matched by 
both age and diagnosis with those missing the metric to impute. Chil
dren with missing data for more than two instruments were excluded 
from these analyses (n = 11). 

2.6.3. Predicted MRI outcomes 
The criteria to consider any given MRI scan successful (passing) 

included data collection completion and data passing Q/A. Thus, scans 
not meeting Q/A criteria, incomplete or not attempted were considered 
failing. Task fMRI scans that were not attempted because the child failed 
the task practice before the session (n = 23, see Supplementary 
methods) were considered failing in this context. A post hoc analysis 
showed that inclusion of data from these scans did not confound results 
(data not shown). 

Random forest (RF) regression was used to assess which factors 

influenced the number of scans a child successfully completed in a given 
MRI session. Predicted values ranged from zero (not successfully 
completing T1w and subsequent scans) to six (successfully completing 
all scans), with intermediate values representing completion of T1w plus 
each of the subsequent scans along the sequence illustrated in Fig. 2. For 
the purposes of these analyses, the two task-fMRI scans shown in Fig. 2 
were combined such that six scans were assessed (whereby failing re
flected failing both scans). The inherent properties of RF, including 
flexibility regarding input feature types, lack of overfitting, and associ
ated feature importance methods made it an appropriate choice for our 
question. For this report, we used the scikit-learn random forest imple
mentation (Pedregosa et al., 2011). The RF was trained with default 
parameters listed in this manuscript’s GitHub repository along with the 
full code (github.com/aksimhal/mri-simulator-analysis); the number of 
estimators was set to 300 to increase the performance of the regressor. 
Results were obtained by training a RF with stratified five-fold cross 
validation, repeated 100 times. 

Feature importance was calculated using the permutation impor
tance method (Breiman, 2001). Briefly, we recorded a baseline accuracy 
score for the trained regressor, permuted the values of each feature, then 
passed all the test samples back through the RF and recomputed accu
racy. The importance of a given feature was indexed by the difference 
between the baseline and the new accuracy value obtained across per
mutations (Breiman, 2001); this is known as the ‘out of bag error’ 
(OOBE). The larger the increase of the permuted OOBE compared to the 
baseline OOB, the more important the feature is. A feature or a set of 
features were selected as important when their OOBE had the largest gap 
from the following feature’s OOBE in the model rank.Naive Bayes clas
sification to assess what factors contributed to completing a minimal 
multiscan dataset, we examined the children who completed our first 
T1w structural scan and following R-fMRI scan with data passing Q/A. 
Because of the imbalanced nature of the dataset (88% of those who 
attempted both scans, passed), we used the naive Bayes (NB) classifi
cation method, which takes into account posterior probabilities. The NB 
classification implementation used was from scikit-learn (Pedregosa 
et al., 2011). The NB model was trained using the 20 features listed in 
Box 2 to predict whether or not the subject successfully completed both 
the T-w sequence and the R-fMRI scan. Results were obtained via 
five-fold cross validation, repeated 1000 times. Feature importances 
were calculated using the same permutation method adapted from 
(Breiman, 2001) as described above. 

Box 2 
Features examined to predict MRI scan outcomes. Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADOS-2, Autism Diagnostic 
Observation Schedule - second edition; ASD, autism spectrum disorder; CSS, calibrated severity scores; CBCL, child behavior checklist; RBS-R, 
Repetitive Behaviors Scale – Revised; RRB, restricted and repetitive behaviors; SEQ, Sensory Experience Questionnaire; SRS-2, Social 
Responsiveness Scale-second edition; SWAN, Strengths and Weaknesses of ADHD-symptoms and Normal-behaviors.  

