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Abstract: Lower extremity varicose veins are a common condition in vascular surgery  

and proliferation of vascular smooth muscle cells (VSMCs) in the intima is a significant 

pathological feature of varicosity. However, the pathogenesis of varicose veins is not fully 

understood. Osteopontin (OPN) could promote the migration and adhesion of VSMCs 

through the cell surface receptor integrin β3 and the cooperation of OPN and integrin β3  

is involved in many vascular diseases. However, the role of OPN and integrin β3 in varicosity 

remains unclear. In the current study, we found that the methylation levels in the promoter 

regions of OPN and integrin β3 genes in the VSMCs of varicose veins are reduced  

and the protein expression of OPN and integrin β3 are increased, compared with normal veins. 

Furthermore, it was observed that VSMCs in the neointima of varicose veins were transformed 

into the synthetic phenotype. Collectively, hypomethylation of the promoter regions for OPN 

and integrin β3 genes may increase the expression of these genes in varicosity, which is closely 

related to VSMC phenotype switching. Hypomethylation of the promoter regions for OPN  

and integrin β3 genes may be a key factor in the pathogenesis of varicosity. 
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1. Introduction 

Lower extremity venous insufficiency is a common condition in vascular surgery, with approximately 

25% of the population having lower extremity varicose veins [1]. Most of these are varicosis of the great 

saphenous vein. The pathogenesis of varicosis is not fully understood. Vascular remodeling is closely 

related to changes in gene expression, physical and chemical vascular damage and stimulation of metabolic 

and vasoactive substances [2,3]. Proliferation of vascular smooth muscle cells (VSMCs) in the intima 

is a significant pathological feature of varicosity [4]. Phenotype switching of VSMCs is the cytological 

basis for vascular remodeling. Under pathological conditions, VSMCs exhibit a phenotypic change 

characterized by loss of contractility and abnormal proliferation, migration and matrix secretion.  

This synthetic phenotype plays an active role in the repair of vascular damage and is also related  

to the pathogenicity of several cardiovascular diseases [5]. Epigenetics is defined as genome properties 

that are not explained by the primary DNA sequence, but are, instead, caused by modifications  

of the DNA and/or its associated proteins [6]. Epigenetics includes the study of DNA methylation, 

histone modifications, and the interaction of microRNAs (miRNAs) with the genome. DNA 

methylation is a well-known example of an epigenetic mechanism [7], which plays an important role  

in maintaining the normal structure of the DNA, chromatin stability, and X-chromatin inactivation [8,9]. 

DNA methylation plays an important role in regulating gene expression and a negative correlation exists 

between the degree of DNA methylation and gene expression. Methylation status of DNA is reportedly 

involved in the regulation of pathological changes in arterial atherosclerosis, diabetes, inflammation  

and hypertension. Recently, DNA methylation has become the focus of research in many fields [10–12]. 

Epigenetic regulation of VSMC phenotype switching occurs mainly through the regulation of phenotype 

markers [13]. However, little is known about how to maintain the contractile phenotype of VSMCs under 

physiological conditions. In addition, whether abnormal epigenetic regulation participates in the development 

of varicose veins has not been reported. Osteopontin (OPN) is a multifunctional phosphoprotein 

secreted by many cells. OPN is a biomarker of VSMC phenotype switching and is strongly expressed 

by synthetic VSMCs [14,15]. The anti-inflammatory, injury repair and vascular remodeling effects  

of OPN have aroused research interest [15,16]. OPN is closely associated with VSMC proliferation 

and migration [16,17] and has emerged as a key factor in both vascular remodeling and development  

of restenosis [18]. Integrin β3 is one of the OPN receptors found in a wide variety of cells. This class 

of adhesion receptors could mediate cell–cell and cell–extracellular matrix (ECM) interactions.  

