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Abstract: For crop seed production, the development of anthers and male fertility are the main agro-
nomic traits and key biological processes for flowering plants. Active DNA demethylation regulates
many plant developmental processes and is ensured by 5-meC DNA glycosylase enzymes. To find
out the role of OsROS1a, OsROS1a gene editing mutants were generated using the CRISPR/Cas9
system. The osros1a mutants had shrink spikelets, smaller anthers and pollen grains, and were not
stained by iodine staining showing a significant reduction in total soluble sugar and starch contents
as compared to wildtype (WT), which caused complete male sterility. Similarly, the expression of
genes involved in pollen and anther development was decreased in osros1a mutants as compared
to WT. Furthermore, bisulfite sequencing showed that the CG and CHG methylation of the OsPKS2
gene promoter was significantly increased in the osros1a mutant, which caused a reduced expression
of OsPKS2 in osros1a mutants. DNA methylation of the TDR gene promoter was similar between WT
and osros1a mutants, indicating that the DNA methylation effect by OsROS1a was gene specific. The
expression of OsROS1a in the mutants was not changed, but it produced a frame-shift mutation to
truncate the Pem-CXXC and RRMF domains. Combined with previous studies, our findings sug-
gested that the RRMF domain in OsROS1a is the functional domain and loss of RRMF for OsROS1a
causes sterility in rice.

Keywords: ROS1; DNA demethylation; CRISPR/Cas9; pollen fertility; bisulfite sequencing; rice
(Oryza satia L.)

1. Introduction

DNA methylation plays a crucial role in plant growth, development, and stress re-
sponses [1]. In plants, DNA methylation usually occurs at the cytosine (C) base in CG,
CHG and CHH configurations (H = A, C, or T), and is dynamically regulated by balanced
methylation and demethylation [1]. Plant 5-meC DNA glycosylases are placed in the
DEMETER-like (DML) family, which is related to the HhH-GPD superfamily and is the
main functionally-varied group of DNA glycosylases [2]. DML proteins ranging from
1100 to over 2000 residues are unusually large DNA glycosylases, which are bifunctional
enzymes having both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities [3].
Specific DNA glycosylases, including Repressor of silencing 1 (ROS1) [4], DEMETER
(DME) [5], DML2 and DML3 [6] catalyze the cytosine demethylation in Arabidopsis. DNA
demethylation mediated by DME is important for the reproduction of plants, and the in-
heritance of loss-of-function paternal or maternal mutant dme alleles resulting in a reduced
sperm transmission or seed abortion, respectively [5,7]. present only in dicots, but not
in monocots. ROS1 encodes a DNA glycosylase/lyase that represses DNA methylation
of promoter DNA [8]. The loss-of-function of ROS1 causes DNA hypermethylation of
CG and CHH and decreases the related gene expression in Arabidopsis [3,4]. The rice
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genome contains four ROS1 paralog genes (OsROS1a, OsROS1b, OsROS1c, and OsROS1d)
that mediate DNA demethylation [9]. OsROS1a is highly expressed in rice anthers and
pistils [10]. The disrupted OsROS1a mutants exhibited severe defects in both male and
female gametogenesis to produce a sterile phenotype [10,11]. The rice vegetative cell
genome is actively demethylated by OsROS1a and is vital for viable seed production, and
sperm non-CG methylation is indirectly promoted by DNA methylation in the vegetative
cell, which suggests that dynamic DNA methylation reprogramming occurs during plant
embryogenesis [12]. The aleurone layer is the most nutritious part of cereal grains which
stores lipids, vitamins, proteins, and minerals. The point mutation in the fourteenth intron
of OsROS1 generates a new transcript mOsROS1 with a 21-nt insertion, which can lead to
DNA hypermethylation and suppresses the expression of two transcription factors, RISBZ1
and RPBF, increasing the number of aleurone cell layers [13,14]. Knockout or knockdown
of OsROS1b causes DNA hypermethylation of Tos17 retrotransposons in rice, and over-
expression of OsROS1b extensively reduces DNA methylation of the rice genome [15].
Furthermore, ROS1 is involved in the seed development of rice, wheat and barley by its
epigenetic influence on the accumulation of seed storage proteins (SSPs) [15,16].