Features examined:  

• Age (years)  
• Verbal IQ (standard scores)  
• Nonverbal IQ (standard scores)  
• ADOS-2 RRB (calibrated severity scores; 

CSS)  
• ADOS-2 SA (CSS)  
• SWAN Inattention (average scores)  
• SWAN Hyperactivity (average score)  
• CBCL Internalizing (T score)  
• CBCL Externalizing (T score)  
• SRS-2 Parent (T score)  
• SEQ Seeking (raw score)  

• SEQ Hyposensitivity (raw score)  
• SEQ Hypersensitivity (raw sore)  
• RBS-R: Stereotypic (raw scores)  
• RBS-R: Compulsive (raw scores)  
• RBS-R: Ritual (raw scores)  
• RBS-R: Sameness (raw scores)  
• RBS-R: Restricted (raw scores)  
• Number of MRI simulator sessions  
• Amount of motion recorded during the final 6-minute MRI simulator training session as 

meanFD (mm)    
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3. Results 

3.1. Characteristics of the sample 

We examined data from 250 children who attempted to complete at 
least one MRI simulator training session. As shown in Supplementary 
Table 3, n = 112 (46%) children had a primary diagnosis of DSM-5 ASD 
(with or without ADHD comorbidity) and n = 138 (55%) had a DSM-5 
ADHD primary diagnosis, with or without any other comorbidity but 
no ASD – here referred as ADHDw/oASD. Characteristics of the sample in 
regard to demographics and clinical presentations are in Supplementary 
Table 1. Briefly, as expected, children with ASD showed significantly 
more severe ratings of ASD symptoms relative to those with ADHDw/ 

oASD. On the other hand, and likely due to the high comorbidity rates of 
ADHD in ASD (45%), ADHD symptom severity parent ratings did not 
statistically differ between the two diagnostic groups. Although children 
with ASD had higher severity ratings of associated psychopathology, as 
indexed by the parent CBCL T scores, this difference did not reach sta
tistical threshold. Notably, full scale and verbal IQ were significantly 
lower in ASD, albeit both groups’ averages were in the typical intelli
gence range. 

3.2. MRI simulator training outcomes 

The flowchart in Fig. 3A shows the number of children going from 
attempting at least one MRI simulator training session to the MRI scan 
appointment. As shown in the barchart in Fig. 3B, 150 children (60%) 
successfully completed the training in one session. We invited the 
remaining 100 children to return for further training, 88 children 
accepted the invitation. Of them, 71 (80%) successfully completed the 
additional MRI simulator training, most on a second session (see Fig. 3B 
and Table 2) yielding a total of 221 children passing the simulator 
training (Fig. 3A). Among the 29 (12%) who failed to complete the MRI 
simulator training, six declined to enter the MRI simulator; the others 
attempted one or multiple steps of the training. All children successfully 
completing the MRI simulator training were invited to participate in an 

MRI session and 201 children attempted it. The average time between 
the successfully completed MRI simulator session and the actual MRI 
appointment was 15 ± 13 days. 

As detailed in Table 2, Mann-Whitney U comparisons of de
mographics, clinical characteristics and MRI simulator training perfor
mances of those passing (n = 221) and failing (n = 29) the MRI 
simulator training showed that those who passed were on average older, 
had a higher verbal and non-verbal IQ, and less severe autistic traits. 
Notably, ADHD symptom severity, indexed by parent SWAN ratings, did 
not statistically differ among the two groups. A primary DSM-5 diag
nosis of ADHDw/oASD was the most frequent among children passing the 
MRI simulator training. 

3.3. MRI scan outcomes 

Of the 201 children who passed the MRI simulator training and 
agreed to attempt the MRI multimodal session, nearly all (n = 188, 
94%) were able to successfully (i.e., data collection completed and 
passing Q/A) complete at least the first scan in the sequence (T1w). As 
shown in Fig. 3C, the percentage of children successfully completing 
additional scans decreased as the scan sequence progressed. Fig. 4 shows 
the motion indices across the fMRI data collected, as well as the number 
of DTI gradients passing Q/A. 