Such interactions are important for tissue integrity, cellular migration, cell survival, adhesion  

and differentiation [19–21]. Integrin β3 plays an important role in regulating VSMC migration  

and proliferation in vivo and in vitro [20,21]. OPN could promote the migration and adhesion  

of VSMCs through the integrin β3 cell surface receptor [22]. In this study, we examined the methylation 

status in the promoter regions for OPN and integrin β3 genes, the expression level of OPN and integrin 

β3 in varicose vein specimens, and the ultrastructural changes of VSMCs in the neointima of varicose 
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veins. We also investigated the relationship between the methylation status of the promoter regions  

for OPN and integrin β3 and the phenotype switching of VSMCs in varicose veins. Collectively,  

we provide experimental evidence for the pathogenesis of varicose veins. 

2. Results and Discussion 

2.1. Observations of the Vein Wall by Hematoxylin and Eosin (H&E) Staining and Ultrastructure 

Change of Vascular Smooth Muscle Cells (VSMCs) by Transmission Electron Microscope (TEM) 

In the normal vein group, the thickness of the vein wall was regular and the wall framework 

consisted of three distinct concentric layers. The intima of the vein wall, lined by endothelial cells, 

rests on well-defined subendothelial connective tissue. The media of the vein wall contained circular 

bundles of VSMCs. The adventitia contained clustered longitudinal VSMCs and ECM (Figure 1A,B). 

According to the study of Pamela et al. [4], we defined the longitudinally oriented VSMC layer 

adjacent to lumen as the intima and the circular oriented VSMC layer followed intima as the media  

in varicose vein. In the varicose vein group, the thickness of vein wall was not uniform. Dilatation  

of the lumen and increased intimal thickness were both observed. There are a number of longitudinally 

oriented VSMCs in the neointima of varicose veins. The neointima was folded, with partial desquamation 

of its endothelial cells. The organization of the three layers was greatly disrupted consistent with 

previous studies [23], the smooth muscle bundles had lost their longitudinal or circular orientation and  

an accumulation of fibrous tissue interrupted the regular pattern of smooth muscle bundles (Figure 1C,D). 

The results suggest that the vein wall of varicose vein lost its normal structure. To observe the 

ultrastructure change of VSMCs in intima of veins, TEM was employed. Sections from the normal  

vein group showed endothelial cells and VSMC in the intima, and cytoplasm of intima VSMC is filled  

with myofilaments (Figure 2A). In sections from the varicose vein group, complete disorganization of  

the neointima and loss of endothelial cells were observed. The shape of VSMC nuclei is irregular,  

with karyotheca of partial rupture. In cytoplasm, many dilated rough endoplasmic reticulum and golgi 

apparatus could be observed (Figure 2B). Consistent with the study of Thyberg et al. [24], our results suggest 

that the VSMC in the neointima of varicose vein have the characteristics of synthetic phenotype. 

2.2. Immunohistochemical Analysis of Osteopontin (OPN), Integrin β3 and Smooth Muscle α-Actin 

(SMA) and Western Blot for OPN and Integrin β3 

With immunohistochemical staining, positive cells stained brown yellow. In the normal vein group, 

only a few VSMCs in the intima region were found to be OPN-positive (Figure 3A) or integrin  

β3-positive (Figure 3D). A number of Smooth Muscle α-Actin (SMA) positive VSMCs could be found 

in media region (Figure 3G). However, in the varicose vein group, OPN-positive (Figure 3B) and integrin 

β3-positive (Figure 3E) VSMCs were significantly more numerous, mainly in the neointimal region.  

In varicose vein, SMA positive VSMCs were rarely detected in neointima region. In media region  

of varicose vein, SMA positive VSMCs could be observed (Figure 3H). We recorded the optical 

density (OD) of positive cells in each field to evaluate the average OD, and analyzed the results with 

the MetaMorph/DPIO/BX41 morphology image analysis system. There were statistically significant 

differences between the two groups in positive expression of OPN, integrin β3 and SMA (Figure 3C,F,I;  
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p < 0.0001). There are few contractile phenotype but a large number of synthetic phenotype VSMCs  

in neointima region of varicose veins. In order to determine subcellular localization of OPN and integrin 

β3, immunohistochemical analysis of OPN and integrin β3 expression with TEM was performed.  

