
ll
OPEN ACCESS
iScience

Article
Genome-scale metabolic modelling of the human
gut microbiome reveals changes in the glyoxylate
and dicarboxylate metabolism in metabolic
disorders
Ceri Proffitt,

Gholamreza

Bidkhori, Sunjae

Lee, ..., Mathias

Uhlen, David L.

Moyes, Saeed

Shoaie

saeed.shoaie@kcl.ac.uk

Highlights
Metagenomic analysis

highlights key common

bacterial species across

metabolic diseases

Metabolic models showed

higher levels of acetate

produced by disease

enriched bacteria

Reaction analysis revealed

increases in the glyoxylate

and dicarboxylate

pathway

Metabolomics and

modeling analysis showed

the potential role of

tartrate metabolism

Proffitt et al., iScience 25,
104513
July 15, 2022 ª 2022 The
Authors.

https://doi.org/10.1016/

j.isci.2022.104513

mailto:saeed.shoaie@kcl.ac.uk
https://doi.org/10.1016/j.isci.2022.104513
https://doi.org/10.1016/j.isci.2022.104513
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104513&domain=pdf


iScience

Article

Genome-scale metabolic modelling of the human gut
microbiome reveals changes in the glyoxylate and
dicarboxylate metabolism in metabolic disorders

Ceri Proffitt,1 Gholamreza Bidkhori,1 Sunjae Lee,1 Abdellah Tebani,2 Adil Mardinoglu,1,2 Mathias Uhlen,2

David L. Moyes,1 and Saeed Shoaie1,2,3,*

SUMMARY

The human gut microbiome has been associated with metabolic disorders
including obesity, type 2 diabetes, and atherosclerosis. Understanding the contri-
bution of microbiome metabolic changes is important for elucidating the role of
gut bacteria in regulating metabolism. We used available metagenomics data
from thesemetabolic disorders, together with genome-scale metabolic modeling
of key bacteria in the individual and community-level to investigate the mecha-
nistic role of the gut microbiome in metabolic diseases. Modeling predicted
increased levels of glutamate consumption along with the production of
ammonia, arginine, and proline in gut bacteria common across the disorders.
Abundance profiles and network-dependent analysis identified the enrichment
of tartrate dehydrogenase in the disorders. Moreover, independent plasma
metabolite levels showed associations between metabolites including proline
and tyrosine and an increased tartrate metabolism in healthy obese individuals.
We, therefore, propose that an increased tartrate metabolism could be a signifi-
cant mediator of the microbiome metabolic changes in metabolic disorders.

INTRODUCTION

In recent years we have seen significant advances in elucidating the importance of the gut microbiome in

human health and disease (Gentile and Weir, 2018; Zomorrodi and Maranas, 2012). Microbial communities

have an intimate symbiotic relationship with their host, promoting protection against pathogenic mi-

crobes, maintenance of homeostasis, and processing of nutrients otherwise indigestible by humans (Zhang

et al., 2019). Shifts and alterations in the microbiome have been linked to different environmental factors

including age, geography, and body mass index (BMI) (Le Chatelier et al., 2013b; Yatsunenko et al.,

2012). In addition, diet has a significant impact on the microbiome (David et al., 2014). Various diseases

have been associated with altered microbiome composition, and many studies have shown these commu-

nities can contribute tometabolic inflammation andmetabolic disorders (Fan and Pedersen, 2021; Johnson

et al., 2017; Proffitt et al., 2020; Tilg et al., 2020). There are several studies linking major metabolic disorders

(type 2 diabetes (T2D), obesity, and atherosclerosis cardiovascular disease (ACVD)) with changes in gut mi-

crobiota composition (Karlsson et al., 2012, 2013a; Le Chatelier et al., 2013b). These dysbiotic changes re-

sulting from a loss in stability of the gut microbiome drive changes in the gut ecosystem that result in a

reduction of microbial diversity (Litvak et al., 2018). In turn, this results in shifts in key metabolite production.

For example, short-chain fatty acids (SCFAs) such as acetate regulate immune cell production and help

maintain intestinal homeostasis (Yang et al., 2020) and have been linked with promoting obesity and insulin

resistance (Perry et al., 2016). Likewise, amino acid (AA) metabolism in the gut microbiome has been

observed to have a large impact on health and disease (Cook and Sellin, 1998; Oluwagbemigun et al.,

2020). In particular, plasma glutamate levels positively correlate with increased BMI and with fasting triglyc-

erides, both of which can lead to insulin resistance (Palomo-Buitrago et al., 2019).

Despite a large number of gut metagenomic studies in metabolic diseases, the contribution of specific

microbes to host metabolism during metabolic disease, systematic analysis, and modeling has not been

mechanistically studied. In particular, little is known about the specific impact of microbe-microbe meta-

bolic interactions. Recent advances in the metabolic modeling and reconstruction of genome-scale

metabolic models (GEMs) have enabled the study of species-specific metabolisms and metabolic
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interactions within microbial communities (Gu et al., 2019; Magnusdottir et al., 2017; Shoaie et al., 2015).