3.4. Predictive features of multiple scans in a MRI session 

A random forest (RF) regression was used to examine a combination 
of clinical, demographic, and mock performance among the 20 features 
selected (Box 2) that best predicted participants’ degree of successful 
scan completion (number of completed scans passing). Predicted values 
ranged from zero (failed T1w and subsequent scans) to six (passed all 
scans), with any intermediate value representing completion of T1w 
plus each of the subsequent scans along the sequence described in Fig. 2 
and in Supplementary methods. 

The mean average error of the trained RF model predicting the 
number of scans completed was 1.29 scans and the percentage variance 

Fig. 3. Overview of MRI simulator training 
and MRI scan outcomes. A) Flowchart of 
participant outcomes. Of the 250 children 
enrolled in this study, 201 passing the MRI 
simulator training attempted the MRI multiscan 
session. B) Stacked bars show the number of 
MRI simulator training sessions needed for 
children passing the training protocol (blue) vs. 
those failing it (orange) among the N = 250. 
Most who passed the training (n = 150) did so 
in one session. Of the remaining, n = 41 passed 
training after two training sessions, n = 20 after 
three, n = 8 after four, and n = 2 after five 
sessions. Among those who failed the training 
protocol, n = 15 children failed after one, n = 7 
after two, n = 3 after three, n = 3 after four, 
and n = 1 after five sessions. C). The stacked 
bars show the percentage of children who 
completed each scan with passing or failing Q/ 
A (blue and orange, respectively), the gray 
stacks represented the percentage of children 
who did not complete a given scan along the 
session. As detailed in the Supplementary 
methods, for the task fMRI runs, 23 (11%) 
children were unable to complete the practice 
tasks outside the scanner and, thus, were not 
administered the task fMRI. Information for 
seven children regarding task practice was not 
available and they were counted among those 
not completed.   
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explained by the RF model was 17.4%. As shown in Fig. 5A, age was the 
most important feature predicting the number of scans completed in a 
session, as computed via the permutation importance method described 
above (i.e., the jump from age to the next feature was 20%). As shown in 
Fig. 5B, children with mean age 8.9 ± 1.7 years and older were more 
likely to successfully complete multiple scans in the MRI session. There 
was approximately one year difference between those who completed at 
least the first three scans (M ± SD, 9.3 ± 2 years) vs. those who 
completed the entire set of scans in the sequence (M ± SD, 10.0 ± 3 
years). Fig. 6 provides the success rate by age-group for the MRI scan 
expected along our sequence. The percentage of children below age nine 
years passing at least the first two scans (i.e., T1w and R-fMRI) was 78% 
vs. 92% of those aged nine years and older. The success rate of those 
younger than nine years further decreased with more scans required in 
the sequence, dropping to 3% for the whole set. A similar pattern was 
noted for those older than nine years, but with different magnitudes (e.g, 

20% completed the whole session; see Fig. 6). Secondary analyses 
adding diagnostic category labels (ASD and ADHDw/oADHD) or time lag 
between the MRI simulation session and the MRI scan visit in addition to 
the other 20 features, yielded highly similar results with no noticeable 
improvement in classifier performance (Supplementary Figs. 1 and 2A). 

Additionally, following age, three features (VIQ, ADOS-2 RRB CSS, 
and SWAN inattention scores) clustered together before the next OOBE 
jump, which was 0.02%. As such, for illustration purposes, we explored 
the distributions of these variables between children failing and passing 
each MRI scan as a function of the MRI scan sequence order. As shown in 
Supplementary Fig. 3, children failing scans on average had notably 
lower VIQ and more severe RRB ADOS-2 scores. SWAN inattention 
scores on average were slightly higher (more severe) in children failing 
all scans except T1w and DTI. This pattern of results was consistent even 
after regressing out age (data not shown). Given that the ADOS-2 RRB 
scores encompass both “lower- and higher-order” RRB symptoms 
(Bishop et al., 2013), we explored the pattern of ADOS-2 module 3 items 
tapping into ‘lower-order’ RRB (i.e., sensorimotor) separately from the 
item assessing “higher-order” RRB (see Supplementary methods). As 
shown in Supplementary Fig. 4, while the group passing did not differ in 
the “higher-order” RRB item score from those failing, notable differ
ences were evident for “lower-order” RRB, even after controlling for age. 