The positive expression of OPN and integrin β3 produced electron-dense black granules. In the intima 

of the normal vein group, there were almost no VSMCs positive for OPN (Figure 4A,B) or for integrin 

β3 (Figure 4E,F). In the neointima of the varicose vein group, expression of OPN and integrin β3 could 

be detected. The granules produced by OPN were located on the nuclear membrane, the rough 

endoplasmic reticulum and cytomembrane of VSMCs in the neointima (Figure 4C,D). The granules 

produced by integrin β3 were located on cytomembrane of the VSMCs in the neointima (Figure 4G,H). 

The results suggest that presence of both markers on the membrane of VSMCs in the neointima.  

The OPN, integrin β3 and β-actin proteins were detected at 35, 87 and 43 KD, respectively (Figure 5A,B). 

Compared with the normal vein group, the density of OPN and integrin β3 bands in the varicose vein 

group was significantly higher (Figure 5C,D; p < 0.0001), which was consistent to the results from 

immunohistochemical analysis. In Comparison to the normal vein group, the expression of OPN  

and integrin β3 in the varicose vein group was significantly increased. Both of OPN and integrin β3  

are closely associated with the process of VSMC phenotype switching in neointima of varicose veins. 

Figure 1. Histological structure of the vein wall (H&E staining). (A) Section of normal 

vein shows the regularity of wall and the normal thickness of the layers; (B) A higher 

magnification of the previous section shows the intima (i), media (m) and adventitia (a); 

(C) Section of varicose vein showing the irregularity of the wall and the intima 

hypertrophy; (D) A higher magnification of the previous section shows the neointima (i), 

abnormal arrangement of VSMC in media (m) and adventitia (a). Scale bar = 200 μm. 

 

Figure 2. The tunica intima of normal vein and varicose veins. (A) Normal vein, lumen (L) 

and endothelial cells (E) cytoplasm of intima vascular smooth muscle cells (VSMCs) filled 

with myofilaments (m); (B) Varicose vein, losing all the endothelial cells, lumen (L).  

→ indicates many rough endoplasmic reticulum of intima VSMC. Scale bar = 2 μm. 
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Figure 3. Immunostaining of Osteopontin (OPN), integrin β3 and Smooth Muscle α-Actin 

(SMA) in vein specimens. (A) immunostaining of OPN in normal vein; (B) immunostaining  

of OPN in varicose vein; (D) immunostaining of integrin β3 in normal vein;  

(E) immunostaining of integrin β3 in varicose vein; (G) immunostaining of SMA in normal vein;  

(H) immunostaining of SMA in varicose vein; (C,F,I) Quantitative analysis of the difference 

of OPN, integrin β3 and SMA expression in normal vein and varicose vein. Data are presented 

as medians and inter-quartile ranges (* p < 0.0001 vs. Normal veins). Scale bar = 50 μm. 

 

Figure 4. Expression of OPN and integrin β3 as detected by TEM. Normal vein with rare 

positive OPN (A,B) or integrin β3 (E,F) electron-dense black granules in VSMC. Varicose 

veins with OPN electron-dense black granules (C,D) located on the nuclear membrane (→), 
rough endoplasmic reticulum (↗) and cytomembrane (←) of intimal VSMC. Varicose veins 

with integrin β3 electron-dense black granules (G,H) located on the cytomembrane (↓)  

of intimal VSMC. Lumen (L). Endothelial cell (E). Scale bar = 5 μm. 
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Figure 4. Cont. 

 

Figure 5. Western blots showing the expression of OPN and integrin β3 in varicose veins 

compared with normal veins. Expression of OPN (A) and integrin β3 (B) in the intima  

of vein specimens; Differences in OPN (C) and integrin β3 (D) expression in the intima  

of vein specimens. Data are presented as medians and inter-quartile ranges (* p <0.0001 

vs. Normal veins). 

 

2.3. DNA Hypomethylation in the Promoter Regions of OPN and Integrin β3 

To identify whether high expression of OPN and integrin β3 resulted from DNA hypomethylation, 

we examined the methylation of OPN and integrin β3 genes in the DNA of vein specimen. 

