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Abstract
Objective: Adolescents with d- transposition of the great arteries (d- TGA) who had the 
arterial switch operation in infancy have been found to have structural brain differ-
ences compared to healthy controls. We used cortical thickness measurements ob-
tained from structural brain MRI to determine group differences in global brain 
organization using a graph theoretical approach.
Methods: Ninety- two d- TGA subjects and 49 controls were scanned using one of two 
identical 1.5- Tesla MRI systems. Mean cortical thickness was obtained from 34 re-
gions per hemisphere using Freesurfer. A linear model was used for each brain region 
to adjust for subject age, sex, and scanning location. Structural connectivity for each 
group was inferred based on the presence of high inter- regional correlations of the 
linear model residuals, and binary connectivity matrices were created by thresholding 
over a range of correlation values for each group. Graph theory analysis was per-
formed using packages in R. Permutation tests were performed to determine signifi-
cance of between- group differences in global network measures.
Results: Within- group connectivity patterns were qualitatively different between 
groups. At lower network densities, controls had significantly more long- range con-
nections. The location and number of hub regions differed between groups: controls 
had a greater number of hubs at most network densities. The control network had a 
significant rightward asymmetry compared to the d- TGA group at all network 
densities.
Conclusions: Using graph theory analysis of cortical thickness correlations, we found 
differences in brain structural network organization among d- TGA adolescents com-
pared to controls. These may be related to the white matter and gray matter differ-
ences previously found in this cohort, and in turn may be related to the cognitive 
deficits this cohort presents.
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1  | INTRODUCTION

Congenital heart disease (CHD) is the most commonly occurring 
congenital anomaly (Tennant, Pearce, Bythell, & Rankin, 2010). Due 
to improvements in medical and surgical care, a steadily increasing 
proportion of those born with CHD are surviving into adolescence 
and adulthood. Research has increasingly focused on the behavioral 
and neuropsychological deficits present throughout development in 
this cohort (Bang et al., 2013; Bellinger et al., 2011; Cassidy, White, 
DeMaso, Newburger, & Bellinger, 2015; Heinrichs et al., 2014; Marino 
et al., 2012). Recently, evidence of differences in brain structure of ad-
olescents with CHD has accumulated, and some of these differences 
have been associated with cognition (Rivkin et al., 2013; Rollins et al., 
2014; M von Rhein et al., 2014).

D- transposition of the great arteries (d- TGA) is a form of CHD that 
is corrected by the arterial switch operation using cardiopulmonary 
bypass in early infancy. Brain abnormalities can be seen on MRI pre-  
and postoperatively, as well as in utero (Clouchoux et al., 2013; Licht 
et al., 2009; Limperopoulos et al., 2010; Ortinau, Beca, et al., 2012). 
Although white matter is most often affected, reduced cortical gray 
matter volume in the frontal and parietal lobes is also present sev-
eral months after surgery (Ortinau, Beca, et al., 2012; Watanabe et al., 
2009). Our group, using region- of- interest analyses, has shown that 
these measurable differences in brain structure have not returned to 
normal by adolescence in d- TGA patients (Rivkin et al., 2013; Rollins 
et	al.,	 2014;	 Watson	 et	al.,	 2016).	 While	 this	 regional	 approach	 to	
studying brain anatomical differences is helpful, it does not take into 
account the global organization of the brain, that is, its network struc-
ture. In a separate analysis of a subset of the same d- TGA adolescents, 
we have shown that differences exist in global brain organization 
based on white matter connectivity (Panigrahy et al., 2015).