3.5. Predictors of minimum set of multimodal scan success 

To assess which factors influenced the ability to successfully com
plete a minimum set of multimodal scans (here T1w and R-fMRI scan), a 
naive Bayes classifier assessed the 20 features listed in Box 2 to predict 
the labels “pass” vs. “fail.” The resulting classifier had an average ac
curacy of 74.6%, average recall (or the number of true positives divided 
by the sum of true positives and false negatives) of 86.3%, and average 
precision (defined as the number of true positives divided by the sum of 
true positives and false positives) of 84.0%. The true positive rate was 
0.729, the true negative rate was 0.017, the false positive rate was 
0.138, and the false negative rate was 0.116. The RBS-R Stereotype 
subscale score was ranked as the most important feature, albeit with an 
out-of-bag-error (OOBE) score of 0.19%, as shown in Fig. 7A. The next 
most important feature was the 6 min meanFD measurement from the 
last MRI simulation training step with an OOBE score of 0.17%, which 
was followed by VIQ (OOBE score of 0.14%). Remaining features in the 
rank had smaller OOBE (< 0.10%) and thus were not considered to be 
important. When we examined the average distribution of the RBS-R 
Stereotype subscale, more severe scores characterized children failing 
(M ± SD, 3.3 ± 3.4) vs. those passing (M±SD, 2.6 ± 2.7) the minimum 
set of scans (T1w + R-fMR1), as shown in Fig. 7B. Notably, RBS-R 
subscale scores indexing “higher-order” RRB (Sameness, Restrictive, 
Ritual, and Compulsive) were largely associated with negative permu
tation errors, implying that they did not contribute to the successful 
completion of these scans. As shown in Supplementary Fig. 5, while 
higher VIQ also contributed to the prediction of passing the minimal set 
of scans, lower motion at the “mock scan,” listed as 6 min meanFD in 
Fig. 7A, characterized children passing vs. those failing the T1w + R- 
fMR1 set. Secondary analyses adding diagnostic categories (ASD and 
ADHDw/oASD) or time lag between the mock and the MRI session to the 
20 variables assessed as predictors yielded highly similar results to the 
primary analyses, with no noticeable improvement in classifier perfor
mance (Supplementary Figs. 6 and 2B). 

4. Discussion 

We examined factors contributing to the successful collection of 
multiple scans in a relatively large sample of verbally-fluent school-age 
children with ASD and/or ADHD. Although a substantial number (88%) 
of participants successfully completed at least the first two MRI scans in 
the sequence (T1w + R-fMRI), the success rate decreased with the 
number of scans collected in the MRI session. This was inversely related 

Table 2 
MRI simulator training outcomes. Group comparisons via Mann-Whitney U 
and Chi-square tests for continuous and categorical variables, respectively. All 
comparisons were corrected for multiple comparisons via false discovery rate - 
Benjamini-Hochberg (FDR-BH).  

Variable Pass 
simulator 
training 
(n = 221) 

Fail 
simulator 
training 
(n = 29) 

df U FDR 
corrected 
p  

Mean SD Mean SD    
Age (years) 8.9 1.7 7.9 1.5 248 2411.5 0.022 
IQ standard score 103 17 95 14 248 2367.5 0.021 
Verbal IQ 

standard score 
105 17 98 18 248 2329.0 0.021 

Nonverbal IQ 
standard score 

102 18 95 12 248 2396.5 0.023 

ADOS-2 CSS 
Total 

4.7 2.3 6.6 2.8 248 2058.0 0.003 

ADOS-2 CSS 
RRB 

4.7 3.1 6.1 3.0 248 2310.5 0.018 

ADOS-2 CSS SA 5.2 2.6 6.9 2.2 248 1977.5 0.003 
SWANa Total 1.1 0.8 0.9 0.7 240 2335.0 0.160 
SWAN 