Pollen fertility is important for successful seed production in flowering plants. How-
ever, defective development of the anthers can lead to either an absence or formation of
non-functional pollen grains [17]. Successful development of male reproductive organs
includes events such as specification of the meristem, cell differentiation, cell-to-cell commu-
nication, meiosis and mitosis [18–21]. The development of pollen is controlled specifically
by four sporophytic cell layers of the anther (tapetum, middle layer, endothecium and
epidermis), which surround the gametophytic pollen grains [22]. Many genes involved in
the development of pollen and anthers have been identified in rice. A plant-specific type
III polyketide synthase gene OsPKS2 is involved in the normal development of pollen wall
formation and mutation in the OsPKS2 caused male sterility in rice [23]. The rice tapetum
degeneration retardation gene (TDR) has an essential role in regulating the transcriptional
network for the development and degradation of tapetum, and mutation in this gene
caused male sterility [24,25]. MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1) gene has a
crucial role in microsporogenesis, abnormal accumulation of MEL1 can make a semi-sterile
phenotype in rice [26]. Cytochrome P450 family member CYP704B2 is specifically expressed
in the tapetum and microspores, which is required for the synthesis of cutin monomers,
and its mutant cyp704B2 shows a male sterile phenotype with a swollen sporophytic tapetal
layer and aborted pollen grains [27]. Pollen development, being extremely susceptible to
the cellular environment, is regulated by the successive expression of genes specifically
expressed in reproductive tissues. Male gametogenesis also shows abnormalities and
becomes inactive if any imbalances occur in the expression of anther and microspores
development-related genes.

This study aimed to reveal the underlying mechanism of how OsROS1a regulates
pollen fertility. The CRISPR/Cas9 system was used to generate OsROS1a gene editing
mutants, and the osros1a S6, S7, and S16 mutants exhibited complete male sterile, which
resulted from the disrupted Pem-CXXC and RNA recognition motif fold (RRMF) domains.
The qRT-PCR results showed that the expression of genes involved in pollen and anther
development, and starch biosynthesis decreased in these mutants as compared to WT.
Furthermore, bisulfite sequencing showed that the CG and CHG methylation of the OsPKS2
gene promoter was significantly increased in the osros1a mutants. These findings could
provide new insights to reveal the DNA demethylation of OsROS1a on sterility in rice.

2. Results
2.1. Phylogenetic Analysis of OsROS1a Glycosylase Domain

OsROS1a contains 17 exons that encode a protein having 1952 amino acids (aa), and
3′-and 5′-UTRs of 607 and 73 bp, respectively (Figure 1A). The OsROS1a contains three key
domains of DNA glycosylase, Per-CXXC and RRMF (Figure 1B), having lengths of 141,
31 and 102 aa, respectively. The location of these domains in the OsROS1a CDS protein
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sequences was 1472–1612 for DNA glycosylase, 1797–1827 for Per-CXXC, and 1831–1932
for RRMF (Figure 1C).
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Figure 1. Schematic of OsROS1a gene structure and protein features. (A) Exons and introns of the
OsROS1a gene are denoted as black blocks and lines, respectively. The translation initiation codon
(ATG) and termination codon (TAG) are shown. (B) The protein structure of the OsROS1a gene. The
open reading frame (ORF) is 1952 amino acid residues. (C) The protein sequences of the OsROS1a
gene. The DNA glycosylase, Per-CXXC and RRMF domains are shown in blue, green and red colors,
and all others showed in black.