Strong inter- regional cortical thickness correlations have been 
established as measures of structural connectivity, as regions with 
high structural covariance may share a maturational trajectory due to 
direct axonal connections or to a mutual influence (Alexander- Bloch, 
Raznahan, Bullmore, & Giedd, 2013). In healthy subjects, there is a 
moderate agreement between networks constructed from positive 
cortical thickness correlations and diffusion tensor imaging (DTI) trac-
tography (Gong, He, Chen, & Evans, 2012). A developmental study of 
gray matter covariance networks showed consistency between struc-
tural networks and known functional connectivity networks (Zielinski, 
Gennatas, Zhou, & Seeley, 2010). Further, networks constructed from 
cortical thickness data possess the “small- world” property and have 
distinct modules/communities of vertices, similar to network qualities 
derived from DTI tractography and resting- state functional MRI data 
(Achard,	 Salvador,	Whitcher,	 Suckling,	&	Bullmore,	 2006;	Chen,	He,	
Rosa- Neto, Germann, & Evans, 2008; Chen, Liu, Gross, & Beaulieu, 
2013; He, Chen, & Evans, 2007; Iturria- Medina, Sotero, Canales- 
Rodríguez, Alemán- Gómez, & Melie- García, 2008). These properties 
are present as early as 1 month of age and persist throughout devel-
opment (Fan et al., 2011; Khundrakpam et al., 2013). Finally, cortical 
thickness networks have been used to elucidate organizational brain 
differences in patients with Alzheimer’s disease, Parkinson’s disease, 

and epilepsy (Bernhardt, Chen, He, Evans, & Bernasconi, 2011; He, 
Chen, & Evans, 2008; Pereira et al., 2015).

To the best of our knowledge, analysis of gray matter connectiv-
ity has not been employed to discern related organizational networks 
in CHD patients of any age and may contribute to a more complete 
picture of the structural brain differences in this cohort. Here, we use 
a graph theoretical approach to analyze brain networks based on cor-
tical thickness correlations to compare brain structure in a group of 
adolescents born with d- TGA corrected surgically in early infancy with 
that of typically developing control adolescents.

2  | METHODS

2.1 | Subjects

Adolescents in the d- TGA group were recruited from the Boston 
Circulatory Arrest Study, as previously described (Bellinger et al., 
1995; Newburger et al., 1993). In brief, d- TGA subjects underwent 
the arterial switch procedure before 3 months of age between 
April 1988 and February 1992 at Boston Children’s Hospital (BCH) 
(Bellinger et al., 1995; Newburger et al., 1993). Exclusion criteria in-
cluded: known risk factors for brain disorders (e.g., history of closed 
head injury with loss of consciousness), any contraindication to acqui-
sition of MRI data (e.g., metal implants), Trisomy 21, and adolescents 
with forms of CHD other than d- TGA requiring surgical correction. 
The criteria used to recruit healthy control subjects were adapted 
from those of the NIH MRI study of normal brain development (Almli, 
Rivkin, McKinstry, & Brain Development Cooperative Group, 2007; 
Evans	&	 Brain	Development	 Cooperative	Group,	 2006).	 This	 study	
was approved by the Institutional Review Board and adhered to insti-
tutional guidelines and the Declaration of Helsinki. Parents provided 
informed consent and adolescents provided assent.

2.2 | MRI acquisition

Subjects were scanned on identical GE Twinspeed 1.5 Tesla (T) 
systems (General Electric, Milwaukee, WI, USA) with a quadrature 
head coil at either BCH or Beth Israel Deaconess Medical Center 
(BIDMC). The volumetric series for each subject was acquired using 
a Spoiled Proton Gradient Recalled (SPGR) sequence with param-
eters:	 TR/TE	=	35	ms/6	ms,	 flip	 angle	=	45	 degrees,	 acquisition	ma-
trix	=	256	×	256,	 FOV	=	220	mm,	 slice	 thickness	=	1.5	mm,	 with	
resultant	 voxel	 size	=	0.86	×	0.86	×	1.5	mm3. The images were in-
spected by a radiologist to assure data quality and detect structural 
abnormalities (e.g., tumors, stroke, etc.).

2.3 | Cortical thickness calculation

Images were processed using Freesurfer v5.0 (A.A. Martinos Center for 
Biomedical Imaging, Massachusetts General Hospital). The technical 
details are described elsewhere (Dale, Fischl, & Sereno, 1999; Fischl & 
Dale, 2000; Fischl, Sereno, & Dale, 1999). Briefly, MRI images are first 
partitioned into white matter, gray matter, and cerebrospinal fluid. 
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The outer pial surface of the brain is calculated, as is the surface com-
prising the white matter/gray matter junction. Cortical thickness is 
obtained by taking the distance between these two surfaces at every 
data point. Finally, the cortical surface is parcellated into distinct units 
based on gyral and sulcal anatomy (Fischl et al., 2004). The Desikan- 
Killiany atlas, which contains 34 regions per hemisphere, was used 
for	the	parcellation	(Desikan	et	al.,	2006).	Mean	cortical	thickness	was	
obtained for all regions for each subject.

