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1  | INTRODUC TION

Vitamin D is known to be critical to brain function and has neuroprotec-
tive effects (Anjum et al., 2018). Low levels of blood vitamin D accelerate 
cognitive impairment, and it especially results in executive dysfunction 
and episodic memory impairment (Miller et al., 2015). This is known to 
happen through regulating the release of neurotrophic factors, increas-
ing antioxidant capacity, and decreasing the production of inflammation 

markers (Eyles et al., 2005; Grant, 2009; Moore et al., 2005). The high 
density of vitamin D receptors (VDR) in the hippocampus, hypothala-
mus, thalamus, cortex, and substantia nigra suggests the potential of 
vitamin D to influence neurological conditions (Fleet, 2004). Vitamin 
D contributes to neuronal development by regulating the synthesis of 
nerve growth factor (NGF) and various neurotransmitters such as ace-
tylcholine (Ach), dopamine (DA), and gamma- aminobutyric acid (GABA) 
(Moretti et al., 2017). Participants with lower vitamin D levels had worse 
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Abstract
Vitamin D is critical to brain function and its deficiency accelerates cognitive impair-
ment. There is limited understanding of the brain- specific areas that undergo volume 
change in relation to blood vitamin D levels. The objective of this study was to evalu-
ate the association between blood 25- hydroxyvitamin D (25(OH)D) concentration 
and structural changes in the brain. We analyzed structural three- dimensional T1 
MRI images of 201 elderly individuals (mean age = 74.91 ± 9.21 years; 68.1% female; 
mean 25(OH)D = 18.05 nmol/L), with 10 community- based normal healthy subjects, 
33 with subjective cognitive decline, 97 with mild cognitive impairment, and 61 with 
Alzheimer's disease (AD). To analyze the structural changes in the brain respective 
to blood 25(OH)D, multiple regression analyses were performed using voxel- based 
morphometry with age and total intracranial volume as covariates. Lower 25(OH)D 
level were associated with reduced brain volume in right olfactory, rectus GM regions 
(FWE- corr, p < .05) for entire subjects. For AD subjects, left parahippocampal, fusi-
form, and hippocampal areas were positively associated with 25(OH)D (FWE- corr, 
p < .05). Low blood 25(OH)D was associated with reduced volumes in olfactory and 
hippocampal regions in elderly patients with cognitive decline. Our results may pro-
vide insight into the neurological pathophysiology of vitamin D.
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performance on cognitive tests and slower information processing 
speed (Byrn & Sheean, 2019). Numerous cross- sectional studies have 
proven the correlation between vitamin D and cognitive state (Chai 
et al., 2019; Schlögl & Holick, 2014). Low vitamin D level was found to 
be associated with low scores in cognitive tests such as MMSE or MoCA 
(Sultan et al., 2020). On the other hand, participants with higher vita-
min D concentrations were less likely to develop cognitive impairment 
and related neurological diseases such as Alzheimer's disease (Feart 
et al., 2017; Goodwill et al., 2018). One study showed that their vitamin 
D supplementation group seemed to have lower brain amyloid- beta (Aβ) 
levels, as evidenced by their higher plasma Aβ levels when compared to 
the placebo group (Miller et al., 2016). In another study, a group given 
high doses of vitamin D (from 67.2 ± 20 to 130.6 ± 26 nmol/L) improved 
their performance in nonverbal visual memory tasks as compared to 
a group given low doses of vitamin D (60.5 ± 22 to 85.9 ± 16 nmol/L) 
(Pettersen, 2017). Although some cross- sectional studies failed to find 
correlations between vitamin D levels and direct cognitive impairment, 
the negative association between vitamin D levels and the risk for neu-
rological complications has been well established and still remains a 
plausible hypothesis. Randomized- controlled trials and cohort studies 
are needed to further verify the casual link between these two factors 
(Anjum et al., 2018; Sultan et al., 2020).