These computational models provide a platform that can be used to explore the genotype-phenotype

relationships thereby allowing us to predict different phenotypic possibilities for microbes under

different sets of constraints (Karlsson et al., 2011). This facilitates the study of interactions between spe-

cies, and the quantification of growth, consumption, and production of metabolites. Using constraint-

based modeling, diverse phenotypes under different conditions, such as nutrient availability can be

simulated (Bordbar et al., 2014).

In this study, we focused on gut microbial metabolic modeling of three main metabolic disorders, ACVD

(Jie et al., 2017; Karlsson et al., 2012), obesity (Le Chatelier et al., 2013b; Qin et al., 2010), and T2D (Karls-

son et al., 2013a; Qin et al., 2012a). We used publicly available gut metagenomics datasets from these

cohorts along with a previously generated list of significantly associated species in each study from

our recent human gut microbiome atlas; Database: www.microbiomeatlas.com (Shoaie et al., 2021).

These datasets were previously analyzed based on the recent gut integrated gene catalog (Wen

et al., 2017), and the metagenome species profiled using our recently updated 1,989 Metagenomic Spe-

cies Pan-genomes (MSPs) (Plaza Oñate et al., 2018). We applied GEMs for these species to investigate

how gut microbiome metabolism varies between these three metabolic disorders. Individual and com-

munity-level modeling were performed together with reaction abundance to pinpoint specific bacterial

metabolites and reactions associated with each metabolic disorder. Our results provide insights into the

mechanistic role of gut microbiome in metabolic diseases and how this role is potentially similar between

these three pathologies. Our models predicted the results of previous studies such as an increase in ac-

etate (Schwiertz et al., 2010) and depletion of butyrate levels (Arora and Bäckhed, 2016). In addition, our

modeling indicated a disparity in the production of amino acids including glutamate, proline, tyrosine,

and valine in the gut microbiome between the healthy and disease cohorts. Performing reaction abun-

dance analysis between cohorts demonstrated multiple reactions involving tartrate metabolism which

were enriched in all three disorders. We performed personalized community modeling analysis for two

of the cohorts, leading to further clarification of bacterial metabolism differences between healthy and

diseased subjects. These findings were further evaluated by investigating the link between the tartrate

metabolism and circulating amino acid levels using the host blood metabolites thus showing the poten-

tial impact of the tartrate on the host metabolism.

RESULTS

To investigate the individual metabolic roles of the microbiome in metabolic disorders of the host, we used

gut metagenomics data from six previous studies on obesity, T2D, and ACVD (Jie et al., 2017; Karlsson

et al., 2012, 2013b; Le Chatelier et al., 2013b; Qin et al., 2010, 2012a). This amounted to 1,443 subjects in

total; 278 obese patients and 263 matched controls; 271 patients with T2D and 231 matched controls;

and 219 patients with ACVD and 181 matched control samples (Tables 1 and 2). Previously, we have

analyzed these data with an updated gut gene catalog and MSP profile (Shoaie et al., 2021) while here

we performed the analysis to choose the significant MSPs and their corresponded GEMs. We then applied

individual-level constraint-based modeling of these MSPs to understand the contribution of each species

to the overall metabolic changes. In addition, we performed personalized community modeling together

with personalized reaction abundance analysis. We also investigated the plasma metabolite association

from a separate cohort of Swedish patients to evaluate the modeling predictions.

Table 1. Overview of metabolic disease cohorts per cohort

Cohort

Geographical

region

Number of

case samples

Number of

control samples

Accession

codes

Sequencing

platform

T2D cohort 1 China 71 192 SRA045646

SRA050230

Illumina GAIIx

and HiSeq 2000

T2D cohort 2 Sweden 93 39 ERP002469 Illumina HiSeq2000

Obesity Cohort 1 Denmark 71 89 ERA000116 Illumina

Obesity Cohort 2 Denmark 207 174 ERP003612 Illumina

ACVD cohort 1 China 214 171 ERP023788 Illumina HiSeq2000

ACVD cohort 2 Sweden 5 10 SRA059451 Illumina HiSeq2000
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Identifying common and unique metagenome species across the three metabolic disorders

Phyla level analysis of the MSP profiles between patient and control groups in all three disorders showed

Bacteroidetes and Firmicutes had consistent significant differences (FDR <0.01) (Figure S1). Comparing

obese samples to their matched controls showed an increase in the abundance of Bacteroidetes, and

decrease in the abundance of Melainabacteria, Verrucomicrobia, Tenericutes, Synergistetes, and Firmi-

cutes phyla. In contrast, we found that the abundance of Bacteroidetes was decreased in patients with

T2D and ACVD while other phyla, including Actinobacteria and Firmicutes, were increased.

For a deeper insight at the species level, we identified significant MSPs within patients from all diseases

(FDR <0.01) (Tables S1, S2, and S3). The highest abundance of enriched MSPs (fold-change) was in ACVD

(65%), while there were 44 and 49% disease-enriched MSPs in obesity and T2D, respectively (Figure S2).