To determine the evolutionary relationship of OsROS1a genes in different species, its
protein sequences were used, and 159 homologous gene copies were identified in 52 plant
species. The conserved DNA glycosylase domain (151 amino acids) of 159 genes was then
used for constructing the phylogenetic tree with the neighbor-joining (NJ) method (Figure 2).
The phylogenetic tree can be clustered into 4 clades, monocots ROS1 (mROS1), dicots DME
(dDME), dicots ROS1 (dROS1) and dicots DML2 (dDML2) (Figure 2). Alignment of multiple
sequences of deduced amino acid sequences revealed that all homologous ROS1 genes
contain the DNA glycosylase domain. The evolutionary analysis discovered that DNA
demethylase gene copy number varied greatly among different species or different families
of the same species. The homologous copy number varies from 1 to 6 in different plants.
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Figure 2. Phylogenetic analysis of the ROS1 and ROS1-like DNA glycosylase family. A phylogenetic
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are shown in red color, while dicot DME (dDME), dicot ROS1 (dROS1) and dicot DML2 (dDML2)
proteins are shown in blue, green and black, respectively. Protein sequences were downloaded from
Phytozome (https://phytozome-next.jgi.doe.gov) (accessed on 19 October 2018).
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The sequence logos of the identified DNA glycosylase domain in all 52 species were
generated using the WebLogo program to further verify the conservation of aa residues
(Figure 3A). A total of three conserved motifs were determined, including the Helix-
hairpin-Helix (H-h-H), GPD and [4Fe-4S] motifs. The motifs length ranged from 21 to 26 aa
(Figure 3B). The [4Fe-4S] cluster motif contained four cysteine residues that function to
keep a [4Fe-4S] cluster and was essential for 5mC excision.
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Figure 3. Conserved domain analysis of DNA glycosylase. (A) The conserved domain analysis of
DNA glycosylase by the WebLogo program. The letter height shows the amino acid residue at each
position designating the conservation degree. On the x-axis, numbers represent the sequence position
in the corresponding conserved domains. The y-axis indicates the information content calculated in
bits. (B) The consensus sequences of three motifs in the glycosylase domain.

2.2. Generation of OsROS1a Gene Editing Mutants by CRISPR/Cas9

Previous studies showed that the disrupted OsROS1a exhibited severe defects in both
male and female gametogenesis to produce a sterile phenotype [10,11]. To well describe the
function of OsROS1a in active DNA demethylation on pollen and seed development, the
stable OsROS1a gene editing mutants were created using the CRISPR/Cas9 system, and
three stable mutants (S6, S7, S16) were obtained. The S6 and S16 mutants are homozygous
mutations on both target sides, while S16 had a homozygous mutation in the first target
and a biallelic mutation in the second target (Figure 4A and Figure S1). All mutants caused
a frame shift and generated premature stop codons at the thirteenth exon of OsROS1a
(Figure 4B), which made a frame shift from the 1798th amino acid. The S6 and S16 mutants
created a stop codon at the 1807th amino acid, while S7 terminated translation by a stop
codon at the 1820th amino acid by a one base deletion in the first target (Figure 4B). Both
frame shifts occurred before Pem-CXXC and RRMF domains that altered the function of
cytosine DNA demethylation.