In the elderly, brain atrophy in both regions of lateral ventricles 
and the whole brain (Annweiler, Annweiler, et al., 2014) has been 
associated with low vitamin D levels. Low vitamin D levels were 
also associated with increased risk of cognitive decline (Annweiler 
et al., 2015), and vitamin D supplementation was shown to reduce 
fall risk (Bischoff- Ferrari et al., 2009). However, there is still limited 
understanding on which specific brain region hypovitaminosis D is 
associated with, and we examined MRI images to confirm the known 
associated regions and also identify potential regions of the brain 
that are specifically correlated with vitamin D levels.

2  | MATERIAL S AND METHODS

2.1 | Research design and participants

The study data were from Chung- Ang University Hospital Dementia 
Registry. The study was approved by the institutional review 

boards of the Chung- Ang University Hospital (2009- 005- 19331). 
The data were collected from May 2018 to March 2020, and a 
total of 226 subjects satisfied the inclusion criteria and had serum 
25- hydroxyvitamin D (25(OH)D) measurement.

The inclusion criteria for community- based healthy normal con-
trol (HNC) in the study were as follows: (a) absence of memory com-
plaints, (b) normal general cognition (within 1 standard deviation (SD) 
of the age-  and education- adjusted norms of the Korean version of 
the MMSE and a score >26), (c) normal activities of daily living (ADL), 
(d) Korean Dementia Screening Questionnaire <7, and (e) absence of 
depression (short form geriatric depression score <8). Patients that 
met the following criteria were categorized as suffering from subjec-
tive cognitive decline (SCD): (a) presence of memory complaints; (b) 
normal general cognition (within 1 standard deviation (SD) of the age-  
and education- adjusted norms of the Korean version of the MMSE (K- 
MMSE), and a score of >26); (c) normal ADL; and (d) no abnormalities on 
a comprehensive neuropsychological battery (within 1 SD of age-  and 
education- adjusted norms). Mild cognitive impairment (MCI) was cat-
egorized by the following: (a) complaints of memory inadequacies; (b) 
normal ADL; (c) objective cognitive impairment in more than one cog-
nitive domain on a comprehensive neuropsychological battery (at least 
1.0 SD below age-  and education- adjusted norms); (d) CDR of 0.5; and 
(e) not demented according to the Diagnostic and Statistical Manual of 
Mental Disorders (DSM)- IV criteria. The patients with Alzheimer's dis-
ease dementia (AD) qualified the probable AD criteria proposed by the 
National Institute of Neurological and Communicative Disorders and 
Stroke and AD and Related Disorders Association (NINCDS- ADRDA), 
as well those proposed by the DSM- IV.

Among 226 subjects, the subjects that were clinically diagnosed 
with Parkinson's disease or its variants, or other noncognitive neu-
rodegenerative diseases were excluded. We also excluded two 
subjects whose nifti MRI images could not generate the 3D recon-
struction of the brain. The number of final included subjects was 
201. The subject demographics are as follows: 10 HNC, 33 SCD, 97 
MCI, and 61 AD (Figure 1).

In this study, the serum 25(OH)D levels were referenced from 
the dementia registry database, which were measured using chemi-
luminescent immunoassay with using the ADVIA Centaur® Vitamin 
D Total Assay (Siemens Healthcare Diagnostics, Inc, NY) (Chen 
et al., 2012).

F I G U R E  1   Enrollment of eligible 
subjects
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2.2 | Preprocessing of MRI for VBM analysis