2.4 | Network construction

All statistics were performed in R v3.2 (R Core Team, 2017), using func-
tions in the packages igraph and brainGraph (https://cran.r-project.
org/web/packages/brainGraph)	 (Csardi	 &	 Nepusz,	 2006;	 Kolaczyk	
& Csárdi, 2014). First, a general linear model was specified for each 
brain region, with mean cortical thickness as the outcome variable and 
age, sex, and scanner location (BCH or BIDMC) as covariates. Next, 
Pearson correlation coefficients between the model residuals for all 
pairs of regions were calculated, creating an adjacency matrix of size 
68	×	68	for	each	group.

The adjacency matrix of each group was binarized by threshold-
ing and removing any correlations lower than the threshold. Negative 
correlations were not considered, as these likely do not represent 
real anatomic connections in the brain (Gong et al., 2012). To ensure 
equal network sizes for both groups, the thresholds were chosen to 
result in a specific density (i.e., ratio of the number of edges present 
in the network to total possible number of edges); a range of densities 
from 0.05 to 0.40 (step size: 0.01) was investigated. Since correlations 
were generally larger in the control group, the correlation threshold 
for each specified density was correspondingly larger (i.e., an equal 
threshold for each group would have resulted in a higher density in 
the control network). The networks created from these matrices were 
un- directed, un- weighted, and simple (i.e., no loops).

2.5 | Network metrics

Vertex-		(i.e.,	region-	)	and	graph-	level	metrics	were	calculated	for	both	
groups at each density. For visualization and group analysis purposes, 
a density of 22% was chosen, as this was the lowest density for which 
at least 95% of vertices were connected for both groups. This den-
sity is within the range used in several other studies (Bernhardt et al., 
2011; He et al., 2008; Khundrakpam et al., 2013; Nie, Li, & Shen, 
2013).

2.5.1 | Vertex importance

Vertex	degree	 (the	number	of	connections	of	a	vertex),	between-
ness centrality (the number of shortest paths a vertex lies on), and 
nodal efficiency were used as measures of vertex importance. A 
vertex was considered to be a hub if its betweenness centrality 
was at least one standard deviation greater than the mean across 
all vertices for that density (Bernhardt et al., 2011; Hosseini et al., 
2013; Tijms et al., 2013; Wang et al., 2013). Since regions classified 

as hubs may change across densities, we report those regions which 
were	classified	as	hubs	in	at	least	half	(i.e.,	18/36)	of	the	densities	
investigated. We also investigated rich- club organization for each 
group	(Baker	et	al.,	2015;	Colizza,	Flammini,	Serrano,	&	Vespignani,	
2006;	 van	den	Heuvel	&	Sporns,	 2011).	A	 rich-	club	 is	 a	 group	of	
vertices with high degree that are significantly more likely to be 
connected to each other compared to a set of equivalent random 
graphs. For both groups, we calculated the rich- club coefficient, ϕ, 
for each degree (from 1 to the maximum degree present in the net-
work). We normalized ϕ (denoted ϕnorm) by dividing by the average 
over a set of 1,000 equivalent random graphs (for each group and 
density). The random graphs were generated by randomly rewir-
ing edges in the group- specific graphs for 10,000 iterations, keep-
ing constant the graph’s density and degree sequence (Maslov & 
Sneppen, 2002). Rich- club organization is considered present if 
ϕnorm > 1 for a range of degree thresholds. To determine a degree 
boundary, we used the “rich- core” algorithm of Ma and Mondragón 
(2015), which sorts the vertices from highest to lowest degree; the 
boundary is calculated as the local maximum of the function of de-
gree rank and number of connections to higher- degree vertices (Ma 
& Mondragón, 2015). For simplicity, we used the maximum bound-
ary value across subject groups.