We identified 202 statistically different (FDR<0.01) MSPs between patient and control groups in all co-

horts; 139 significant MSPs in Obesity, 12 significant MSPs in T2D and 51 significant MSPs in ACVD.

To evaluate the median abundance of the MSPs for the patients and matched controls, MSPs were

selected based on having different medians between the two groups (17 MSPs for obesity, 6 for T2D,

and 25 for ACVD). Grouping these together and removing any duplicated MSPs yielded 42 unique sig-

nificant MSPs (Figure 1) (Figure S3, Table S4), with 33 MSPs out of the selected 42 from the phylum Fir-

micutes. The chosen 42 MSPs were not all significant in each of the 3 disorders. To determine if each MSP

was enriched in the disease cases, we only considered the disease in which the MSP showed significance.

This gave 15 disease-enriched MSPs and 26 control-enriched MSPs. Out of the six MSPs significant in

ACVD and T2D, four were depleted in both diseases and one was enriched while Clostridium phoceensis

was not consistent across the two diseases, being decreased in patients with ACVD but increased in pa-

tients with T2D.

Genome-scale metabolic modeling showed changes in short-chain fatty acids and amino acid

metabolism in metabolic diseases

In order to investigate the microbe-microbe interactions, we applied 37 functional GEMs for the MSPs

associated with pathology. 11 models represented MSPs increased in ACVD, T2D, and obesity while 26

models represented MSPs decreased in all three disorders. A further model represented the inconsistent

species C. phoceensis identified above. The selected models contained on average 1,717 reactions, 1,684

metabolites, and 1,022 genes with an average growth rate of 0.89 h�1 (Figure S4). The majority of the

selected GEMs belonged to Lachnospiraceae and Ruminococcaceae families with 19 and 5 models,

respectively. Furthermore, we showed that the models are metabolically distinct as determined by their

Jaccard index, the average Jaccard index was equal to 0.637 (Figure 2A, Table S5). The models were as-

sessed by constraining exchange reactions with a high fiber omnivorous diet as an input and setting

biomass as the objective function (Bidkhori et al., 2021). We clustered the flux predictions from the models

based primarily on the models’ enrichment in diseased patients and secondly on which disease the MSP

was significantly enriched/depleted in (Figure 2B). The metabolism of sugars and amino acids was pre-

dicted in these models. Using sucrose, starch, fructose, and glucose which are available from the high fiber

diet as inputs, models showed they produce indole, ammonia, and amino acids. In the species-level sim-

ulations, SCFAs were also produced; 35 models secreted acetate, 10 secreted butyrate, and 12 secreted

propionate (Table S6). After comparing the fluxes in individual GEMs, we compared the average flux across

those MSPs increased in disorder versus decreased. Average flux based on microbiome compositional

changes in diseases showed the flux exchange of key metabolites such as SCFAs and amino acids was

altered. Acetate and propionate flux were increased in species with higher abundances in patients from

Table 2. Metadata on metabolic disease cohorts per disease

Total Female Male Age average BMI average

T2D case 271 95 59 59.16 25.60

T2D control 231 77 66 47.36 23.49

Obesity case 278 126 124 56.79 33.55

Obesity control 263 107 105 56.12 23.49

ACVD case 219 33 79 62.35 24.83

ACVD control 181 51 40 60.70 24.75
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all disease cohorts (Figure 2C). The predicted flux of butyrate showed lower amounts being produced by

species increased in disease. There were also notable differences between the branch chain amino acid

(BCAA) flux profiles, with average valine production higher than those MSPs increased in disease. Finally,

there were increases in the average production of ammonia and proline, as well as increased consumption

of glutamate, glycine, alanine, and serine by those models representing species enriched in disease.

(Figure 2D).

Enrichment of tartrate metabolism among the three metabolic disorders

To further understand the functional behavior of the microbiome, we performed reaction abundance

analysis for each individual using the MIGRENE Toolbox (Bidkhori et al., 2021) (Tables S7, S8, and S9,

STAR Methods). A reaction abundance matrix was constructed for all samples, based on the MSP abun-

dance table and the reactions present within the GEMs. Statistical analysis was then performed based on

comparing the diseased cohorts to their matched controls. There were in total 820 significant reactions in

obesity, 939 reactions in T2D, and 1,105 reactions in ACVD, compared to their healthy cohorts (FDR

<0.01). From this, there were 214 unique reactions that were significant and present in all three diseases.

