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Abstract: Fracture related infections (FRI) are debilitating and costly complications of musculoskeletal
trauma surgery that can result in permanent functional loss or amputation. Surgical treatment can be
unsuccessful, and it is necessary to determine the predictive variables associated with FRI treatment
failure, allowing one to optimise them prior to treatment and identify patients at higher risk. The
clinical database at a major trauma centre was retrospectively reviewed between January 2015 and
January 2021. FRI treatment failure was defined by infection recurrence or amputation. A univariable
logistic regression analysis was performed, followed by a multivariable regression analysis for signifi-
cant outcomes between groups on univariable analysis, to determine risk factors for treatment failure.
In total, 102 patients were identified with a FRI (35 open, 67 closed fractures). FRI treatment failure
occurred in 24 patients (23.5%). Risk factors determined by our multivariate logistic regression model
were obesity (OR 2.522; 95% CI, 0.259–4.816; p = 0.006), Gustilo Anderson type 3c (OR 4.683; 95% CI,
2.037–9.784; p = 0.004), and implant retention (OR 2.818; 95% CI, 1.588–7.928; p = 0.041). Given that FRI
treatment in 24 patients (23.5%) ended up in failure, future management need to take into account the
predictive variables analysed in this study, redirect efforts to improve management and incorporate
adjuvant technologies for patients at higher risk of failure, and implement a multidisciplinary team
approach to optimise risk factors such as diabetes and obesity.

Keywords: fracture; infection; trauma; amputation; polymicrobial infection; risk factor

1. Introduction

Fracture fixation and management is a difficult task due to the unpredictable and
sometimes unstable nature of bone damage. This is further complicated by the presence of
concomitant injuries and comorbidities, and the numerous perioperative and postoperative
complications that could arise after emergency treatment. Fracture-related infection (FRI)
is a serious and challenging complication in musculoskeletal trauma, which could result
in delayed healing, permanent functional loss, or amputation, leaving a long-lasting and
catastrophic impact on a patient’s quality of life. Epidemiological studies suggest an
infection rate of 1.8% following closed fractures and 27% following open fractures [1]. FRI
cases generate 6.5 times higher healthcare costs than non-infected cases, with reported
treatment success rate at 70%, a recurrence rate of 9% and amputation rate of 3% [2].

Multiple factors can make the management of FRIs challenging, such as open fractures,
soft tissue contamination, perioperative illness, polytrauma, multiple surgical procedures,
and exposure to nosocomial bacteria during prolonged hospital stays [3]. Open reduc-
tion internal fixation (ORIF) is a common method for fracture fixation, requiring internal
hardware to remain for a period of time to allow for fracture stabilisation and union. This
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however creates an ideal environment for infection [4]. Soft tissue damage and vascu-
lar compromise encourage microbial infiltration which upsets normal bone healing [3].
Furthermore, a positive feedback mechanism leads to a vicious cycle of biomechanical
instability at the fracture site and FRI, as described by Perren’s concept of strain theory and
fracture healing [5,6]. Fracture instability leads to impaired neovascularistaion; together
with ongoing osteolysis and soft tissue damage, this encourages microbial proliferation and
undermines the host immune response. This leads to further biomechanical instability [7].

The basic paradigm for FRI management involves irrigation, debridement, soft tissue
management, osseous stability, identifying involved microbes, and targeted antibiotic
therapy. This has been recently supplemented by a more extensive paraphernalia for
FRI management, such as Masquelet technique, reamer irrigator aspirator, and antibiotic
cement rods [8]. Although there seems to be a decrease in FRI incidence and increase in FRI
treatment success over the previous decade [9], it is prudent to ask if we have arrived at a
plateau using current technology and guidelines. Whilst the rates and predictive variables
for other musculoskeletal conditions such as periprosthetic joint infections (PJI) and septic
arthritis are well described [10–12], the literature surrounding the risk factors of FRI are
comparatively scarce. The aim of this study was to identify risk factors for FRI management
failure at a major trauma centre over a six-year period, allowing for the development of a
prognostic algorithm in clinical practice.