Methylation specific PCR (MSP) showed that both unmethylated and methylated bands existed  

in normal and varicose veins (Figure 6A,B), but the unmethylated bands did not appear in the positive 

control tissues. The DNA methylation level was lower in varicose veins group compared with the normal 

veins group. DNA hypomethylation of OPN occurred in 62.2% (28/45) of varicose veins and 16.6% (5/30) 

of normal veins. DNA hypomethylation of integrin β3 occurred in 55.6% (25/45) of varicose veins  

and 20% (6/30) of normal veins. The differences in methylation of OPN (p < 0.000) and integrin β3  

(p < 0.001) between normal veins and varicose veins were significant (Table 1). According to our results, 

DNA hypomethylation may participate in the process of regulating OPN and integrin β3 in varicose vein. 
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Figure 6. Differences in OPN and integrin β3 gene promoter methylation in vein 

specimens. (A) Methylation specific PCR (MSP) analysis of OPN gene promoter methylation 

in vein specimens; (B) MSP analysis of integrin β3 gene promoter methylation in vein 

specimens. Methylation, unmethylation, unmethylation positive control, methylation positive 

control and partial methylation are simply labeled as M, U, UP, MP, and P, respectively. 

 

Table 1. Methylation levels of OPN and integrinβ3 in different vein groups. 

Heading 
Patients 

(n, N = 75) 
OPN Methylation 

P 

Value 
Integrin β3 Methylation 

P 

Value 

  M (%) P (%) U (%)  M (%) P (%) U (%)  

Normal Vein 30 17 (56.7) 8 (26.7) 5 (16.6) 0.000 19 (63.3) 5 (16.7) 6 (20) 0.001 

Varicose Vein 45 8 (17.8) 9 (20) 28 (62.2)  10 (22.2) 10 (22.2) 25 (55.6)  

2.4. Discussion 

Lower limb varicose veins are a common peripheral vascular disease, and many factors have been 

implicated in their etiology. Dilatation of the vein, increased diameter of the lumen, and hypertrophy 

of the vein wall and intima are important characteristics of the pathological morphology in varicose 

veins [25]. However, there is ample evidence that the defect results from intimal changes in the walls 

of lower limb veins [23,26]. VSMCs are the main components of the media of the vascular wall.  

The phenotype of VSMC includes contractile phenotype and synthetic phenotype. Unlike other muscle 

cells, contractile phenotype VSMCs do not terminally differentiate. Under normal conditions,  

the contractile phenotype VSMCs in adult animals are highly specialized cells, functioning to regulate 

blood vessel diameter, blood pressure and blood flow distribution. However, these cells display 

remarkable plasticity and undergo profound changes in phenotype in response to vascular injury  

or disease, a process referred to as phenotypic switching. As part of the repair process in response  

to injury, contractile phenotype of VSMCs could convert into synthetic phenotype, which have 

stronger proliferative capacity. In addition, they could synthesize and secrete large amounts of ECM. 

Phenotype switching occurs as the local environment changes or vascular lesions occur, such as hypertension, 

vascular grafts, arteriosclerosis, mechanical stimulation and cytokines release [13,14,27]. Khan, A.A. et al., 

showed that the intima hypertrophy of varicose vein could result from the overall increase of smooth 

muscle cells [19]. In varicose veins, rough endoplasmic reticulum and golgi complex could be observed  

in VSMCs of neointima indicating that synthesis and secretory functions of VSMCs may be enhanced. 

The VSMCs of neointima in varicose veins were markedly altered, which may be the phenotype 

switching of VSMCs. 
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SMA is a characteristic cytoskeletal protein of VSMC and plays an important role in cell 

contraction [28]. SMA is found progressively increased in the contractile phenotype of VSMC. 