We mapped the 214 significant reactions to KEGG orthologs (KOs). This resulted in 86 significant KOs

(FDR <0.01) (Figure S5, Table S10). However, only five of these reactions from two different KOs were

enriched consistently across all three diseases. To define the molecular functionality of these reactions,
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Figure 1. A schematic representation of the 42 unique and significant MSPs

For each bacterial species, the red bar shows represent the enrichment in T2D, the blue bar represents the enrichment in obesity and the yellow bar

represents the enrichment in ACVD. Fold-change>0 shows the species is increased in disease, fold-change <0 shows the species is decreased in disease. An

asterisk (*) next to a bar indicates the bacterial species was statistically significant in that disease when compared to the matched controls. A filled-in black

circle next to the species name indicates a genome-scale metabolic model was available for that bacterial species, an empty circle shows there is no model

available.
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we mapped the reactions to the Kyoto Encyclopedia of Genes and Genomes database (KEGG) (Kanehisa

et al., 2017) metabolic pathways (Figure 3A). From the five enriched reactions, two were involved in

tartrate dehydrogenase and one with tartrate decarboxylase. These reactions are from the glyoxylate

and dicarboxylate metabolic pathways.

A C D

E

B

Figure 2. An overview of the individual genome-scale models and their individual fluxes

(A) Jaccard index of the models, showing similarity between the different species based on reactions. Distances range 0-1 a score of one represents two

models which are identical, a score of 0 represents two models which have no overlapping reactions.

(B) Heatmap showing the flux for different metabolites of the models constrained by a high fiber omnivore diet, with the objective function to optimize

biomass, using COBRA Toolbox. For visualization, flux was not shown for greater or lesser than +/�1.

(C) The average flux from the models which were increased in disease (pink) compared to the average flux from the models decreased in disease (blue) for

SCFAs.

(D) The average flux from the models which were increased in disease (pink) compared to the average flux from the models decreased in disease (blue) for

BCAAs.

(E) The average flux from the models increased in disease (pink) compared to the average flux from the models decreased in disease (blue) for metabolites

that show a difference between the average flux amounts. For C-E negative flux implies the metabolite is up taken by the model, positive flux implies the

model secretes this metabolite.
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As the reaction abundance analysis looks at the reactions in all models and is calculated based on the abun-

dance of the corresponding MSPs consequently the reactions highlighted will be present in the 37 GEMs

we used in the individual modeling. The corresponding 86 KOs from the reactions were present across the

37 GEMs, from this six reactions had higher presence in the GEMs for species enriched in disease (Fig-

ure 3B). These six reactions included tartrate dehydrogenase.

Microbial community modeling shows decreased production of acetate and butyrate in

patients with T2D

Following the analysis of individual GEMS and their potential contribution to metabolism in the gut micro-

biome, it is important to look at the microbial community as an integrated system. Hence, we developed

147 community models for each individual based on their species abundance for the two Swedish cohorts

(93 T2D case, 36 T2D control, 5 ACVD case, and 10 ACVD control), using the MIGRENE Toolbox (Bidkhori

et al., 2021). We ran simulations on these community models and implemented an optimization for the total

biomass of the community model (Method). This wasmaximized such that the biomass of individual models

within the community was maximized. The community models were constrained with a high fiber omnivo-

rous diet, which only limited the uptake exchange reactions in the models. The average biomass produc-

tion was 1.64 mmol/gDW/hr for the community models.

The community models for individuals in the Swedish T2D cohort showed a common theme of lower pro-

duction of key metabolites in the T2D communities. We observed on average the T2D community

models predicted lower secretion of acetate and butyrate (Figure 4A), BCAAs (Figure 4B) and lysine,

tyrosine, and histidine (Figure 4C) when compared to the average production flux from the control

communities.

The community modeling for individuals in ACVD cohort predicted higher production of the butyrate and

acetate, and the tyrosine and histidine in the diseased models (Figures 4D–4F), while the valine and the

lysine were predicted with higher production in the control community models.

These findings are relevant as they highlight how the community behaves differently from the individual

models. For example, the production of acetate which was shown to be highly secreted by the individual

models increased in disease now shows lower production from the T2D community models when

compared to the control community models. Also, in the ACVD community models, we observed the

BCAA production differs from that predicted in the individual modeling.
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Figure 3. The presence of the glyoxylate and dicarboxylate metabolism in reaction analysis and the individual models

(A) A pathway showing four of the reactions upregulated in the three diseases. Red arrows indicate reactions from the glyoxylate and dicarboxylate

metabolism, purple arrows indicate reactions from the Butanoate metabolism. On the right, the bar-plot shows the enrichment of these four reactions in

each disease.

(B) Reaction presence in the models. Reactions were only considered if they were significant (Benjamini-Hochberg, Q < 0.01) in every disease and there was

over 20% difference in the abundance between the presence of the increased MSPs and decreased MSPs. Red shows the reaction is present in the model,

blank white shows the reaction is absent.
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Bacterial tartrate metabolism showed a significant association with host plasma metabolites

To evaluate the importance of the microbiome tartrate and glyoxylate cycle in obesity, we investigated the

plasma level of metabolites and gut metagenome from publicly available data on the longitudinal Swedish

wellness study (Olsson et al., 2022; Tebani et al., 2020). Plasma metabolite profile allows us to link the gut

microbial metabolism to the host physiology. This study used 101 healthy subjects with no clinically signif-

icant health complications ranging between 50 and 65 years of age. In this study stool and plasma samples

have been taken from the patients. Previously, we performed the reaction abundance analysis on the gut

microbiome of these individuals (Bidkhori et al., 2021).