2.5.2 | Network segregation and integration

Network segregation was assessed with three metrics. Modularity 
measures the strength of a given network partition. Higher modular-
ity indicates that vertices belonging to the same network module (or 
community) are more connected to each other than they are to verti-
ces of a different module. The Louvain algorithm was used to partition 
the networks into communities and compute the modularity (Blondel, 
Guillaume, Lambiotte, & Lefebvre, 2008). Degree assortativity is a re-
lated metric that measures the strength with which vertices of simi-
lar degree connect to one another; higher assortativity indicates that 
high- degree vertices are more likely to connect to other high- degree 
vertices compared to low- degree vertices. We also introduce lobe 
assortativity, which measures the number of inter- lobar connections 
relative to intra- lobar connections. This is equivalent to calculating the 
modularity of the network if it were a priori partitioned into the major 
lobes of the brain (i.e., frontal, parietal, temporal, occipital, insula, and 
cingulate). Higher values of lobe assortativity are present in networks 
with relatively fewer inter- lobar connections.

Small- worldness represents a balance between segregation and in-
tegration (Watts & Strogatz, 1998). Small world parameters clustering 
coefficient (C; the tendency of a vertex’s neighbors to be connected 
to one another) and characteristic path length (L; the average of short-
est path lengths between all vertices) were calculated, along with the 
average of each parameter from all random graphs (denoted Crand and 
Lrand, respectively) for each group (Humphries & Gurney, 2008; Watts 
& Strogatz, 1998). The small- world index (σ) is the ratio of the normal-
ized C to the normalized L (calculated as γ = C/Crand and λ = L/Lrand, 
respectively), and a network is considered to possess the “small world” 
property if σ > 1.

https://cran.r-project.org/web/packages/brainGraph
https://cran.r-project.org/web/packages/brainGraph
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Since the networks in this study are generated from correlations, 
they will tend to have a higher- than- expected level of clustering 
(Hosseini & Kesler, 2013; Zalesky, Fornito, & Bullmore, 2012). As a re-
sult, the random graphs generated by a simple rewiring procedure may 
not be entirely appropriate, as they will have very low clustering by de-
sign (Newman, 2010). Thus, as an alternative we generated (for each 
density and each group) 100 random networks while controlling for 
global clustering using a Markov Chain process (Bansal, Khandelwal, 
& Meyers, 2009). We then calculated an alternate small- world index, 
ω:(Telesford, Joyce, Hayasaka, Burdette, & Laurienti, 2011) 

Here, Clatt is the mean clustering coefficient of a set of equivalent 
lattices; i.e., the graphs generated from the Markov Chain process in 
this case with Lrand as previously described. A network is considered a 
small-	world	network	 if	−0.5	≤	ω	≤	0.5;	networks	with	ω	 closer	 to	−1	
are more similar to a lattice, and networks with ω closer to 1 are more 
similar to a random network. Networks with ω = 0 are considered 
to have a balance between global clustering and characteristic path 
length.

2.5.3 | Network closeness

Edge distances were calculated as the Euclidean distance in MNI co-
ordinates (in mm) between centroids of pairs of connected regions 
(Alexander-	Bloch,	Vértes,	et	al.,	2013;	Bassett	et	al.,	2008;	He	et	al.,	
2007).	Vertex	distances	were	calculated	as	the	mean	distance	of	all	
edges connecting a given vertex to all other vertices (Alexander- Bloch, 
Vértes,	et	al.,	2013).	Similarly,	characteristic	path	length	(L) serves as a 
measure of the global closeness of a network.

2.5.4 | Asymmetry and hemispheric efficiency

A measure of asymmetry, the asymmetry index, was calculated as 
the difference in the number of left and right hemisphere intrahemi-
spheric connections, divided by the average number of intrahemi-
spheric connections of both hemispheres. An asymmetry index <0 
indicates that the network has more intrahemispheric connections in 
the right compared to the left hemisphere. Additionally, we separated 
the group networks into isolated left and right hemisphere networks 
(Iturria- Medina et al., 2011; Li et al., 2015). We then calculated global 
efficiency (the inverse of the edges’ shortest path lengths, averaged 
over all edges) and local efficiency (the efficiency of a subnetwork 
comprising a vertex’s neighbors, averaged across all vertices) of each 
hemisphere separately.