2. Materials and Methods
2.1. Study Design

After approval by the institutional review board on 18 March 2021 (registration number
9670), a retrospective observational study was performed at our major trauma centre from
January 2015 to January 2021. Patients met inclusion if they were over the age of 18
and underwent a surgical procedure for an open or closed fracture, following which
surgical irrigation and debridement (I&D) was performed due to clinical, microbiological,
or radiological signs of infection. Infections that do not communicate with the fracture or
implant such as pin site infections and cellulitis, patients with PJIs of the hip and knee joint,
and those without prior fracture fixation were excluded. Soft tissue infections, diabetic
foot ulcers, pressure sore infections, patients transferred to other institutions, and patients
lost to follow-up within 12 months post-injury were excluded. All clinical records and
radiographs were reviewed by two authors (VL and JZ) independently, who were not
involved in patient treatment process, thus avoiding assessment bias.

Open fractures were managed according to BOAST guidelines [13], and were subdi-
vided according to the Gustilo-Anderson (GA) classification [14], as determined during
debridement in the operating theatre. Polytrauma was classified when the Injury Sever-
ity Score (ISS) was 16 or greater [15]. An infection was defined as purulent discharge,
erythema, and/or surgical wound dehiscence exposing underlying hardware following
definitive fixation and wound closure, necessitating a return to the operating theatre for
I&D. At least two separate deep tissue/implant specimens taken during the surgical I&D,
returning phenotypically indistinguishable pathogens must be collected, following the
consensus statement from an international expert group [16]. Infections were stratified
into acute and chronic, which represent infection onset less than or more than six weeks
post-injury, respectively. Infections were not subdivided into superficial or deep, following
an agreement from an international expert group [17]. The superficial nature of a FRI can
only been determined retrospectively and should not be used to guide treatment [17].

FRI treatment failure was defined by infection recurrence or amputation. Infection
recurrence was defined as the unscheduled return to operating theatre for further debride-
ment or implant revision due to new clinical indications of infection, followed by a new
course of antibiotic therapy.
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2.2. Treatment Protocol

Figure 1 describes our FRI treatment protocol according to British Orthopaedic As-
sociation FRI guidelines [18]. For suspected FRI cases, plain radiology and CT scans with
contrast were performed to assess features of osteomyelitis such as bone lysis, periosteal
reaction, implant loosening, or sequestration, and clinical photography of wounds were
taken, with images kept in patients’ files for comparison at subsequent multidisciplinary
team (MDT) meetings. To facilitate FRI assessment, debridement surgery was performed,
comprising arthroscopic lavage, wound care, five samples around fracture site for microbi-
ological culture using separate instruments, and two samples for histological sampling. For
stable patients, a two-week antibiotic-free period was kept before sampling, whilst patients
with signs of systemic sepsis were given parenteral antibiotics immediately.
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Figure 1. Treatment protocol.

A bone infection specialist prescribed broad-spectrum antibiotics after sampling,
and this was made culture-specific within 48 h following preliminary culture results.
Empiric antibiotic therapy was given to patients with culture-negative results. FRI patients
were the subject of weekly bone and joint infection MDT review to monitor antimicrobial
management and surgical strategy. For those undergoing ORIF, implant removal was not
planned as a standard procedure. The way implants were handled (removed or retained)
following the initial FRI diagnosis was documented.

2.3. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics version 27. Categorical
variables were analysed with Fischer’s exact test (n < 10) or Chi-squared test (n ≥ 10);
nonparametric continuous variables were analysed using Mann–Whitney U test. Data
was also examined using univariable logistic regression models for the primary outcome
measure FRI management failure and sixteen prognostic variables. Although some studies
have advocated the use of a ‘ten events per variable’ criterion for logistic regression analyses,
large scale simulation studies have found weak evidence supporting this criterion [19]. Co-
variates with a p-value p < 0.100 in the univariable analysis were included in a multivariable
logistic regression model, which then underwent a backwards elimination process to
identify independent associations with FRI treatment failure. Statistical significance was
defined as p ≤ 0.05.