MRI scans in DICOM format were acquired from 3- T scanners 
manufactured by Philips (Achieva). We conducted voxel- based volu-
metry (VBM) to analyze our data using Computational Anatomy 
Toolbox (CAT12) in the most recent version of Statistical Parametric 
Mapping software (SPM12). CAT12 is an extension of Statistical 
Parametric Mapping software (Ashburner, 2012) created by the 
Structural Brain Mapping Group at the University of Jena to per-
form automated, quantitative analysis of the brain structures (Kurth 
et al., 2015). DICOM MRI files were converted into nifti files using 
MRIcron (http://people.cas.sc.edu/rorde n/ mricron/index.html). 
Preprocessing of those nifti files were performed by CAT12 toolbox 
within SPM12, using “ICBM template- East Asian Brains” template 
with default settings. All scans were normalized using an affine fol-
lowed by nonlinear registration and were corrected for homogene-
ous bias. It was then segmented into GM, WM, and CSF. We used the 
Diffeomorphic Anatomic Registration Through Exponentiated Lie al-
gebra algorithm (DARTEL) to normalize the segmented scans into a 
standard Montreal Neurological Institute space. Nonlinear deforma-
tion on the normalized segmented images was performed to correct 
individual brain size difference. We visually inspected the data after 
the automated procedures and excluded abnormal images that were 
not properly segmented or normalized. Rest of the segmented, mod-
ulated, and normalized GM and WM images were smoothed using 
2- mm full- width- half- maximum Gaussian smoothing.

2.3 | Statistical analysis

We analyzed the MRI files of the subjects using voxel- based morphom-
etry (VBM) to examine the regions of brain atrophy in cortical gray mat-
ter (GM) and white matter (WM) correlated with 25(OH)D levels. The 
smoothed images were analyzed via a linear multiple regression tool 
in SPM12 to detect negative correlation between vitamin D level and 
the GM and WM, respectively. Total intracranial volumes (TIV) were 
obtained through the “Estimate TIV” function in CAT12. In the matrix 
design, age and TIV were included as covariates to minimize potential 
confounding variables. The morphological difference in GM and WM 
was detected in p value (FWE- corrected) of 0.05 with extent threshold 
at 30 voxels for total and 50 voxels for subgroups. We performed mul-
tiple regression analysis in all subjects, and in each subgroup.

3  | RESULTS

3.1 | Demographics of the subjects

The mean age of the total subjects was 74.91 ± 9.21 (mean ± stand-
ard deviation) years, and 138 were females and 64 were males. 
The mean 25(OH)D levels of the entire subjects were 18.05 ± 9.59. 
There was no significant statistical difference in the 25(OH)D lev-
els between groups. The mean age of HNC was 70.4 ± 6.07 years, 

and 5 were females and 5 were males. The mean age of SCD was 
69.81 ± 8.86 years, and 25 were females and 8 were males. The 
mean age of MCI was 75.62 ± 7.71 years, and 67 were females and 
30 were males. The mean age of AD was 78.09 ± 8.36 years, and 40 
were females and 21 were males (Table 1).

3.2 | Correlation between GM/WM and Blood 
25(OH)D

The association between GM/WM and 25(OH)D level is shown in 
Table 2. There were no regions in WM that were correlated with 
25(OH)D levels. When we analyzed the total 201 subjects, for GM, 
reduced right olfactory and rectus area were correlated with low 
25(OH)D levels (Figure 2a). In SCD subjects, there was no significant 
correlation between 25(OH)D and total brain volume. For subjects 
with MCI, there was a positive association between 25(OH)D level 
and the following GM areas: right olfactory, rectus, supplementary 
motor area, left medial cingulate, superior temporal, and Rolandic 
operculum areas (Figure 2b). Left parahippocampal, fusiform, cer-
ebellum, and hippocampus areas were also shown to be positively 
associated with 25(OH)D level in AD (Figure 2c).