We performed association analysis between the reaction abundance profile andmetabolomics usingmulti-

variate association analysis. This metabolic analysis showed the association between reactions from the

glyoxylate and dicarboxylate pathway and plasma metabolites in obese individuals of this cohort

compared to non-obese ones. We used plasma metabolite profiles and BMI to find associations between
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Figure 4. The average flux produced from community models

(A) The average flux for SCFAs from personalized community models for patients with Swedish T2D (pink) compared to

the average flux for SCFAs from personalized community models for matched controls (blue).

(B) The average flux for AAs lysine, tyrosine, and histidine from personalized community models for patients with Swedish

T2D (pink) compared to the average flux for AAs from personalized community models for matched controls (blue).

(C) The average flux for BCAAs from personalized community models for patients with Swedish T2D (pink) compared to

the average flux for BCAAs from personalized community models for matched controls (blue).

(D) The average flux for SCFAs from personalized community models for patients with Swedish ACVD (pink) compared to

the average flux for SCFAs from personalized community models for matched controls (blue).

(E) The average flux for AAs lysine, tyrosine, and histidine from personalized community models for patients with Swedish

ACVD (pink) compared to the average flux for AAs from personalized community models for matched controls (blue).

(F) The average flux for BCAAs from personalized community models for patients with Swedish ACVD (pink) compared to

the average flux for BCAAs from personalized community models for matched controls (blue).
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the abundance of glyoxylate and dicarboxylate pathways in the gut using a multivariate random-effects

model (MVEM). Focusing on reactions relating to glyoxylate metabolism we found associations between

14 reactions and 45 plasma metabolites belonging to carnitines, fatty acids and lipids, amino acids, ste-

roids, and organic acids. (FDR <0.01, Figure S6, Table S11).

Malate dehydrogenase [NAD(P)+] in particular had five positive associations with proline, ketoleucine, his-

tidine, glutamate, and alanine. Other reactions which were positively associated with alanine plasma levels

were tartrate decarboxylase and tartrate dehydratase along with four other enzymes (Figure S7). Other

amino acids which showed positive associations reactions were proline which had five positive associations

and tyrosine which showed four. Whilst the amino acids histidine, tryptophan and ornithine all showedmul-

tiple negative associations with reactions within the glyoxylate metabolism.

To investigate if these microbial reactions were also associated with BMI, we split the Swedish cohort by

individual patients’ BMI and compared the two subgroups. We ran statistical tests (Wilcoxon rank-sum

test) to ascertain if the reactions were correlated with one group or the other. Of the 14 reactions, 7 showed

a significant positive association with BMI, including tartrate dehydratase, tartrate decarboxylase, and ma-

late dehydrogenase. 4 reactions (malate dehydrogenase (oxaloacetate-decarboxylating), malate dehydro-

genase (oxaloacetate-decarboxylating) (NADP+), malate dehydrogenase [NAD(P)+], tartrate decarboxy-

lase) were significantly increased in abundance in samples from obese participants compared to other

non-obese participants (P-value < 0.05 Wilcoxon rank-sum test, Figure 5, Table S12). The increase of these

reactions in the obese Swedish subjects validates the discovery of the enrichment of the bacterial glyoxy-

late and dicarboxylate metabolism in obese cohorts.

DISCUSSION

This study was undertaken to gain deeper understanding of gut microbiome dysbiosis and the role of bac-

teria in metabolic disorders. Our increasing understanding of the interactions between the gut microbiome

and its host during disease is poised to reveal the mechanistic role of the microbiome and its collective

metabolism on human health and disease pathophysiology. Metabolic diseases have all previously been

linked to changes in the gut microbiome, but to date, they have not been looked at in an integrative

fashion. This study demonstrates differences in three metabolic diseases when compared to healthy con-

trols and highlights the link between the diseases.

Metagenomic analysis identified the bacteria present during dysbiosis, including highly prominent species

from the Melainabacteria, Verrucomicrobia, Tenericutes, Synergistetes, and Firmicutes phyla. Our results

showed Clostridium bolteae, Clostridium symbiosum, Eggerthella lenta, and Escherichia coli were

increased in T2D, and these species have been shown to be increased in T2D before (Karlsson et al.,

2013a; Qin et al., 2012b). E. lenta and E. coli have also been shown to be increased in ACVD before (Jie

et al., 2017). Ruminococcus gnavus, Ruminococcus torques, and Klebsiella pneumoniae were also noted

in our results as increased in ACVD and obesity, which have also previously been noted to be increased

in ACVD and obesity (Jie et al., 2017; Le Chatelier et al., 2013b). Although Eubacterium eligens, Clostri-

diales bacterium, Roseburia intestinalis, and Faecalibacterium prausnitzii were all depleted in our results

and have been shown to also be decreased in metabolic diseases before (Karlsson et al., 2013a; Qin

et al., 2012b).