Hyperactivity 
0.98 0.95 0.6 0.8 240 2149.5 0.061 

SWAN 
Inattention 

1.1 0.95 1.1 0.8 240 2697.0 0.495 

mFD*(mm) 0.1 0.3 0.9 3.2 248 1263.0 9.46e-7   
N, (%) N, (%) df χ2 p 

Mock Scan 
Session Counts 
(#, %) 

1 (150, 68) 
2 (41, 19) 
3 + (30, 13) 

1 (12, 41) 
2 (9, 31) 
3 + (8, 28) 

2 10.20 0.03 

Sex (#,%) Male (173, 
78) 
Female (48, 
22) 

Male (26, 
90) 
Female (3, 
10) 

1 1.978 0.184 

Primary Dx 
(#,%) 

ASD (92, 42), 
ADHD w/o 
ASD (130, 58) 

ASD (21, 
72), ADHD 
w/o ASD (9, 
28) 

1 6.681 0.021 

ADHD 
Presentation 
(#,%) 

Inattentive 
(55, 32) 
Hyper/Imp 
(6, 4), 
Combined 
(88, 52), 
OS (21, 12) 

Inattentive 
(5, 33), 
Hyper/Imp 
(1, 7), 
Combined 
(9, 6), 
OS (0, 0) 

3 2.939 0.495 

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADOS-2, Autism 
Diagnostic Observation Schedule, second edition; ASD, autism spectrum disor
der; CSS, calibrated severity scores; df, degree of freedom; Dx, diagnosis; mFD, 
mean framewise displacement (Jenkinson et al., 2002) data from the MRI 
simulator session; OS, otherwise specified; RRB, restricted and repetitive be
haviors; SA, social affect; SD, standard deviation; SWAN, Strengths and weak
nesses of attention-deficit/hyperactivity symptoms and normal behaviors 
(average scores). 

a 12 children (8 passing and 4 failing the MRI simulator training) had missing 
SWAN parent scores. 
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to child age across all, regardless of their primary diagnosis (i.e., 
ADHDw/oASD or ASD). Beyond age, sensorimotor atypicalities indexed by 
lower-order RRB ratings, verbal cognitive skills, and pre-scan MRI 
simulator training performance predicted successful imaging, again, 
regardless of diagnosis. Collectively, these findings can inform decision- 
making regarding scan protocols in neurodevelopmental conditions, 
based on expectations regarding quality data yield. 

4.1. Age impacts the number of scans completed 

Our findings that age is the most important predictive feature of MRI 
scans success in a session are consistent with prior studies in typically 
and atypically developing children (Yerys et al., 2009; Rajagopal et al., 
2014), which related higher scan failure rates to younger ages. Those 
prior studies examined the impact of age on one or up to three scans in 
an MRI session. Here, we extended the scope by examining multiple 
structural and functional scans in a session. We found that, across all 
children, the more scans required to be collected in the session, the 
higher the number of scan failures. Notably, the failure rate was higher 
in children younger than nine years. For example, the success rate 
gradually dropped from 95% for the first scan to 20% for the last and 

seventh scan required in the sequence in those older than nine years. In 
contrast, the success rate decreased from 78% for the first to 3% for the 
last scan in children younger than nine years. These results suggest that 
brain imaging research focusing on school-aged children with ASD 
and/or ADHD needs to account for differential age-related attrition, 
particularly as the number of scans intended for a session increases. This 
may require over-recruiting younger individuals to adjust for greater 
attrition rate, and/or adjusting the age range targeted, or limiting the 
number of MRI sequences obtained in a single session, or considering 
multiple MRI sessions in the design. We do not point to a single solution 
as this may vary as a function of context, resources, and goals in research 
or clinical settings where multiple scans and/or multimodal imaging are 
increasingly required. An important implication of the present work for 
the clinical setting is its demonstration of successful awake imaging for 
children with ASD and/or ADHD aged nine and over. Consistent with 
prior reports (Rosenberg et al., 1997; Nordahl et al., 2008; 
Barnea-Goraly et al., 2014) our findings support that investing in MRI 
simulator training may be an alternative to using sedation for clinical 
imaging – even in children with neurodevelopmental conditions and 
extends this notion to multiple scan sessions. 