4  | DISCUSSION

Preclinical evidence supports vitamin D playing a role in brain 
health and morphology. Vitamin D appears to assist calcium home-
ostasis in neurons during cerebral development by regulating the 
synthesis of calcium- related cytoplasmic proteins such as parval-
bumine or calbinding protein, and thereby reducing the expression 
of calcium channels (Annweiler et al., 2010). In another study, vita-
min D administration prevented apoptosis and amyloid- β peptide 
toxicity in neurons by increasing vitamin D receptor activity and 
downregulating calcium channels (Dursun et al., 2011). Moreover, 
studies have shown vitamin D plays a life- long role in support-
ing essential brain functions and its deficiency has been linked 
to neurological and psychiatric disorders (Annweiler et al., 2010). 
Previous research had found hippocampal volume reduction in a 
serum 25(OH)D deficient group (<12 ng/ml) (Al- Amin et al., 2019), 
as well as a thinner cingulate cortex, reduced whole brain volume, 
and a larger lateral cerebral ventricle (Annweiler et al., 2013; Buell 
et al., 2010; Foucault et al., 2019). This is in line with our find-
ing that the lack of vitamin D is associated with reduced brain 
volume. Although there has been little focus on identifying focal 
brain atrophy in relation to vitamin D levels, recent study found 
that lower volume of the left calcarine sulcus was associated with 
lower serum 25(OH)D concentration (Ali et al., 2020). Our study 
provides additional information on the structural changes in brain 
volume related to vitamin D levels.

Our study demonstrated that a decrease in the subjects' over-
all vitamin D levels was associated with brain volume reduction 
of olfactory function- related areas. Some studies have noted a 

http://people.cas.sc.edu/rorden/


4172  |     LEE Et aL.

link between hypovitaminosis D and a diminished sense of smell 
(Bigman, 2020; Shin et al., 2020), which was found to be ameliorated 
by increasing serum vitamin D (Kruse & Cambron, 2011). Another 
study found that low serum vitamin D concentrations were inde-
pendently associated with olfactory dysfunction among Parkinson's 
disease patients (Kim et al., 2018). Olfactory impairment is associ-
ated with incident amnestic MCI and progression from amnestic MCI 
to AD (Devanand et al., 2015; Roberts et al., 2016), and also cor-
relates with the severity of dementia and many other neurodegener-
ative pathologies (Murphy et al., 1990; Wilson et al., 2007). Vitamin 
D may be a useful biomarker for screening AD- related amnestic 
disorder (Woodward et al., 2017; Yu et al., 2015). Previous studies 
showed that vitamin D deficiency is negatively associated with brain 
health, as such deficiencies were found to be correlated with cogni-
tive dysfunction and neuropsychiatric disorders like AD (Annweiler, 
Karras, et al., 2014; Dickens et al., 2011; Fan et al., 2020; Keeney 
& Butterfield, 2015; Littlejohns et al., 2014; Mayne & Burne, 2019; 
Taghizadeh et al., 2014). In our results from subjects with AD, the 
brain regions associated with the decrease in vitamin D levels in-
cluded regions in the left medial and lower temporal lobe, which 
are related to the memory domain of cognitive function. Medial 

temporal atrophy affecting the amygdala and hippocampus is typ-
ically observed in AD. The AD brain has also other cortical atrophy 
that is most marked in multimodal association cortices: temporal and 
parietal, while primary motor and somatosensory cortices appear 
mostly unaffected (Perl, 2010). In other words, the more severe the 
vitamin D deficiency in our AD patients, the more severe the atro-
phy of the medial temporal lobe, including the hippocampus. These 
observations support the conclusion that vitamin D can act against 
neurodegenerative processes. Also, as the reduced regions are cen-
tral to normal cognitive states (e.g., executive functions, memory 
consolidation, and behavioral regulations), cognitive impairment of 
people with low 25(OH)D levels may be explained by the brain atro-
phy of the regions that are responsible for neurocognitive functions.

The effects on medial cingulate, superior temporal, and Rolandic 
operculum areas found in MCI subgroup as well as parahippocampal, 
fusiform, cerebellum and hippocampus areas in AD subgroup were all 
found in the left hemisphere but not the right hemisphere. Previous 
MRI studies have demonstrated that regions that are vulnerable to 
atrophy in AD progression, particularly in the left hemisphere, are 
associated with a higher risk of developing dementia and memory 
impairments (Chételat et al., 2005; Galton et al., 2000; Querbes 

Number of subjects 
(female:male) 25(OH)D Age

Sex

Female 138 18.10 ± 9.74 74.29 ± 8.48

Male 64 17.94 ± 9.35 77.01 ± 8.31

Clinical state

HNC 10 (5:5) 15.65 ± 6.35 70.4 ± 6.07

SCD 33 (25:8) 20.59 ± 10.20 69.81 ± 8.86

MCI 97 (67:30) 17.78 ± 9.86 75.62 ± 7.71*

AD 61 (40:21) 17.29 ± 9.31 78.09 ± 8.36*

Abbreviations: AD, Alzheimer's disease; HNC, healthy normal control; MCI, mild cognitive 
impairment; SCD, subjective cognitive decline.
*p < .05, a significance of the difference when compared with HNC by t test.