Further analysis using GEMs predicted phenotypic behavior - in particular, the substrate uptake and secre-

tion profiles for SCFAs and amino acids. A large proportion of the models were from Lachnospiraceae, a

genus whose members are known to ferment polysaccharides to SCFAs (Boutard et al., 2014). We further

explored the bacterial behavior within an ecosystem by constructing personalized community models.

These community models showed notable differences in the production of SCFAs and AAs, in particular

BCAAs.

Based on individual model simulations, we predicted an increase in acetate and propionate production

from species that were increased in the microbiome of patients of metabolic diseases. Acetate has been

closely linked to inflammasome activation before, seeming to have a reducing effect on the inflammation

(Xu et al., 2019). Propionate has also shown anti-inflammatory effects, suppressing NF-kB reporter activity

(Tedelind et al., 2007). Elevated levels of BCAAs have been observed in patients with obese and T2D

(Sikalidis and Maykish, 2020) and they have become biomarkers of insulin resistance helping predict
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the development of T2D (Zhu and Goodarzi, 2020). In addition, individual modeling showed an increase

in glutamate consumption in species enriched in disease. Glutamate can induce obesity when adminis-

tered in rodents, as well as has a positive correlation with obesity in Chinese adults (Lee et al., 2017). This

individual modeling, therefore, shows that the metabolome profile of MSPs associated with these meta-

bolic diseases is associated with the inflammation and physiology present in them. Here, we have shown

how the gut microbiome, inflammation, and metabolic disease could be linked via these metabolites.

Reaction abundance analysis gave a deeper understanding of the mechanisms behind these results.

Consistently throughout the three explored diseases, we found increased abundance of reactions in

glyoxylate and dicarboxylate metabolism, in particular reactions surrounding tartrate. Tartrate is usually

found in foods such as grapes and when consumed, it feeds into metabolism via the TCA cycle or is con-

verted to glycerate (Kohn and Jakoby, 1968). Increased plasma levels of glycerate are positively corre-

lated with T2D (Reddivari et al., 2017). Only 20% of tartrate ingested in food is eliminated in urine mean-

ing the remaining ingested tartrate is potentially consumed by the microbes in the gut (Finkle, 1933).

Although it is possible for human tissues to metabolize tartrate, the intestinal bacteria metabolize the
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Figure 5. Comparison of reactions from the glyoxylate and dicarboxylate metabolism in Swedish wellness cohort

Boxplots showing reaction abundance in the Swedish wellness cohort comparing those with BMI>30 (pink) and those with BMI <30 (blue). All reactions,

except for tartrate decarboxylase, show significance (P-value<0.01).
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bulk of it (Chadwick et al., 1978) highlighting the close connection between tartrate and the gut micro-

biome. Enteric bacteria can use both malate and tartrate (C4-dicaroboxylates) for anaerobic growth (Kim

and Unden, 2007). Furthermore, tartrate can feed into proline and arginine metabolism, potentially

causing increased production of these metabolites. Increased plasma levels of amino acids including

proline and arginine have been seen in disease and could potentially lead to exacerbating disease (Prof-

fitt et al., 2020).

Glyoxylate and dicarboxylate metabolism has previously been linked to atherosclerosis (Chen et al., 2018)

and to obesity (Beaumont et al., 2016). The glyoxylate cycle can metabolize fatty acids to glucose which can

then contribute to insulin resistance (Song, 2000). As tartrate (a metabolite within the glyoxylate and dicar-

boxylate metabolic pathways) has been associated with glutamate, this metabolite could be the missing

link in the causative effect of glutamate on increased BMI. The increased production of acetate by the

GEMs seen during metabolic disease could be linked to the glyoxylate and dicarboxylate metabolism as

these pathways catabolize acetate and amino acids for energy production in the microbe (Maniscalco

et al., 2017). There was also an increase in the arginine and proline metabolism. This increase also has a

connection to the increased consumption of glutamate, which is necessary for the synthesis of arginine

and proline (Cappelletti et al., 2018).

The consistency in the present results highlighting tartrate metabolism provide strong support for our

models correctly predicting the phenotypes observed in the three studied metabolic diseases. The finding

that reactions involved with tartrate along with functional findings from the plasma metabolite data in the

separate study from Swedish cohorts provides strong support for this hypothesis. These findings validated

the predictions of increased production of acetate, proline, and arginine from the metabolic modeling. It is

also known that malate dehydrogenase [NAD(P)+] and tartrate dehydratase both produce oxaloacetate

while malate dehydrogenase (oxaloacetate decarboxylate) produces pyruvate (Kim et al., 2007). Both

oxaloacetate and pyruvate are used in the amino acid synthesis where aspartate, alanine, asparagine,

methionine, lysine, and threonine are synthesized (Marty-Teysset et al., 1996), further validating our

findings.