Fig. 4. MRI Q/A outcomes. A) Histograms of 
the median frame wise displacement of the 
subjects who attempted scans. The blue bars 
represent those who passed and the orange bars 
represent those who failed. B) Each plot shows 
for each gradient direction (represented by a 
line in 3D), the percentage of participants 
(represented by the color of the line) with data 
of sufficient quality as detailed in Supplemen
tary methods. The plot on the left illustrates the 
group failing, the one on the right those passing 
DTI Q/A (n = 30 and n = 28, respectively).   
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4.2. Sensorimotor atypicalities impact scan performance 

Notably, while age strongly predicted the extent to which children 
completed multiple scans in an MRI session, other clinical factors 
emerged as important for completing a minimal set of scans (T1w + R- 
fMRI). These included the severity of restricted and repetitive behaviors 
(RRB) indexed by parent ratings at RBS-R Stereotype subscale, which 
measure the severity of sensory and motor RRB (Bodfish et al., 2000; 
Lam et al., 2008). RRB is an umbrella term that refers to a range of 
symptoms that can be summarized as ‘higher-order’ behaviors, such as 
insistence on sameness, and ‘lower-order’ behaviors, such as hyper- or 
hypo-sensitivity to sensory stimuli, as well as motor stereotypies (Bishop 
et al., 2013). Our RBS-R results revealing a predictive role of the Ste
reotype scale but not for the other subscales, suggest that ‘lower-order’ 
RRB — i.e, sensorimotor atypicalities - have a greater role than ‘high
er-order’ RRB. Interestingly, after age, ‘lower-order’ RRB, indexed by 

clinician-based ADOS-2 item scores of sensorimotor atypicalities, 
contributed to the top four features predicting the number of scans 
completed in a session. The convergence across analyses onto ‘lower-
order’ RRB symptoms, further underscores the role of sensory and motor 
control processes across children. Although RRBs are considered core 
ASD symptoms, they have been increasingly reported in a subsample of 
children with ADHD (Martin et al., 2014). This evidence, combined with 
our findings that MRI completion was not particularly driven by primary 
diagnosis, underscores the transdiagnostic impact of sensorimotor 
symptoms in MRI outcome prediction. 

Given that the RRB ratings found to be predictive included both 
sensory and motor control atypicalities, their relative contribution re
mains somewhat unclear. On one hand, it is plausible that the sensory 
experience of being in the MRI scanner (sounds, touch, and visual 
stimuli) impacts children with greater sensory atypicalities, even after 
comprehensive MRI simulation training. If so, studies examining the role 

Fig. 5. Overview of the random forest 
regression (RF-R) results. A) Permutation 
error (feature importance) associated with each 
of the 20 features examined shown as mean 
OOBE and standard error across RF-R itera
tions. B) Group mean and standard error bars of 
age in years for those who passed (blue) and 
those who failed (orange) along each of the 
scans in the MRI sequence. The order of scan 
listed on the x-axis reflects the order in which 
scans were attempted during the MRI session 
following the sequence design shown in Fig. 2. 
As a note, scan 3 reflects two task blocks 
administered as detailed in Supplementary 
methods.   
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of specific sensory modalities may be relevant to design habituation 
techniques for school-age children with ASD and/or ADHD. On the other 
hand, the observation that parent ratings focusing on sensory processes 
alone (i.e., SEQ) were not predictive features, suggests that the combi
nation of both atypical motor and sensory processes may be more rele
vant. With this in mind, and given the transdiagnostic nature of our 
findings, other measures of sensorimotor atypicalities may be explored 
in future studies of neurodevelopmental conditions. 