2.3. The osros1a Mutations Cause Complete Male Sterility

All three obtained osros1a mutants were completely male sterile, exhibiting shrunk
spikelet morphology and smaller anthers compared to WT controls (Figure 5A–C). To
understand the male sterile phenotype of osros1a mutants, we then examined the starch-
staining capacity of pollen grains and found that the pollen grains of the mutants were not
stained by I2-KI solution, indicating that they contained little or no starch. While the pollen
grains were stained dark within WT controls (Figure 5D–F), and the fertile seed percentage
in all mutants were 0% compared to WT controls (77%) (Figure 5G). Furthermore, at the
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harvest stage, agronomic traits were examined and no significant difference was found
between the WT and osros1a mutants (Figure S2). The plant height only increased by 2.3%
and 0.4% in S6 and S16 mutants, respectively, when compared to WT controls. Similarly, the
primary branch number per panicle increased in S6 and S16 by 2.7% and 5.4% compared to
WT controls. While in the case of panicle length, a 2.9% decrease was observed only in S16
compared to WT controls. Moreover, the tiller number decreased by 1.3% in S16 mutants
only compared to WT (Figure S2).
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To further investigate the cellular defects in the osros1a mutants, we performed trans-
verse section analysis on the anthers of the WT and osros1a mutant. Previous studies have
divided the development of rice anthers into 14 stages based on the morphological land-
marks of cellular events [28,29]. The anther sections were observed at developmental stages
6, 9, 10 and 13 under light microscopy. At stage 6 normal epidermis, endothecium, middle
layer, tapetum, and microspore mother cells (MMC) were found in both WT and the osros1a
S16 mutant (Figure 6A,E). At stage 9, the microspores were released from tetrads, tapetal
cells had deeply stained cytoplasm and the middle layer was hardly visible, and the middle
layer appeared degenerated and almost invisible in both mutant and WT. However, the
microspores of the WT were globular, whereas those of the osros1a mutant were irregularly
shaped (Figure 6B,F). At stage 10, in contrast to the WT microspores that were vacuolated
and round, the osros1a mutant microspores appeared degraded and irregularly shaped
(Figure 6C,G). At stage 13, the WT anther locule was full of mature pollen grains with
completely formed pollen walls and starch accumulation, which can be deeply stained
with toluidine blue. By contrast, the pollen grains of the osros1a mutant were aborted
(Figure 6D,H), indicating that pollen viability and function are mainly affected by the
accumulation of starch and lipids [28,30].



Int. J. Mol. Sci. 2022, 23, 11349 7 of 15Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. The male fertility phenotype of WT and the osros1a mutants. (A) Comparison of the mature 
panicles between WT and osros1a mutants showed that osros1a mutants failed to produce seeds. 
Scale bars 10 cm. Comparison of (B) the spikelets and (C) the anthers phenotype between WT and 
osros1a mutants before anthesis. Scale bars 1 mm. (D–F) The pollen grains of WT and osros1a mutants 
staining with I2-KI staining, respectively. Compared to (D) WT, (E) S6, and (F) S16 failed to form 
viable pollen. Magnified 20X. (G) The fertile seed percentage in WT and S6, S7, S16 mutants. ** 
denote significant differences from WT at p < 0.01 level. 

To further investigate the cellular defects in the osros1a mutants, we performed trans-
verse section analysis on the anthers of the WT and osros1a mutant. Previous studies have 
divided the development of rice anthers into 14 stages based on the morphological land-
marks of cellular events [28,29]. The anther sections were observed at developmental 
stages 6, 9, 10 and 13 under light microscopy. At stage 6 normal epidermis, endothecium, 
middle layer, tapetum, and microspore mother cells (MMC) were found in both WT and 
the osros1a S16 mutant (Figure 6A,E). At stage 9, the microspores were released from tet-
rads, tapetal cells had deeply stained cytoplasm and the middle layer was hardly visible, 
and the middle layer appeared degenerated and almost invisible in both mutant and WT. 
However, the microspores of the WT were globular, whereas those of the osros1a mutant 
were irregularly shaped (Figure 6B,F). At stage 10, in contrast to the WT microspores that 
were vacuolated and round, the osros1a mutant microspores appeared degraded and ir-
regularly shaped (Figure 6C,G). At stage 13, the WT anther locule was full of mature pol-
len grains with completely formed pollen walls and starch accumulation, which can be 
deeply stained with toluidine blue. By contrast, the pollen grains of the osros1a mutant 
were aborted (Figure 6D,H), indicating that pollen viability and function are mainly af-
fected by the accumulation of starch and lipids [28,30]. 