Conversely, when the VSMC undergoes inappropriate proliferation or is converted into synthetic 

phenotype, SMA is progressively lost [29]. Therefore, SMA is considered as a biomarker of contractile 

phenotype VSMC. OPN is another biomarker of synthetic phenotype VSMCs. Expression of OPN  

is rare in normal vein walls, but several cytokines can induce VSMC proliferation, concurrent with 

significant increase of OPN expression [30]. In general, VSMC phenotypic switching is characterized 

by markedly increased expression of synthesis phenotypic markers, with increased VSMC proliferation, 

migration and synthesis of ECM components required for vascular repair [13,31]. In our study, a large 

number of cells in the tunica media region of normal vein are found to be SMA positive. However, 

OPN positive cells are rare. In the mean time, we found intense expression of OPN and rare expression 

of SMA in the VSMCs of neointima in varicose veins compared with normal veins, indicating transformation 

of the VSMCs from the contractile phenotype to the synthetic phenotype. 

VSMC proliferation is associated with varicose veins [32]. Proliferation of VSMC is the common 

pathological basis in hypertension, atherosclerosis and restenosis after angioplasty. Some studies have 

shown that variety of vasoactive peptide are involved in the proliferation of VSMC, such as angiotensin 

and endothelin [33,34]. VSMCs change phenotype, proliferate and migrate as part of the injury repair 

process [35]. The mRNA expression of OPN in VSMC significantly correlates with cell migration 

ability, and under certain conditions, the correlation has a dose-response relationship [36]. The lack  

of OPN expression in VSMCs can significantly reduce cell adhesion and migration capabilities [37]. 

Under pathological conditions, such as human atherosclerotic lesions and restenosis, the expression  

of OPN is significantly increased in the VSMCs of the neointima [38–40]. Study of Coskund et al. [41] 

indicated concentration of OPN in plasma has a positive correlation between the severity of the lesion. 

The expression of OPN DNA of has cell specificity and is affected by various cytokines. Several 

biological effects of OPN are associated with the interaction of different receptors, which can directly 

or indirectly activate various signal transduction pathways. Integrin β3 is one of the known OPN 

receptors, which plays an important role in regulating VSMC migration and proliferation. OPN could 

promote the migration and adhesion of VSMCs through the integrin β3. In the current study, we found 

that integrin β3 was strongly expressed in the VSMCs of neointima compared with those of normal 

veins. We also found a positive correlation between the expression of integrin β3 and OPN. As a cytokine, 

OPN can increase integrin β3 expression and induce rapid and transient focal adhesion kinase (FAK) 

phosphorylation [22]. Integrin β3-FAK signaling is involved in VSMC proliferation and migration [22].  

In the pathogenesis of varicose veins, interaction of OPN and integrin β3 on the cell membrane  

may activate integrin β3-FAK signaling directly or indirectly. The presence of both markers on the membrane 

may be associated with phenotype switching of VSMCs in neointima of varicose veins. 

DNA methylation is an important epigenetic mechanism in the maintenance of normal DNA 

structure, contributing to chromosomal stability and normal gene expression. It exists widely in the eukaryotic 

cells, and is one of the most common forms of DNA covalent modification [42,43]. There has been 

recent progress in the study of DNA methylation in atherosclerosis, abdominal aortic aneurysm and other 

cardiovascular diseases [44–46] and DNA methylation has become important in epigenetic research.  

In humans and other mammals, this modification occurs mostly on cytosine residues in CpG islands, 

characterized by a high density of CG dinucleotides [47–49]. Methylation of promoter regions and other 
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distal regulatory components prevents the interaction of transcription factor complexes and DNA, 

thereby inhibiting gene expression [44]. DNA methylation plays an important role in regulating gene 

expression. There is a negative correlation between the degree of DNA methylation and gene 

expression. In the process of tumor formation and development, patterns of DNA methylation change, 

including decreased methylation levels of the genome and elevated methylation levels in gene 

promoter regions, which activate oncogenes and inhibit tumor suppressor genes. In the pathological 

process of atherosclerosis, VSMCs first convert to the synthetic type and migrate from the media into 

the intima, where they participate in the generation of artery plaque. This process is similar to tumor 

cell transformation, in which tumor cell generation is usually accompanied by integral hypomethylation  

of genome DNA [50]. In this study, we found that the promoter regions for OPN and integrin β3 genes 

in the VSMCs in neointima were hypomethylated compared with those in normal veins, and the expression 

of OPN and integrin β3 was higher in the VSMCs of neointima. Thus, we identified a negative 

correlation between methylation levels of the gene promoter regions and expression of OPN and integrin 

β3. These results indicate that decreased methylation level of OPN and integrin β3 is involved in the intimal 

thickening of varicosity. 