Looking forward, an increased focus on neurological soft signs (NSS) 
may provide additional insight on the predictive role of sensorimotor 
processes. NSS encompasses clinically detectable poor motor coordina
tion, sensory perceptual difficulties, and involuntary movements. An 
emerging literature underscores the role of neurological soft signs as 
markers of brain immaturity across multiple psychopathologies (Martins 
et al., 2008). Indeed, NSS are frequent in both children with ASD, those 
with ADHD, and other neurodevelopmental conditions (Patankar et al., 
2012; Manouilenko et al., 2013). Our study did not include a measure of 
NSS, e.g., Physical And Neurological Examination of Soft Signs (Camp 
et al., 1977) and to date, the relation between such a measure and RRB 
metrics is unknown. Thus, future research examining their unique or 
relative contribution predicting MRI success is needed. 

4.3. Predictive value of motion during MRI simulator training for scan 
success 

Interindividual variability in meanFD of motion tracking during the 
last 6 min step of our MRI simulator training protocol contributed to the 
prediction of success rate for the minimum first set of multimodal scans 
(T1w + R-fMRI). This finding underscores the utility of motion tracking 
during MRI simulator training. We note that the motion sensor hardware 
available in our study was not designed to capture subtle motion, thus 
future studies may benefit from improved sensor hardware. Beyond its 
utility in providing real-time objective feedback associated with a mo
tion event, results from motion tracking may guide decisions on further 
training prior to a MRI scan visit. Although the number of MRI simulator 
training sessions did not robustly predict MRI scan success, we note that 
by giving children the option to undergo additional MRI simulator 
training, we were able to increase the yield of children successfully 
completing training from 60% in one session to 88% with multiple 
training sessions. We note that a recent study from a small sample of 
children with ASD showed a greater rate of MRI success in children 
completing a more systematic training vs. those completing a less 
structured one (Horien et al., 2020). Together with our results these 
observations suggest that greater exposure and habituation is helpful 
and that this should be accounted for when designing neuroimaging 
studies of neurodevelopmental conditions. 

4.4. Limitations and considerations for future studies 

The results of this study need to be interpreted in light of several 
limitations. First, we did not include a training comparison condition- 
group to directly assess the efficacy of the MRI simulator protocol. 
Given the large literature supporting the role of MRI simulator training 
for MRI completion across ages (Greene et al., 2018; Barnea-Goraly 
et al., 2014; Nordahl et al., 2016; De Bie et al., 2010; Cox et al., 2017; 
Carter et al., 2010), this was not considered practical, nor cost-effective 
for our larger ongoing neuroimaging study. 

Second, we did not examine factors more directly related to the MRI 
session that may have played a potential role in MRI collection success in 
our protocol (e.g., number of scans repeated, feedback provided). This 
was motivated by the explicit goal to identify factors that may guide 
decisions before scheduling a scan session. A range of approaches aimed 
to improve data collection during scans continue to emerge (Vanderwal 
et al., 2015; Dosenbach et al., 2017; Ai et al., 2020; Power et al., 2019). 
Each has strengths and weaknesses and no one is applicable to a range of 
different scans and populations to date, unlike MRI simulator training. 