 

Figure 5. The male fertility phenotype of WT and the osros1a mutants. (A) Comparison of the mature
panicles between WT and osros1a mutants showed that osros1a mutants failed to produce seeds. Scale
bars 10 cm. Comparison of (B) the spikelets and (C) the anthers phenotype between WT and osros1a
mutants before anthesis. Scale bars 1 mm. (D–F) The pollen grains of WT and osros1a mutants staining
with I2-KI staining, respectively. Compared to (D) WT, (E) S6, and (F) S16 failed to form viable pollen.
Magnified 20X. (G) The fertile seed percentage in WT and S6, S7, S16 mutants. ** denote significant
differences from WT at p < 0.01 level.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. The male fertility phenotype of WT and the osros1a mutants. (A) Comparison of the mature 
panicles between WT and osros1a mutants showed that osros1a mutants failed to produce seeds. 
Scale bars 10 cm. Comparison of (B) the spikelets and (C) the anthers phenotype between WT and 
osros1a mutants before anthesis. Scale bars 1 mm. (D–F) The pollen grains of WT and osros1a mutants 
staining with I2-KI staining, respectively. Compared to (D) WT, (E) S6, and (F) S16 failed to form 
viable pollen. Magnified 20X. (G) The fertile seed percentage in WT and S6, S7, S16 mutants. ** 
denote significant differences from WT at p < 0.01 level. 

To further investigate the cellular defects in the osros1a mutants, we performed trans-
verse section analysis on the anthers of the WT and osros1a mutant. Previous studies have 
divided the development of rice anthers into 14 stages based on the morphological land-
marks of cellular events [28,29]. The anther sections were observed at developmental 
stages 6, 9, 10 and 13 under light microscopy. At stage 6 normal epidermis, endothecium, 
middle layer, tapetum, and microspore mother cells (MMC) were found in both WT and 
the osros1a S16 mutant (Figure 6A,E). At stage 9, the microspores were released from tet-
rads, tapetal cells had deeply stained cytoplasm and the middle layer was hardly visible, 
and the middle layer appeared degenerated and almost invisible in both mutant and WT. 
However, the microspores of the WT were globular, whereas those of the osros1a mutant 
were irregularly shaped (Figure 6B,F). At stage 10, in contrast to the WT microspores that 
were vacuolated and round, the osros1a mutant microspores appeared degraded and ir-
regularly shaped (Figure 6C,G). At stage 13, the WT anther locule was full of mature pol-
len grains with completely formed pollen walls and starch accumulation, which can be 
deeply stained with toluidine blue. By contrast, the pollen grains of the osros1a mutant 
were aborted (Figure 6D,H), indicating that pollen viability and function are mainly af-
fected by the accumulation of starch and lipids [28,30]. 

 
Figure 6. Transverse section analysis of the anther development in WT and osros1a S16 mutant.
Locules from the anther section of WT and S16 at (A,E) stage 6 (the microspore mother cells
stage), (B,F) stage 9 (the young microspore stage), (C,G) stage 10 (the vacuolated pollen stage),
and (D,H) stage 13 (the mature pollen stage). WT sections are shown in (A–D); osros1a S16 mutant in
(E–H). E, epidermis; T, tapetum; En, endothecium; MMC, microspore mother cells; Msp, microspores;
MP, mature pollen; DMsp, degenerated microspores; DP, the degenerated pollen. Scale bar: 50 µm.

Sugar supply and starch accumulation are essential for pollen grain development that
will further affect seed maturation [31–33]. Therefore, the total soluble sugar and starch
contents were analyzed in the anthers to investigate whether the OsROS1a gene can affect
sugar and starch synthesis in pollen grains. The reduction of 36.2% and 56.5% soluble sugar
was observed in S6 and S16 mutants, respectively, compared to WT controls (Figure 7A),
and similarly 37.1% and 57.9% starch content was significantly (p < 0.01) decreased in both
mutants, respectively, compared to WT controls (Figure 7B) This was consistent with the
pollen staining and transverse section analysis (Figures 5 and 6), confirming that the osros1a
mutation caused complete male sterile in rice.
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2.4. The Reduction Expression of Genes Involved in Anther and Pollen Development in
Osros1a Mutants