3. Results

During the six-year study period, 334 patients were identified at from our electronic
hospital records, with 102 FRIs in 102 patients being included (Figure 2). With a total of
8831 fractures treated over the study period, this represents an overall 1.16% infection
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rate. Table 1 shows patient demographics and Table 2 shows the location of FRI. In total,
66 males and 36 females were included, with 35 open fractures, and 67 closed fractures.
The mean age at injury was 49.71 years old. Fall from height was the main cause of injury
(34.3%). In all, 78 (76.5%) of patients had purulent discharge, 76 (74.5%) had erythema, and
58 patients (56.9%) had wound dehiscence (Table 3). Moreover, 56 patients (50%) had all
three observations, the remaining patients had at least two separate deep tissue/implant
specimens returning phenotypically indistinguishable pathogens. Regarding cardiovascu-
lar risk factors, 37 patients were current smokers (36.3%), 31 patients were diabetics (30.4%),
and 32 patients (31.4%) were obese (BMI ≥ 30.0).
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Table 1. Patient demographics.

Total Population 102

Male 66 (64.7%)
Female 36 (35.3%)

Mean age at injury in years (range) 49.71 (18–87)
Male 48.25 (18–84)
Female 52.38 (22–87)

BMI (range) 27.08 (16.12–47.70)
Open fracture 35 (34.3%)

Gustilo-Anderson 2 6
Gustilo-Anderson 3a 13
Gustilo-Anderson 3b 11
Gustilo-Anderson 3c 5

Closed fracture 67 (65.7%)
Smoking status

Ex-smoker 33 (32.4%)
Non-smoker 24 (23.5%)
Current smoker 45 (44.1%)

Diabetes Mellitus
Yes 31 (30.4%)
No 71 (69.6%)

Fracture Mechanism
RTC (high energy) 33 (32.4%)
Fall from height (high energy) 35 (34.3%)
Trip and fall (low energy) 27 (26.5%)
Crush trauma (low energy) 6 (5.9%)
Gunshot wound (high energy) 1 (1.0%)

Polytrauma (ISS ≥ 16)
Yes 49 (48.0%)
No 55 (52.0%)
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Table 1. Cont.

Definitive Fixation
Open reduction internal fixation (ORIF) 87 (85.3%)
External Fixation 15 (14.7%)

Reamed *
Yes 53 (88.3%)
No 7 (11.7%)

* Intramedullary nail only.

Table 2. Location of fracture related infection.

Humerus Shaft 5 (4.9%)

Radius 8 (7.8%)
Olecranon/Ulna 9 (8.8%)

Hip 9 (8.8%)
Neck of femur 6 (5.9%)
Femoral shaft 17 (16.7%)
Tibial plateau 5 (4.9%)

Tibial shaft 30 (29.4%)
Ankle 12 (11.8%)

Clavicle 1 (1.0%)

Table 3. Parameters of infection present in FRI patients.

Clinical Signs

Fever 7 (6.9%)
Purulent discharge 78 (76.5%)
Wound dehiscence 58 (56.9%)
Dolor (pain) 96 (94.1%)
Rubor (erythema) 76 (74.5%)
Tumor (swelling) 77 (75.5%)

Radiological Signs
Osteomyelitis signs † 81 (79.4%)
Evidence of non-union 19 (18.6%)

Bacteriological Testing
Ultrasound-guided aspiration 22 (21.6%)
7 cultures taken * 71 (69.6%)

* BOA FRI guidelines states that during debridement surgery, 5 samples must be taken for microbiological culture,
and 2 samples for histology. † These include periosteal bone formation, bone lysis at the fracture site or around
the implant, implant loosening, or sequestration.

There were 35 open fractures and 67 closed fractures. As such, 87 patients were
treated with ORIF, amongst which sixty received an intramedullary nail. Fluoroquinolones
were the most common culture-specific antibiotic prescribed (Table 4). The most common
culprit bacteria belonged to the Staphylococcus family. Sixteen patients (15.7%) had signs of
systemic sepsis, and received immediate blood cultures and parenteral antibiotics. Total
follow-up time was on average 2.37 years (range: 12.46–61.67 months). Ten patients who
were lost to follow-up within 12 months post-injury were excluded.

Table 4. Antibiotics and Microbes.

Initial Culture-Specific Antibiotic

Penicillin 14 (13.7%)
Cephalosporin 13 (12.7%)
Tetracycline 7 (6.9%)
Aminoglycoside 4 (3.9%)
Macrolide 2 (2.0%)
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Table 4. Cont.