Based on these results, we speculate that hypomethylation of the promoter regions of OPN and integrin 

β3 genes can increase the expression of OPN and integrin β3 in varicosity. The interaction of OPN  

and integrin β3 on the cell membrane of VSMCs may activate integrin β3–FAK or other signal 

pathways, causing VSMCs to transform into the synthetic phenotype and to participate in abnormal 

proliferation and migration. The hypomethylation of these promoter regions are possibly associated 

with VSMC phenotype switching and plays a key role in neointima formation of varicosity. 

3. Experimental Section 

3.1. Patients and Specimens 

The study was approved by the institutional review board of the China Medical University  

(Project identification code: [2014] 63, Date: 10 March 2014) and a consent form was signed by each 

participating patient. Varicose vein specimens were collected from 45 patients who had a full history, 

preoperative physical examination and whole leg duplex mapping. All patients underwent high ligation  

of the saphenofemoral junction, excision of the specimens, stripping down to the knee and multiple 

stab avulsions of distal calf varicosities. Normal veins were obtained from 30 individuals who had  

no clinical evidence of chronic venous insufficiency in either lower limb, and who underwent 

aortocoronary bypass grafting (Table 2). Specimens were taken from each vein, approximately 3–4 cm 

from the saphenofemoral junction. 

Table 2. Information of patients in different groups. 

Patient Demographics 

 Normal Vein Varicose Vein 

No. of Patients 30 45 
Age (year) 57 ± 8 46 ± 5 

Gender (M/F) 17/13 19/26 
No. of CEAP a 0 45 
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Table 2. Cont. 

Patient Demographics 

 Normal Vein Varicose Vein 

C2 0 16 
C3 0 17 
C4 0 12 

Diabetes 5 8 
Smoker 6 9 

a CEAP indicates the clinical, aetiological, anatomical and pathological classification for lower extremity 

varicose veins. 

3.2. Hislogical Analysis 

The vein fragments were washed in phosphate-buffered saline (PBS) (Boster, Wuhan, China), 

opened transversely and fixed in 4% paraformaldehyde (Beijing chemical works, Beijing, China) for 

24 h. Then the samples were embedded in paraffin to obtain transverse sections. Serial sections were cut 

at 4 μm and prepared for H&E staining. For either normal vein (n = 30) or varicose vein (n = 45) group 

two sections per patient were cut. For immunochemical staining, four sections per patient were cut from 

either normal (n = 30) or varicose vein (n = 45) group. The sections were treated with 3% hydrogen 

peroxide/methanol (Mai Xin_Bio, Fuzhou, China), followed by incubating with rabbit monoclonal 

antibody against OPN (ab91655,1:100; Abcam, Cambridge, UK), mouse monoclonal antibody against 

integrin β3 (ab125717, 1:50; Abcam, Cambridge, UK) and α-SM-actin (14395-1-AP, 1:100: proteintech, 

Chicago, IL, USA) in 2% bovine serum albumin PBS overnight at 4 °C. After being washed with PBS, 

the sections were incubated with anti-rabbit or anti-mouse IgG-HRP antibody (Boster, Wuhan, China) 

for 0.5 h at 37 °C. Finally, 3,3'-diaminobenzidine (DAB) (Mai Xin_Bio, Fuzhou, China) was used as  

a chromogen for 10 min until the brown yellow color appeared. Sections were then dehydrated and 

mounted with mounting media. To assess nonspecific staining, a few sections in each experiment were 

incubated in PBS without primary antibody. One slide was randomly selected from every specimen in 

the normal vein and the varicose vein groups. Five visual fields were randomly selected on each slide. 