To identify the potential targets responsible for the osros1a mutant phenotype, qRT-
PCR was performed to validate the expression of anther and pollen development-related
genes in young panicles. The results showed that the expression of OsPKS2 and CYP704B2
genes was reduced in S6 and S16 mutants compared to WT controls (Figure 8B,D). It might
be suggested that OsROS1a may involve in the activation of these genes by the process of
DNA demethylation. Interestingly, the OsROS1a gene in mutants had half the expression
level of WT controls (Figure 8A), suggesting that the frame-shift mutations that altered the
Pem-CXXC and RRMF domains could cause the sterility phenotype in rice. The expression
of genes related to soluble sugar and starch synthesis were further investigated to validate
the previously obtained soluble sugar and starch content analysis results and found that
the expression of CSA was decreased in mutants compared to WT controls (Figure 8G), and
the expression of other genes was not significantly changed (Figure 8C,E,F,H) These results
are consistent with the pollen staining and transverse section analysis (Figures 5 and 6),
showing that the osros1a mutant promotes the pollen sterility phenotype.

2.5. DNA Hypermethylation of OsPKS2 Gene Promoter in Osros1a Mutants

To reveal the function of OsROS1a in DNA demethylation in pollen, the DNA methy-
lation level of the 221 bp OsPKS2 gene promoter was investigated (Figure 9A). The methy-
lation levels at both CG and CHG sites of the OsPKS2 promoter were increased in osros1a
mutants compared to WT controls (Figure 9B,C). In CG residues, 96.15% and 100% methy-
lation levels were observed in S6 and S16 mutants, respectively, while only 51.79% in WT
controls. In CHG residues, methylation levels increased from 54.29% in WT controls to
66.15% and 67.69% in S6 and S16 mutants, respectively. However, no obvious difference
was observed in CHH residues between WT and S16, whilst a decrease was observed
in S6 mutants (Figure 9B,C). These results suggest that DNA hypermethylation in the
promoter region of OsPKS2 may repress the gene expression. While DNA methylation of
the TDR promoter was not significantly changed between WT and osros1a mutants in all
three contexts (Figure S3).
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3. Discussion

The loss function of the OsROS1a gene caused complete male sterility with degenerated
pollen (Figures 5 and 6), which was consistent with previous studies [10–12]. Starch is
the key storage reservoir in matured pollen grains in cereal crops, which is important
for pollen germination, pollen tube growth, supplying energy and a carbon skeleton. In
pollen grains, the starch granule accumulation starts at stage 11 and prolongs throughout
stage 12 until maturation [29]. OsBZR1 gene was expressed in anther vascular tissue,
tapetum and the developing seeds, and OsBZR1 directly promotes CSA expression thus
activating downstream gene expression [30]. Similar to sugar partitioning in rice, CSA is a
key transcriptional regulator during male reproductive development, and mutation in the
CSA results in carbohydrate level reduction in the later anthers and male sterility [33]. The
deficiency of starch synthesis in pollen grains could cause male sterility [34–37]. Our study
showed that the soluble sugar and starch contents were significantly reduced in pollen
from osros1a mutants compared to WT controls (Figure 7), which could be the reason for
male sterility affected by disrupted OsROS1a gene function.

Previous research has revealed that OsPKS2 [23], TDR [25], MEL1 [26], and CYP704B2 [27]
are involved in anther and pollen development and mutation in these genes caused rice
male sterility. The expression of OsPKS2 and CYP704B2 genes were reduced in osros1a
mutant anther compared to WT controls (Figure 8), suggesting that OsROS1a may be
involved in the activation of these genes, loss-of-function of OsROS1a could degenerate
the tapetum and form abnormal pollen walls causing male sterility (Figures 5 and 6). The
DNA demethylase genes contain a conserved DNA glycosylase domain, which can be
classified into monofunctional and bifunctional types. DNA glycosylase is bifunctional
in plants removing the 5-meC base and then cleaving the DNA backbone at the abasic
site [38]. ROS1 is a bifunctional DNA glycosylase that can execute DNA demethylation,
especially gene promoter DNA methylation by a base excision repair pathway [8,38]. The
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reduced expression of pollen and anther development, and starch- and soluble sugar-
related genes in osros1a mutants demonstrated that OsROS1a may regulate the activation
of these genes by controlling their DNA methylation. Bisulfite sequencing results showed
that the CG and CHG methylations in the OsPKS2 gene promoter were significantly
increased in the osros1a mutants when compared to WT controls, but not CHH methylation
(Figure 6), suggesting that OsROS1a facilitated CG and CHG demethylation. However,
DNA methylation of the TDR promoter was not significantly changed between WT and
osros1a mutants (Figure S2), indicating that the demethylation action of the OsROS1 gene
on pollen and anther development-related genes was not global, but gene-specific, which
was also found in SSP genes in maize [39].