TA B L E  1   Demographics of the 
subjects

MNI coordinate 
(x, y, z) Label t value z value

p value 
(FEW- corr)

Total 4, −14, 18 Olfactory_R
Rectus_R

4.51 4.4 .008

MCI 4, −14, 18 Olfactory_R
Rectus_R

5.11 4.78 .002

−10, −18, 45 Cingulate_Mid_L 4.97 4.66 .033

6, 21, 58 Supp_Motor_Area_R 4.93 4.64 .001

−56, −6, 9 Rolandic_Oper_L
Temporal_Sup_L

4.64 4.39 .044

AD −21, −34, −15 Parahippocampal_L
Fusiform_L
Cerebellum_L
Hippocampus_L

5.06 4.58 .012

Note: p value of maximal intensity cluster by voxel size is represented.
Abbreviations: Inf, inferior; L, left; Mid, middle; Oper, operculum; R, right; Sup, superior.

TA B L E  2   Anatomical labeling of brain 
structure negatively correlated to vitamin 
D level via Montreal Neurological Institute 
(MNI) coordinates
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et al., 2009; Risacher et al., 2010). Because the left is the dominant 
hemisphere, cognitive symptoms caused by lesions in the hemi-
sphere are readily detected clinically. Under the well- established 
relationship between the clinical progression of AD symptoms and 
brain atrophy (Jack et al., 2010), our data suggest that the pathology 
of AD leading to neuronal loss may be related to vitamin D levels.

However, despite some promising results, there is still insuf-
ficient evidence that supplementation of vitamin D can treat AD 
or alleviate its symptoms (Landel et al., 2016). In our subjects with 
MCI, the brain volume reductions correlated with vitamin D levels 
were identified in areas that were not necessarily related to AD 
pathology. Since the diagnosis of MCI is made clinically, the caus-
ative disease may include various neurodegenerative diseases other 
than just AD, for example frontotemporal lobe degeneration, early- 
stage Parkinson's disease, diffuse Lewy body disease, or cerebral 
small vessel disease, all of which can negatively impact cognitive 
function, especially frontal executive functions. Epidemiological 
and clinical studies found that reduced vitamin D level is associ-
ated with an increased risk of Alzheimer's disease, vascular demen-
tia (Moretti et al., 2017; Wang et al., 2020), Parkinson's disease 
(Evatt et al., 2008, 2011; Lin et al., 2003; Wang et al., 2001), prion 
disease (Suenaga et al., 2013), and motor neuron disease (Blasco 
et al., 2015; Yang et al., 2016). The individuals in the MCI subgroup 
in this study likely suffer from various causative diseases that could 
have impacted various areas of brain volume reduction related to 
vitamin D levels. Furthermore, some regions that were found to be 
significantly correlated with vitamin D in MCI but not in AD could 
be attributed to the ceiling effect: there has already been such sig-
nificant progression of brain atrophy in AD that vitamin D is no lon-
ger statistically correlated with the volume changes in the regions 
found in MCI. Rather, the medial temporal lobe, an area critical to 
the progression of AD, is found to be negatively associated with 
vitamin D levels in the AD subgroup.

One limitation of this study is the fact that it is a cross- sectional 
study with one- time measurement of vitamin D levels. Additionally, 
correlation analysis between vitamin D levels and cognitive tests 
was not conducted. Further longitudinal or follow- up studies about 
the causal relationship between brain atrophy region and cognitive 
deficits would provide a better understanding of the pathology of 
vitamin D deficiency in cognitive impairment.
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