Fluoroquinolone 18 (17.6%)
Glycopeptide 15 (14.7%)
Carbapenem 14 (13.7%)
Oxazolidinone 3 (2.9%)
Lipopeptide 9 (8.8%)
Lincosamide 3 (2.9%)

Culprit Bacteria Family
Polymicrobial (n = 34) Monomicrobial (n = 63) *

Aeromonas 1 (2.9%) 1 (1.6%)
Enterobacter 10 (29.4%) 10 (15.9%)
Pseudomonas 29 (85.3%) 10 (15.9%)
Enterococcus 21 (61.8%) 11 (17.5%)
Staphylococcus 23 (67.6%) 12 (19.0%)
Salmonella 0 (0%) 2 (3.2%)
Cutibacterium 5 (14.7%) 2 (3.2%)
Proteus 2 (5.9%) 2 (3.2%)
Streptococcus 9 (26.5%) 6 (9.5%)
Corynebacterium 1 (2.9%) 3 (4.8%)
Others 6 (17.6%) 4 (6.3%)
One infectious organism N/A 63 (100%)
Two infectious organisms 7 (20.6%) N/A
Three infectious organisms 15 (44.1%) N/A
Four infectious organisms 12 (35.3%) N/A

* Five patients had culture-negative infection.

Of the 102 patients, 30 (29.4%) had an acute infection (onset < 6 weeks). FRI treatment
failure occurred in 24 patients (23.5%). Twenty-one (20.6%) had recurrent infection and
three (2.9%) required an amputation (Table 5). Fourteen of those were polytrauma patients.
Univariable logistic regression model showed that obesity (BMI ≥ 30) (p = 0.025), GA
type 2 (p = 0.080, GA type 3a (p = 0.091), GA type 3b (p = 0.031), GA type 3c (p = 0.033),
polymicrobial infection (p = 0.011), and implant retention (p = 0.048) were associated
with FRI treatment failure (Table 6). Multivariable logistic regression model showed the
risk factors associated with FRI management failure were obesity (OR, 2.522; 95% CI,
0.259–4.816; p = 0.006), GA type 3c (OR, 4.683; 95% CI, 2.037–9.784; p = 0.004), and implant
retention (OR, 2.818; 95% CI, 1.588–7.928; p = 0.041).

Table 5. Injury and FRI characteristics.

Total (n = 102) Open Fractures
(n = 35)

Closed Fractures
(n = 67)

Time from injury to definitive
fixation (days) 10.49 (1–45) 9.11 (1–43) 11.25 (1–45)

Time from injury to soft tissue
cover (hours) a 49.5 (14–120) 49.5 (14–120) N/A

Time from injury to FRI
diagnosis (days) 83.1 (12–475) 63.48 (12–145) 93.35 (32–475)

Time from FRI diagnosis to bone
infection team review (days) 7.68 (0–25) 6.97 (0–18) 8.05 (0–25)

Acute infection (onset < 6 weeks) 30 (29.4%) 21 (60.0%) 9 (13.4%)
Chronic infection
(onset > 6 weeks) 72 (70.6%) 14 (40.0%) 58 (86.6%)

Recurrent infection 21 (20.6%) 7 (20%) 14 (20.9%)
Implant retained

Yes 49 (48.0%) 18 (51.4%) 31 (46.3%)
No 53 (52.0%) 17 (48.6%) 36 (53.7%)

Non-union requiring
further surgery 10 (9.8%) 6 (17.1%) 4 (6.0%)
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Table 5. Cont.

Total (n = 102) Open Fractures
(n = 35)

Closed Fractures
(n = 67)

Signs of systemic sepsis 16 (15.7%) 5 (14.3%) 11 (16.4%)
Amputation 3 (2.9%) 1 (2.9%) 2 (3.0%)
Elevated ESR b 63 (61.8%) 20 (57.1%) 43 (64.2%)
Elevated CRP b 87 (85.3%) 30 (85.7%) 57 (85.1%)
Elevated WBC b 80 (78.4%) 24 (68.6%) 56 (83.6%)

a Open fractures only; b Normal ranges for ESR, CRP, and WBC are 1–14 mm/h, 0–6 mg/L, and 3.6–10.5×109/L, respectively.