Fig. 6. Histograms showing MRI outcome by age. Each histogram shows the 
number of children in each age group who passed or failed a given scan in the 
sequence divided by the total number of children in the study. The order of scan 
listed reflects the order in which scans were attempted during the MRI session 
following the sequence design shown in Fig. 2. As a note, scan 3 reflects two 
task blocks administered as detailed in Supplementary methods. 
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For example, FIRMM has been shown to be useful for functional MRI 
data collection (Dosenbach et al., 2017) however, its efficacy with 
structural and diffusion MRI data is yet to be established. Scans 
including prospective motion correction have been shown promising for 
structural scans (e.g., T1-weighted) (Ai et al., 2020). CaseForge has been 
shown to be effective at reducing head motion in small samples of 
children and two adults completing R-fMRI (Power et al., 2019; Lynch 
et al., 2021), but not in another sample of adults completing task-fMRI 
(Jolly et al., 2020, 2021). The role of CaseForge in limiting motion for 
longer multimodal scan sessions including different structural scans is 
also unknown. Passive movie viewing is largely used for structural MRI 
data collection and is increasingly becoming another promising method 
for functional scan success in challenging populations (Vanderwal et al., 
2015; Eickhoffet al., 2020). Future studies explicitly designed to assess 
in-scanner factors along with those examined here may provide com
plementary insight into protocols aimed to yield greater success rate in 
pediatric MRI data collection. Indeed, the relatively low OOBE score for 
the top-ranked features in the naive bayes classification model suggests 
that other factors may be considered to improve the prediction model. 

Third, because our MRI sequence order was quasi-fixed, we could not 
assess whether a specific MRI modality along the sequence may be 
associated with greater success rate. Thus, it remains unclear if the 
lowest success rate for DTI scans was solely the result of being the last 
scan in our session or if other factors associated with this sequence 
(louder noise, higher table motion, longest duration) are involved. 

Similarly, our third set of scans included two short task fMRI blocks 
involving a relatively simple two-choice matching task selected from the 
HCP sequence (Hariri et al., 2002; Barch et al., 2013). For these 
task-fMRI scans, the rate of success among children below nine years of 
age was lower than chance (50%) suggesting that including task-fMRI in 
a multiscan neuroimaging session may not be feasible for younger 
children with ASD and/or ADHD. Fourth, in the statistical analysis, the 
imbalance of children who passed and failed at each step of the sequence 
may have limited the predictive power of the models. We mitigated 
these effects by using five-fold cross validation when evaluating per
formance and by running the model multiple times to determine 
aggregate performance. 

Fifth, as the present study focused on verbally fluent children with 
ASD and/or ADHD with intelligence ranging from borderline to high, 
future studies should assess the unique challenges presented by younger 
non-verbal or minimally-verbal children in both the MRI simulation 
training and MRI scan. This is particularly notable, given that verbal IQ 
was among the top predictive factors across analyses after age and 
sensorimotor atypicalities. Further, unique challenges also arise in 
multimodal imaging of infants, toddlers and preschoolers younger than 
five. Promising approaches with natural sleep scans or awake scanning 
(Ellis et al., 2020) are emerging. Finally, this study examines outcomes 
in children with ASD and ADHDw/oASD; additional work is needed to 
assess the generalizability of results in other diagnostic groups. 

Fig. 7. Overview of naive Bayes-based results. 
A) The top panel shows the permutation error 
percentage (feature importance) associated 
with each variable examined as mean and 
standard error across the classifier iterations. B) 
The bottom panel shows the distribution of 
Repetitive Behaviors Scale-Revised (RBS-R) 
Stereotype subscale raw scores as violin plots 
for those who passed (blue) and those who 
failed (orange) to successfully complete the 
T1w + R-fMRI. Each dot on the scatter plot in
dicates a child’s score. The violin plots model 
the distribution of the scores. Inside each violin 
plot is a box plot showing the quartile distri
bution. The continuous horizontal line in the 
box plot represents the group median.   
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4.5. Conclusions 

In summary, this report provides a comprehensive assessment of 
factors predicting success rate in multimodal imaging in verbally fluent 
school-age children with ASD and/or ADHD following a systematic MRI 
simulator training. We assessed behavioral measures known to be clin
ically relevant in ASD and ADHD, as well as performance during MRI 
training that have never been examined before, alone or in combination 
with age. The methods described and the demonstration of the role of 
age and other clinical features may provide useful insights in designing 
more individualized MRI pediatric protocols in school-age children with 
ASD and/or ADHD. We hope that this study will motivate increased 
attention in motion training and mitigations in children with greater 
needs to ensure their representation in pediatric imaging. 
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