The expression of the OsROS1a gene in the mutants was half that of WT controls
(Figure 8), and 1807, 1807 and 1820 amino acids were predicted for S6, S16 and S7, re-
spectively, which resulted in the frame-shift mutation to truncate the Pem-CXXC and
RRMF domains (Figures 1 and 3). The whole DNA glycosylase domain, followed by an
EndIII_4Fe-4S domain and two putative nuclear localization signals are complete [15]. The
C-terminal of DME and ROS1 including divergent, circularly Per-CXXC and RRMF domains
are conserved [40], which has a function in excising 5-meC in vitro [5,41,42]. The zinc finger
CxxC (ZF-CxxC) in DNA methyltransferase 1 (DNMT1) can block the catalytic activity of
DNMT1 specifically on non-methylated DNA [43]. Furthermore, the OsROS1a knock-in
mutant disrupted the whole gene affecting both male and female gametophytes [10], while
truncation the RRMF domain in OsROS1a knock-out mutants using CRISPR/Cas9 induced
pollen and embryo sac defects in rice [11]. Recently, a 75 bp deletion caused the complete
loss of the Per-CXXC domain, but retention of the whole RRMF domain, which showed
partially sterile pollen in rice [44]. All these results suggest that the RRMF domain in
OsROS1a could be the main factor in the sterility in rice. The RNA-Seq and whole-genome
bisulfite sequencing will be the future work, which will clearly clarify the molecular mech-
anism of how the OsROS1a gene affects the sterility phenotype in rice through its DNA
demethylation function.

4. Materials and Methods
4.1. Identification of OsROS1a Homologous Genes and Phylogenetic Analysis

The gene structure (Exon-intron distribution) and protein (CDS) sequence of the DNA
demethylase gene OsROS1a was obtained from Phytozome (https://phytozome-next.jgi.
doe.gov/) (accessed on 19 October 2018). The conserved domain sequence position of the
OsROS1a protein was searched using the Inter Pro software. The protein sequences of
OsROS1a were used to identify the homologous gene copies in 52 plant species by BLAST
search. The protein sequences of all identified OsROS1a homologous genes were aligned
via Muscle by the default settings with manual alterations. The phylogenetic analysis was
done by the neighbor-joining (NJ) method using MAGA-X with the default parameters,
and the bootstrap test with 1000 replicates was made to determine the confidence of the
evolutionary tree [45]. The conserved DNA glycosylase domains (151 amino acid sequences)
were analyzed by the WebLogo program (http://weblogo.berkeley.edu/) (accessed on 15
January 2019).

4.2. OsROS1a Gene Editing Mutants Generated by CRISPR/Cas9

The CRISPR/Cas9 system was used for generating osros1a mutants [46]. Two single
guide RNAs (sgRNAs) were designed to precisely target the thirteenth exon of the OsROS1a
gene by using the web tool (http://cbi.hzau.edu.cn/crispr/) (accessed on 19 December
2016), which were ligated with rice OsU6a and OsU6b small nuclear RNA promoters,
respectively. The sgRNAs were cloned into a binary vector that contained the sgRNA and
Cas9 expression cassettes. Then the binary vector was transferred into rice (Nipponbare)
calluses by following the method of Agrobacterium-mediated transformation of Japonica Rice.