From these findings, we would hypothesis that an increased abundance of tartrate metabolism is not bene-

ficial for health. This is based on the reactions showing an increase across all three of our diseases, also the

fact that the gut microbiome metabolizes this metabolite. Tartrate is fermented in the colon to SCFAs

(EFSA Panel on Food Additives and Flavourings et al., 2020), we saw acetate had a higher production

from the individual modeling which correlates with tartrate metabolism producing SCFAs. Increased ace-

tate can affect host metabolism by causing increased pancreatic b-cell activity, glucose-stimulated insulin

secretion (GSIS), hyperphagia, and obesity (Bose et al., 2019). To take this work furthermore, computational

protein or gene expression analysis could ensure the presence of the tartrate pathway within the bacterial

species we have seen to be enriched in diseases. Additionally, more metabolomic analysis of stool and

plasma from patients with T2D or ACVD could further validate these findings. Taking this idea further mi-

crobial culture metabolomics could be analyzed for comparison with the patient metabolomics to confirm

the hypothesis from patient metabolomics.

This analysis can be used to unravel the association between impaired gut microbiomes andmetabolic dis-

orders. We have identified tartrate metabolism in the microbiome as a significant pathway with high poten-

tial to impact on each of thesemetabolic syndromes. As well as this giving a potential new biomarker, it also

suggests potential novel intervention targets for disease. Further research into the metabolism of tartrate

in the gut environment is needed to understand the direct impact this compound has on gut microbes and

host health. It is clear that the gut microbiome is a key factor in maintaining health and our highlighted

novel areas for research give areas to focus on for both disease understanding and biomarker discovery

for obesity and its co-morbidities.

Limitations of the study

There are a number of limitations to our study. Firstly, the cohorts chosen to represent the metabolic dis-

eases are from different geographical regions which will have its own impact and implications on the gut

microbiome profile. There are also limitations within the modeling of the bacteria. There are several bac-

terial species in the gut (Almeida et al., 2019), while we only had 1, 333 bacterial species-specific models

available from theMIGRENE toolbox. Another limitation within themodeling was the computational power
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limits which restricted the number of models within the community modeling to 10 GEMs per community.

Clearly, if this could have been increased the community models would have been a better representation

of the ecosystem within the gut microbiome.
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Karlsson, F.H., Fåk, F., Nookaew, I., Tremaroli, V.,
Fagerberg, B., Petranovic, D., Bäckhed, F., and
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Saeed Shoaie (saeed.shoaie@kcl.ac.uk).

Materials availability

This study did not generate new reagents.

Data and code availability

All the metagenomics data used in this study have been publicly available in the European Bioinformatic

Institute (EBI) and Sequence Read Archive databases. T2D studies were under the study accession

SRA045646, SRA050230 and ERP002469. ACVD studies were under the study accession ERP023788 and

SRA05945. The obesity studies were under the study accession ERA000116 and ERP003612. The Swedish

wellness cohort metagenome data can be found under the study accession PRJEB38984. All the metabolic

models used in this study are available at Database: https://www.microbiomeatlas.org/downloads.php.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All the data used in this study has been published before.

METHOD DETAILS

Datasets, processing and metagenomic downstream analysis

Datasets were obtained from six different studies of the human gut microbiome in metabolic diseases.

Samples were discarded if the reading depth was below 10 million reads or if the there was no metadata

available for the sample. The T2D studies consisted of 370 samples from a Chinese population, IDs

SRA045646 and SRA050230, and 132 samples from a Swedish population, ID ERP002469. ACVD studies

included 385 Chinese samples, ID ERP023788 and 15 Swedish samples, ID SRA05945. The obesity studies

were both from Denmark, with 541 samples from ID ERA000116 and ID ERP003612. All datasets are avail-

able in the European Bioinformatic Institute (EBI) and Sequence Read Archive databases. All data was pro-

duced from different next generation sequencing (NGS) platforms. We used a quantitative metagenomic

profiling software METEOR (Pons et al., 2010) for quality control, trimming and mapping to create gene

count tables. To reduce variability, downsizing was done on the gene count tables (threshold of 10 million).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Meteor (N. Pons et al., 2010, JOBIM,

conference); (Wen et al., 2017)

https://www.academia.edu/14061278/METEOR_a_plateform_for_

quantitative_metagenomic_profiling_of_complex_ecosystems

Trimmomatic (Bolger et al., 2014) http://www.usadellab.org/cms/?page=trimmomatic

Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Integrated Gut Catalog version 2 (IGC2) (Wen et al., 2017) https://data.inrae.fr/dataset.xhtml?persistentId=doi:10.15454/

QVCYRB

MetaOMineR (Le Chatelier et al., 2013a) https://cran.r-project.org/web/packages/momr/index.html

KEGG (Kanehisa et al., 2017) https://www.genome.jp/kegg/

KBase (Arkin et al., 2018) https://www.kbase.us

COnstraint-Based Reconstruction

and Analysis (COBRA) Toolbox (v2.0)

(Schellenberger et al., 2011) https://opencobra.github.io/cobratoolbox/stable/index.html

MIGRENE Toolbox (Bidkhori et al., 2021) https://github.com/sysbiomelab/MIGRENE
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Following this, MetaOMineR (Le Chatelier et al., 2013b) was used for normalization of gene counts for spe-

cies abundance (herein MSP).