Table 6. Univariable and multivariable logistic regression analyses.

n = 102

FRI Treatment Failure

Univariable Multivariable

Treatment
Failure (n = 24)

Treatment
Success (n = 78) p-Value Odds

Ratio 95% CI p-Value

Age at injury (years) 48.88 51.58 0.521
Male gender 15 (54.2%) 51 (64.1%) 0.796
BMI 31.88 25.86 0.186
BMI ≥ 30 12 (50.0%) 20 (25.6%) 0.025 2.522 0.259–4.816 0.006
Smoker 11 (45.8%) 34 (43.6%) 0.847
Diabetes Mellitus 9 (37.5%) 22 (28.2%) 0.408
Open fracture 8 (33.3%) 27 (34.6%) 0.908
Gustilo Anderson

Type 2 0 (0%) 6 (7.7%) 0.080
Type 3a 5 (20.8%) 8 (10.3%) 0.091
Type 3b 5 (20.8%) 6 (7.7%) 0.031
Type 3c 3 (12.5) 2 (2.6%) 0.033 4.683 2.037–9.784 0.004

Time to definitive fixation (days) 7.73 11.29 0.505
External fixation as primary
management 5 (20.8%) 10 (12.8%) 0.332

Culture-negative 1 (4.2%) 4 (5.1%) 0.849
Polymicrobial infection 14 (58.3%) 20 (25.6%) 0.011
Implant retention a 14 (77.8%) 35 (50.7%) 0.048 2.818 1.588–7.928 0.041
Polytrauma (ISS ≥ 16) 12 (50.0%) 37 (47.4%) 0.826

a Calculated for those who were treated by open reduction internal fixation (total n = 87; treatment failure n = 18;
treatment success n = 69); FRI: fracture related infection; BMI: body mass index; ISS: injury severity score.

4. Discussion

Despite any rigorous prevention strategy against FRIs, this challenging complication
still frequently occurs, with failure of initial treatment resulting in further debridement and
recurrent infections, leading to increased morbidity and socio-economic burden. The FRI
treatment failure rate of 23.5% is at the lower end of that reported in the literature [20], but
is still unacceptably high. This study found that obesity, implant retention, and GA type
3 open fracture are risk factors for FRI treatment failure. GA type 3 was also reported as
a risk factor by Horton et al. [21]. These results however differ with a recently published
study, who found that repeat I&D procedures and culture-negative infections (CNIs) were
risk factors for FRI treatment failure [20]. Gitajn et al. also underlined the importance
of CNIs [22], however both studies had relatively low numbers of CNIs, and literature
surrounding PJIs suggest that CNIs have equal or better outcomes than their culture-
positive counterparts [23–25]. Similarly, the association of multiple I&Ds with treatment
failure was also suggested by other studies [26,27]. However, this is likely biased by patients
with more severe infections needing multiple I&Ds, as well as the surgical protocol utilised,
namely a repeat operative I&D every 2–3 days [20]. Our protocol utilised a more intensive
and thorough debridement, rather than repeated surgical insult which increases bacterial
colonisation risk and prolongs fracture healing [28].
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4.1. Polymicrobial Infections

Polymicrobial infections, whilst not reaching statistical significance on the multivari-
able model, increased treatment failure risk in the univariable model. Difficult to treat
organisms such as Enterococcus and Gram-negative bacilli were suggested to be the most
common culprits in polymicrobial infections [29]. They require complex antibiotic coverage,
and prolong treatment duration, with one study on prosthetic joint infections recording
a 0.3 OR between polymicrobial infection and being free of infection after two years [30].
Studies have suggested that this may be due to microbial synergy that enhances virulence
and decreases susceptibility to host immune defences, caused by mechanisms such as
metabolite cross-feeding [31], quorum sensing [32], and synergistic biofilm formation [33].

The most common isolates were Staphylococcus and the Gram-negative bacilli Pseudomonas.
No multidrug resistant (MDR) Pseudomonas was recorded, despite a 14% chance of becom-
ing so [34], but encountered four cases of extended-spectrum beta-lactamase-producing
Pseudomonas which limited choices for antibiotic therapy. Nevertheless, in clinical practice,
drug allergies are often the limiting factor for antibiotic therapy choices; twelve patients
(11.8%) were allergic to penicillin or cephalosporins. We noticed that polymicrobial infec-
tions diagnosed at first culture were more likely to lead to treatment success than those
identified during subsequent cultures (14/20, 70% vs. 4/10, 40%; p = 0.114), agreeing with
Kavolus et al. [35]. Furthermore, obese patients had higher rates of polymicrobial infection
than non-obese patients (14/32, 43.8% vs. 16/70, 22.9%; p = 0.032), agreeing with a cohort
study of PJIs [36].