We recorded the optical density (OD) of positive cells in each field to evaluate the average OD, and 

analyzed the results with the MetaMorph/DPIO/BX41 morphology image analysis system. 

3.3. Transmission Electron Microscopy 

Each group of dissected great saphenous vein samples were separated into pieces and fixed with 2.5% 

glutaraldehyde (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) at 4 °C. The pieces were 

postfixed in 1% osmium tetroxide (Electron Microscopy Sciences, Hatfield, UK) for 2 h at 4 °C, rinsed 

in 0.1 M PBS (pH 7.4) several times, dehydrated in a gradient series (20%–100%) of ethanol (Beijing 

chemical works, Beijing, China) and then followed by 100% acetone (Beijing chemical works, Beijing, 

China). The resultant samples were then infiltrated with Epon 812 (SERVA, New York, NY, USA) and 

finally polymerized in pure Epon 812 at 65 °C for 72 h. Semi-thin sections (1 μm) stained with toluidine 

blue (Beijing chemical works, Beijing, China) were obtained for observation. Ten serial ultra-thin 

sections (70 nm) per patient were obtained for a total of 750 sections in normal (n = 30) and varicose 
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vein (n = 45) group. The resultant ultra-thin sections were collected on copper grids. To assess the 

VSMCs, sections were stained with uranyl acetate (Kojima Chemicals Co., Ltd., Tokyo, Japan) and lead 

citrate (Alfa Aesar, Ward Hill, MA, USA). Changes in ultrastructure were examined with TEM  

(JEM-1200EX, JEOL, Tokyo, Japan). For immunohistochemical analysis by TEM, sections (4 μm) were 

underwent immunohistochemical stained with anti-OPN and integrin β3 antibodies and evaluated by 

chromogenic reaction. After being washed with PBS, the sections were fixed in 1% osmium tetroxide 

(Electron Microscopy Sciences, Hatfield, UK) at 4 °C for 20 min. Then they were washed in PBS several 

times, dehydrated in a gradient series (20%–100%) of ethanol and followed by100% acetone. The 

resultant samples were then infiltrated with Epon 812 and finally polymerized in pure Epon 812 at 65 °C 

for 48 h. Ten serial ultra-thin sections (70 nm) per patient were obtained for a total of 1500 sections in 

normal (n = 30) and varicose vein (n = 45) group, which were stained anti-OPN and integrin β3 

antibodies. The resultant ultra-thin sections were collected on copper grids and stained with 4% uranyl 

acetate. The positive cells were examined by TEM (JEM-1200EX, JEOL, Tokyo, Japan). 

3.4. Protein Isolation and Western Blot 

Total protein was extracted from tissue specimens through homogenization, ultrasonic dispersion 

and centrifugation. Extracted proteins were quantified and resuspended in the samples buffer 

containing 200 mM tris-buffered saline (TBS) (Boster, Wuhan, China), pH 7.5, 4% sodium dodecyl 

sulfate (SDS) (Boster, Wuhan, China), 20% glycerol (Sunshine Biotechnology Co., Ltd., Nanjing, 

China), 10% β-mercaptoethanol (Amresco, Solon, OH, USA) and boiled for 3 min. The protein 

fraction (50 μg/lane) were loaded onto 12% sodium dodecyl sulfate polyacrylamide gels for electrophoresis 

and transferred to polyvinylidene difluoride membranes (Millipore Corp., Billerica, MA, USA).  

The membrane was blocked for 120 min with blocking buffer (5% skim milk (Boster, Wuhan, China) 

in 50 mM Tris–HCl (Boster, Wuhan, China), 200 mM NaCl (Beijing chemical works, Beijing, China) 

and 0.05% Tween 20 (Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) pH 7.5)  

and incubated with appropriate dilutions of anti-OPN (1:4000) or anti-integrin β3 (1:3000) antibodies 

overnight at 4 °C. The next day, the membranes were washed three times with PBS and incubated  

with horseradish peroxidase-conjugated antibody against rabbit or mouse IgG (Boster, Wuhan, China)  

for 2 h at room temperature. After washing, the immunoreactive protein bands were visualized  

using an electrochemiluminescence detection kit (Thermol Biotech Inc., Rockford, IL, USA). Each 

experiment was repeated three times. The OD was analyzed on a gel image analysis system. The levels 

of OPN and integrin β3 were determined by calculating the OD ratio of OPN/β-actin and integrin β3/β-actin. 