Genomic DNA was isolated from the leaves of the rice transgenic plants to detect the
mutation types. The Cas9-specific primers were used to identify the successful transgenic

https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
http://weblogo.berkeley.edu/
http://cbi.hzau.edu.cn/crispr/
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plants by PCR and Figure S4A showed the gel electrophoresis image. And the target gene-
specific primers were used to amplify and sequence the DNA fragments containing the
target sequences (Figure S4B). Then the DSDecode (http://skl.scau.edu.cn/dsdecode/) (ac-
cessed on 12 September 2017), a web-based tool, was used to further analyze the genotypes
of the targeted mutations.

4.3. Pollen Fertility Examination and Histochemical Assay

Floral organs were photographed with a dissecting microscope. The anthers from the
wild type (WT) and osros1a mutants were sampled from the spikelets just before flowering
and a 1% potassium iodide (I2-KI) solution was used to stain the pollen grains. A Nikon
eclipse Ni fluorescence microscope was used to visualize and photograph the stained
pollen grains. For transverse section analysis, spikelets of various anther development
stages according to the previous study [29] were collected and frozen in OCT compound
(Tissue-Tek) (Sakura Finetek, Torrance, CA USA). Samples were sectioned with the help of a
freezing microtome (Shandon Cryotome FE) (ThermoFisher Scientific, Waltham, MA USA).
Then, 0.05% toluidine blue dye was used to stain the crossed sections and microscopic
images were captured by a Nikon eclipse Ni fluorescence microscope.

4.4. Total Soluble Sugar and Starch Contents Analysis

The 0.05 g anthers from WT and osros1a mutants were weighed and ground in 5 mL
of 80% ethanol according to the Anthrone method [47]. The mixed samples were cen-
trifuged at 8000 rpm and 1 mL supernatant was obtained. After centrifugation, the pellets
were used for starch analysis. The 5 mL anthrone was mixed with 1 mL supernatant
and heated at 100 ◦C in a water bath for 10 min. The mixture was cool down, and the
sugar content was then determined by a spectrophotometer at a wavelength of 620 nm.
Starch analysis was done by perchloric acid digestion and starch content was determined
spectrophotometrically at 630 nm wavelength.

4.5. Gene Expression by RT-PCR Analysis

Total RNA was extracted from young panicles of WT and osros1a mutants using
TRIzol® Reagent (ThermoFisher, Scientific, Waltham, MA USA). RT reagent Kit PrimeScriptTM

having gDNA Eraser (Takara, Japan) was used to eliminate genomic DNA residues, then
cDNA was synthesized. For RT-PCR reactions, the first strand of cDNA was used with
gene-specific primers and the OsACTIN gene was used as an internal control (Table S1).

4.6. DNA Methylation Analysis

For bisulfite sequencing of OsPKS2 and TDR gene promoters, genomic DNA from
young panicles was extracted by the CTAB method. The EpiTect Bisulfite Kit from Qiagen
was used for bisulfite conversion of genomic DNA following the manufacturer’s instruc-
tions. The primers were designed using Methyl Primer Express v1.0 (Applied biosystem)
(Table S1). DNA samples were amplified by PCR and separated by 1.5% agarose gel. Then,
PCR products were purified with the gel purification kit, and then cloned into the pMD19-T
vector and sequenced. Kismeth tool (http://katahdin.mssm.edu/kismeth/revpage.pl)
(accessed on 21 October 2019) was used for DNA methylation analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911349/s1, Figure S1: DNA sequencing chromatograms
of osros1a mutants; Figure S2: Phenotype comparison of the WT with osros1a mutants; Figure S3: The
DNA methylation of the TDR gene promoter in young panicle; Figure S4: PCR of OsROS1a gene
editing plants (A) with Cas9 primers and (B) with knockout target-specific primers; Table S1: Primers
used in this study.

http://skl.scau.edu.cn/dsdecode/
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