4.2. Obesity

Obesity was a risk factor for FRI treatment failure on both univariable and multivari-
able models. Obesity influences the risk of either acquiring an infection or outcome of
an infection [37], with a meta-analysis showing obesity increasing surgical site infection
risk by two-fold [38]. This could be due to high levels of subcutaneous fat, increasing
surface tension at the surgical site, prolonged wound drainage [39], increased bacterial skin
colonisation [40], or impaired cross-talk between adipocytes, adipokines, and leukocytes,
leading to dysregulation of immune system and altered macrophage differentiation [41].
One cohort study reported that compared to the non-obese, obese patients had increased re-
operation for infectious complications (13.3% vs. 34.2%; p = 0.014), and a higher cumulative
incidence of sepsis (9.52 vs. 15.85 events/100 patient-months) [42].

Obesity affects pharmacokinetics, by increasing volume of distribution (Vd) of lipophilic
drugs such as macrolides and fluoroquinolones, and decreasing Vd of hydrophilic drugs
such as aminoglycosides. This leads to frequent underdosing of antimicrobials in obe-
sity [43], with a multicentre study showing insufficient plasma concentrations of van-
comycin in obese patients when standard doses were used [44]. Additionally, in vivo
studies in mice suggested that obesity leads to impaired bone healing and non-union, by
reducing levels of key proteins responsible for recruitment of mesenchymal stem cells
and their differentiation into osteoblasts [45], or by increasing callus adiposity leading to
biomechanical weakness [46].

4.3. Diabetes

Diabetes increased treatment failure risk in the univariable model but did not reach
statistical significance on the multivariate model. Diabetes is a risk factor for acquiring
infections, with one retrospective cohort study involving more than 1,000,000 participants
reporting a risk ratio for infectious disease-related hospitalisation of 2.17 (99% CI 2.10–2.23)
for diabetic vs age-matched controls, and a risk ratio for infection-attributed death of 1.92
(99% CI 1.79–2.05) [47]. Studies have suggested that diabetes leads to immune dysfunction,
by crippling the innate immune system by reducing phagocytic activity of macrophages
and neutrophils, and impairing activation and performance of the adaptive immune system,
hence complicating the course of infection in diabetics [48].
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A meta-analysis of 1637 subjects demonstrated that diabetics had higher odds of
antimicrobial resistant infections (OR = 2.35; 95% CI, 1.49–3.69) [49]. This could be due to
diabetics visiting hospitals more often for diabetes clinics or other complications, during
which they may acquire nosocomial infections, which are more likely to be resistant [50].
Additionally, diabetes can influence antibiotic effectiveness by altering gut microbiota [51],
slow gastric emptying [52], or via diabetic medication and antibiotics pharmacological
interactions. A longitudinal cohort study of 92 participants with S. stercoralis infection
showed that diabetes is significantly associated with treatment failure [53]. Furthermore, di-
abetes negatively influences fracture healing by compromising osteoblastogenesis [54], and
producing advanced glycation end products which decreases bone material strength [55].
A retrospective study of 190 fractured calcanei reported a relative risk for non-union of 3.4
(p = 0.02) for diabetics vs. age-matched controls [56].

4.4. Implant Retention

For definitive fixation, 87 patients received ORIF, sixty of whom received an in-
tramedullary nail. Implant retention was associated with a higher risk of FRI treatment
failure on both univariable and multivariable models. Metal implants promote biofilm
colonisation, hence acting as a focal point for bacterial colonisation [57]. The literature is
sparse and dived regarding the dilemma of implant retention or removal during treatment
of an infection following a fracture manged by ORIF. A retrospective study of patients with
an infection less than sixteen weeks after ORIF found a higher infection recurrence rate
in those treated with hardware retained than removed (36% vs. 16%) [58]. Nevertheless,
some studies report no effect of implant removal or retention on FRI treatment efficacy [59],
whilst some report the opposite, with implant removal being a significant risk factor for
FRI treatment failure [20,21]. This could be due to selection bias, since surgeons could have
removed more implants in patients who had more severe infections.