Reconstruction of individual microbial metabolic models

The models were constructed based on the Kegg Ontology annotation of the genes in the gut catalogue.

The KBase reference model was used for mapping the KOs of the genes to the reactions (Price et al., 2018)

using function ‘‘microbiomeGEMgeneration’’ inMIGRENE toolbox. The reactions were scored based in the

information for each bacterium from the catalogue. Taxonomy profiles and the KBase reference model

were used for gap filling in order to make the models functional using MIGRENE toolbox. The models

from the MIGRENE toolbox are known as the Metagenome species Assembled Genome-scale

MetAbolic model (MAGMA) models. These models were created based on the gut microbial gene cata-

logue (Wen et al., 2017) and metagenomic species pan-genomes (MSPs). There are 1,333 functional

MAGMA models, in this instance, a functional model means it is balanced for mass, energy and solution

capacity. The models had an average completeness of 83.6 G 22.5%, while the non-functional models

had a completeness of 48.4 G 35.6%. The non-functional models were not used in the analysis. The

MIGRENE toolbox is a comprehensive platform to analyse the reactobiome, the microbiome composition,

metagenome species and community models.

The functional models were constrained based on a high fibre omnivore diet under anaerobic conditions.

The diet was obtained from MIGRENE toolbox and fitted to the selected models. The growth rate was

measured for each model by steady state simulation COnstraint-Based Reconstruction and Analysis

(COBRA) toolbox (Heirendt et al., 2018) in MATLAB and using the linear program solver gplk. Predictions

were made based on flux balance analysis (FBA); models were constrained based on a high fibre omnivore

diet (https://github.com/sysbiomelab/MIGRENE) with the objective function to optimize biomass. Model

growth rates and exchange reaction flux were determined by FBA for selected significant MSPs (Data S1).

The similarity between two models was calculated using the Jaccard distance. The distance was computed

by D = 1–|RiXRj|/|RiWRj|, with Ri as the set of reactions frommodel i and Rj the set of reactions frommodel j.

Hence, if D = 0, the models are identical, if D = 1, the models are completely dissimilar.

Metabolic reaction abundance analysis

Reaction abundance was calculated based on the absence or presence of reactions in the respective MSP

models (Data S1). The reactions were multiplied by the MSP abundance, to personalize the reaction abun-

dance to each sample, we summed the frequency the reaction repeated in the whole microbiome of the

sample. Significantly different reaction between case and control were identified using the two-tailed Wil-

coxon rank-sum test (P-value) and the false discovery rate by the Benjamini-Hochberg correction

(FDR<0.01). Reactions of significance were mapped to KEGG orthologs (KOs) or Enzyme Nomemclature

(EC numbers).

Community metabolic models based on disease, health status and geography

Personalised community models were reconstructed for all Swedish samples. Due to computational power

limitations the models were made with 10 MSPs per community. The top-ranked 10 bacteria for each sam-

ple were chosen for the community models. The models were created using function ‘‘MakeCommunity’’ in

MIGRENE toolbox (Data S1). The objective function was the biomass of the entire community.The resulting

community model consisted of all reactions from the MSPs within the community, and all metabolites pre-

sents. Three new compartments were designed: 1) lumen, a compartment for all the bacteria in gut and

their interactions to allow metabolites to be secreted and up taken by the bacteria. 2) A compartment

including exchange reactions for food input and 3) and a compartment for another type of exchange reac-

tions to remove metabolites from the system (to faeces/blood). FBA analysis was ran on the community

models where the biomass of species were constrained based on the corresponding abundance in the

community biomass as objective function. These simulations were run on COBRA toolbox.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microbial signatures of metabolic disease

All statistical analysis was done using R software. Different abundance of taxonomic signatures were

tested using the two-tailedWilcoxon rank-sum test in controls and patients. p values were adjusted for false

discovery rate by the Benjamini-Hochberg correction (FDR). Significant MSPs were chosen based on 2
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steps: (1) the MSP’s FDR score, FDR<0.01, (2) distinctly different median values in the patients and controls,

one equal to 0 and one equal to a real positive number. We estimated the MSP enrichment or depletion in

diseases by comparing the average abundance in case samples, and the average abundance in control

samples per MSP. The output identified each MSP as either enriched in disease or enriched in control.

Longitudinal Swedish cohort samples metabolomics

The initial analysis for the associations between the plasma metabolite levels and reaction abundancies

within the gut microbiome was done previously (Bidkhori et al., 2021), using available metabolomics and

metagenomics (Olsson et al., 2022; Tebani et al., 2020). Here, the plasma and stool samples from the Swed-

ish cohort were linked using the reaction abundance. The plasma samples gave circulating metabolite

profile and the stool samples gave reaction abundance from the gut microbiome. Following this we ran

multivariable association analysis on the data to find the corelation between the clinical metadata and

microbial omics features. This analysis was done in R using packages taRifx, Maaslin2 and car.
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