3.5. Genomic DNA Isolation, Bisulfite Modification of DNA and Methylation Specific PCR (MSP) 

Genomic DNA was extracted from tissues with SDS/proteinase K treatment followed  

by phenol-chloroform extraction and ethanol precipitation. A total of 2 μg DNA from tissues  

was treated with NaOH (2 M) at 42 °C for 30 min then denatured at 95 °C for 5 min. Next, these DNA 

samples were incubated with 10 mM hydroquinone and 3.9 M sodium bisulfate (pH 5.0) at 54 °C  

for 16 h in the dark, purified using a Wizard DNA clean-up kit (Promega, Fitchburg, WI, USA), 

incubated with 3 M NaOH at 37 °C for 15 min and precipitated with 3 M ammonium acetate and 70% 

ethanol at −20 °C overnight. The next day, DNA samples were washed with 70% ethanol and dissolved  
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in 15 μL TE buffer for PCR analysis of gene promoter methylation. PCR amplification was performed 

using 2.0 μL of bisulfite-modified DNA in a total volume of 25 μL reaction fluid containing 0.5 μL  

of each primer, 12.5 μL GC buffer, 4.0 μL dNTP mixture and 0.25 μL Takara LA Taq (Takara, Shiga, 

Japan). PCR conditions for OPN were 95 °C for 5 min, 40 cycles at 95 °C for 30 s, 56 °C for 30 s,  

and 72 °C for 45 s and then a final extension at 72 °C for 10 min. Conditions for integrin β3 were 95 °C  

for 5 min, 40 cycles of 95 °C for 30 s, 54 °C for 30 s, and 72 °C for 45 s and then a final extension at 72 °C 

for 10 min. The unmethylated primers for OPN were 5'-AGTAGTTGGGATTTAAGGTGTTT-3' 

(sense) and 5'-AAACACAATAACTCACACCTATA-3' (anti-sense), which produced a 163 bp band.  

The methylated OPN primers were 5'-AGTTGGGATTATAGGCGTTC-3' (sense) and 5'-CGCAATAA 

CTCACGCCTATA-3' (anti-sense), which generated a 163 bp band. The unmethylated primers  

for integrin β3 were 5'-GGATTTGGAGTTGGTAAATGT-3' (sense) and 5'-AACTTCAACATCTC 

AAAAAACC-3' (anti-sense), which produced a 168 bp band. The methylated integrin β3 primers were  

5'-ATTTGGAGTCGGTAAACGC-3' (sense) and 5'-AACTTCGACGTCTCGAAAAA-3' (anti-sense), 

which generated a 168 bp band. For MSP, DNA from placenta tissue was used as negative controls, 

and placenta tissue treated with Sss I (New England Biolabs Inc., Ipswich, MA, USA) was used  

as positive controls. The analysis was repeated three times. 

3.6. Statistical Analysis 

All statistical analyses were performed using SPSS 20.0 software (SPSS, Chicago, IL, USA).  

The Mann–Whitney U-test and Pearson chi-square test were used to generate p values; values less than 

0.05 were considered statistically significant. 

4. Conclusions 

In this study, we identified methylation level of the promoter regions of OPN and integrin β3  

and the expression of OPN and integrin β3 in varicosity. The methylation status negatively correlated 

with OPN and integrin β3 expression, which may be one of the reasons for the abnormal VSMCs 

phenotype switching and play an important role in the pathogenesis of varicosity. Because epigenetic 

mechanisms are reversible, DNA hypermethylation is expected to provide a new therapy for varicosity. 

Further in vitro and in vivo studies are warranted to elucidate the role and functions of DNA 

hypermethylation of OPN and integrin β3 in varicosity. 
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