Especially in the early stages, implant retention is commonplace since removal would
disturb fracture healing, leading to non-union. Berkes et al. performed a similar study
to Rightmire et al. but used a cut-off point of six weeks for acute infections rather than
sixteen weeks [60] when bony union is tenuous. Berkes et al. found that 71% of patients
with hardware retention achieved fracture union. The conclusion was that implants can be
maintained if sufficient debridement of implant site with appropriate antibiotic therapy
are carried out, and is only promising in acute/early-onset FRIs occurring prior to bony
union [60]. This was confirmed by another study investigating debridement, antimicrobial
therapy, and implant retention (DAIR) in FRIs, whereby chronic/late-onset FRIs treated
with DAIR were associated with higher infection recurrence rate [61]. This agrees with
our cohort, whereby those with implant retention were more likely to have successful FRI
treatment if they had an acute infection (<6 weeks) than a chronic infection (p = 0.146;
OR = 2.647; 95% CI, 0.696–10.065). The balance between maintaining fracture stability
for osseous union by retaining the implant vs. the concern for biofilm growth is another
challenging aspect of FRI management.

4.5. Gustilo-Anderson (GA)

Severity of open fractures according to GA classification, especially GA type 3c, had
unexpectedly the highest odds for FRI treatment failure on both univariable and multivari-
able models. Only one other study published results similar to ours [21]. GA type 3 injuries
are greatly contaminated and require vascular and flap reconstruction due to neurovas-
cular damage and extensive soft tissue injury, which makes it harder to clear infections.
Extensive wound contamination results in a greater risk of polymicrobial infection [62],
which is itself a risk factor for FRI treatment failure. Furthermore, open fractures with a
high GA classification are associated with lengthier stays in hospitals [63], which may lead
to increased chance of acquiring nosocomial infections [50].

For severe open fractures, studies have shown that bone debridement with flap cov-
erage was associated with better osteomyelitis outcome, by improving perfusion and
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coverage [64]. A cohort study of 34 patients suggested that a muscle flap provides effec-
tive treatment for chronic osteomyelitis wounds [65], however the selection of a pedicled,
muscle, fasciocutaneous, or free flap should be made according to the defect characteristics.

4.6. FRI Prevention and Characteristics

Given the dire socio-economic consequences of FRIs, recent guidelines have reiterated
the need for FRI prevention, such as soft tissue coverage preferably within 72 h of injury,
and no later than 7 days [66]. With a range of 14–80 h, all included patients met this criteria.
Furthermore, studies suggested that a one week delay in wound coverage increases the risk
for recurrent infection [67], however those who suffered recurrent infections did not have a
longer time to soft tissue coverage. Guidelines also suggest that discharge documentation
should make clear to primary carers and patients on how to respond in the event of a
suspected FRI [18], yet this was only seen in two of the included patients (1.96%). This is
not a statistic reported in the literature, but warrants greater attention from clinicians.

Willenegger and Roth classified FRIs according to time of onset into early (<2 weeks),
delayed (2–10 weeks), and late-onset (>10 weeks) [68]. Despite being used to guide
treatment in some studies, the frequency of each subtype is often not quoted in stud-
ies, with other authors electing to subdivide infections into acute (<6 weeks), and chronic
(>6 weeks) [69]. It can be argued that these time frames are arbitrary and not rooted in
scientific evidence. Furthermore, the definitions are heterogenous, with some defining time
since injury or time since symptom onset. A recent systematic review found a large variety
of time windows used to classify infections [2], with 71% of included studies failing to
report time in their classification of infection.

Nevertheless, we stratified acute and chronic infections based on infection onset
occurring less or more than 6 weeks after injury, respectively. This was performed to
reflect the fact that treatment choices should differ, since for early infections within the first
two weeks, the bone shows no sign of osteolysis or osteomyelitis, despite the presence of
bacteria [17]. Hard callus formation occurs after 3 weeks, during which biofilms mature and
become more resistant to antibiotic therapy, and bacterial bone invasion occurs [70]. Indeed,
75.0% (12/16) of bone defects after radical debridement and 61.2% (30/49) of implant
removal occurred in those with chronic infections, and those with an acute infection needed
on average a shorter antibiotic treatment duration than those with a chronic infection.

The bacteria family responsible for the most infections was Staphylococcus, agreeing
with prior studies [20]. Staphylococcus aureus was responsible for eleven FRIs, among which
seven occurred in those with acute infections. This could be because Staphylococcus aureus
is a more virulent bacteria, which is predominantly acquired as a direct consequence of
trauma [70]. As per the results of two systematic reviews [2,70], it is commonly accepted
that purulent discharge and surgical wound dehiscence (SWD) are pathognomonic of FRIs.
However, the majority of the included patients did not show wound dehiscence (54/102;
52.9%). Some clinicians view SWD as synonymous with FRI, however rates of infection in
dehisced wounds are infrequently reported [71], and is often associated with other factors
such as diabetes [72]. Eighteen diabetics in our cohort (18/31; 58.1%) had wound dehiscence
listed as a finding. Furthermore, in studies that do report infection rates, it is unclear if
infection occurred before or after SWD. Although classified as ‘suggestive criteria’ [73],
the vast majority of the included patients reported pain (96/102; 94.1%), redness (76/102;
74.5%), and swelling (77/102; 75.5%), and hence should be also given a high level of
importance when assessing FRIs. Laboratory findings (ESR, CRP, WBC) were recorded
but studies have questioned their usefulness in diagnosing FRIs, with the area under the
receiver operating characteristic (AUROC) of the combined markers being 0.63 [74]. A
meta-analysis has also reported poor specificity and sensitivity [75]. All patients had X-ray
and CT scans with contrast to look for radiological signs of FRI, but only 24 (23.5%) had an
MRI scan. Plain X-ray scans have poor sensitivity for detecting FRI, especially in the early
stages, with a much improved result for CT or MRI scans [76]. Nuclear imaging techniques
have recently been developed to improve the diagnostic accuracy such as FDG-PET and
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WBC scintigraphy. Despite good evidence that FDG-PET has high sensitivity and specificity,
there is a lack of studies focusing on the use of WBC scintigraphy for FRI [77].

4.7. Limitations

Being a retrospective observational study, the accuracy of patient’s notes and atten-
dance at follow-up clinics were relied upon. The patients were treated at a major trauma
centre with a dedicated bone infection team, thus patients were unlikely to be followed
up elsewhere for their FRI management. There was a lack of a standardised protocol for
diagnosis of infection, which relied on the clinical assessment of the consultant in-charge,
but is consistent with many prior studies [17,20,21]. Nevertheless, the use of consensus
recommendations on diagnosis added strength to thus study [16]. Implant type was not
analysed, with studies suggesting an association between implant surface area and biofilm
formation [17]. Finally, nearly half the included patients (46.1%) sustained major trauma
according to the Injury Severity Score, who are more likely to have a poorer prognosis and
develop a FRI [78]. Nevertheless, this retrospective observational study studied a wide-
range of patient factors that could play a role in FRI treatment failure, involved a six-year
time span of patients treated at a major trauma centre, enhancing the external validity of
our results. This study is well suited to analyse risk factors for FRI treatment failure given
the long overall follow-up time of 2.37 years, and mean follow-up time of 1.78 years after
initial FRI treatment ended, allowing us to catch the majority of treatment failures.

5. Conclusions

One of the most challenging complications in musculoskeletal surgery is a FRI. Lowering
the burden requires a three-pronged approach: a uniform set of standards for the prevention
of infections in trauma and elective orthopaedic surgery, a robust diagnostic workup for
any suspected FRI case, and an effective management scheme for confirmed FRI cases that
differentiates between chronic and acute infections given their different pathophysiologies.

We identified obesity, open fractures with high Gustilo-Anderson grade requiring
flap and vascular reconstruction, and implant retention as predictive factors for FRI treat-
ment failure. Successful management includes, developing alternative treatment strategies
and incorporating adjuvant technologies for higher risk patients such as next generation
sequencing of bacterial samples, and optimising modifiable risk factors before treatment
such as diabetes and obesity. The trauma literature could be supplemented with primary
studies with large cohorts and adequate follow-up time, whereby risk factors were iden-
tified and mitigated, with this study potentially contributing to the development of a
standardised protocol.
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