2.5.5 | Network robustness

Network robustness was assessed using “targeted attack” and 
“random failure” analyses, in addition to calculating global vulner-
ability (Albert, Jeong, & Barabási, 2000; Bernhardt et al., 2011; He 

et al., 2008; Iturria- Medina et al., 2008; Romero- Garcia, Atienza, 
Clemmensen, & Cantero, 2012; Wang et al., 2013). In a targeted 
attack analysis, vertices are sorted in descending order of be-
tweenness centrality. The size of the largest connected component 
(the number of vertices that are reachable from any other vertex) 
is computed, and then the vertex with the highest betweenness 
is removed. After removal of that vertex and its connections, the 
size of the largest connected component is computed for this new 
network. These steps are repeated until all vertices have been re-
moved. In a random failure analysis, vertices are removed in ran-
dom order, and the size of the largest connected component is 
recorded after each removal. This was repeated 1,000 times and 
averaged over all iterations. Both targeted attack and random fail-
ure analyses were also performed with edge removals, using the 
same procedure except edges were sorted in decreasing order of 
edge	betweenness.	Vulnerability	(V) is calculated across all network 
vertices; for vertex i,

where Eglob(i) is the global efficiency of the network after removing 
vertex i. Global vulnerability is the maximum across all vertices; higher 
values indicate that the network is less stable in the presence of ver-
tex removal.

2.6 | Network analysis

Between- group difference in the set of inter- regional correlations 
was determined by a two- sample t- test. Permutation testing was per-
formed to assess group differences in global network measures (i.e., 
number of hubs, modularity, assortativity, clustering coefficient, char-
acteristic path length, edge asymmetry, global and local efficiency, 
and vulnerability) and vertex- level measures (degree, betweenness 

ω=

Lrand

L
−

C

Clatt

V(i)=1−
Eglob(i)

Eglob

TABLE  1 Demographic characteristics of d- TGA and control 
subjects

Variables d- TGA (n = 92) Control (n = 49) p- Valuea

Age at MRI (y) 16.1	(15.8–16.4) 15.7	(14.2–16.3) <.001

Sex (F) 22 (24) 29 (59) <.001

Scanner (BCH) 68	(74) 34	(69) .56

Race

Asian 2 (1) 2 (4) .006

Black 1 (1) 7 (14)

Black/Asian 1 (1) 0 (0)

White 86	(93) 39 (80)

White/Asian 2 (1) 1 (1)

Time to first 
surgery (d)

6	(4–9) – –

y, years; F, female; BCH, Boston Children’s Hospital; d, days.
Values	are	n (%) or median (IQR).
aDetermined by Fisher exact test for categorical variables and Wilcoxon 
test for continuous variables represented with medians.
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centrality, and nodal efficiency). Each subject was randomly assigned 
to one of two groups (of the same size as the d- TGA and control 
groups), and then we followed the procedure for network construc-
tion described above. This resulted in two networks for which we 
calculated the between- group difference in the area under the curve 
(AUC) across densities. We calculated 5,000 permutations for both 
global and vertex measures. For single hemisphere analyses, we per-
formed 1,000 permutations per density. Permutation p values were 
calculated as the proportion of times the randomized set of between- 
group differences was greater than (for number of hubs, clustering 
coefficient, right hemisphere global and local efficiency, and vertex 
degree) or less than (for modularity, assortativity, characteristic path 
length, edge asymmetry, left hemisphere global and local efficiency, 
and vulnerability) the observed between- group difference of control 
and d- TGA subjects. Similarly, for the rich- club analysis, p values were 
calculated as the proportion of times the rich- club coefficient of the 
random graphs exceeded that of each group network for each de-
gree threshold, and adjusted for false discovery rate (FDR) (Benjamini 
& Hochberg, 1995). Group differences in edge distance and in mean 
vertex distance of hub regions were assessed using a two- sample 
Wilcoxon rank- sum test at each density, with p values adjusted for 
FDR.

3  | RESULTS

3.1 | Subjects

Demographic and medical characteristics of the 92 d- TGA subjects 
and 49 control subjects have been described previously and is shown 
in Table 1; of note, the d- TGA subjects were significantly older and 
more	likely	to	be	male	than	control	subjects	(Watson	et	al.,	2016).

Abnormality on structural MRI was more common in d- TGA sub-
jects.	 In	the	d-	TGA	group,	33	 (36%)	had	at	 least	one	finding:	7	 (8%)	
subjects had evidence of prior infarction, 21 (23%) showed brain min-
eralization, 2 (2%) showed abnormal T2 hyperintensities, and 8 (9%) 
had minor malformations. Only 2 (4%) control subjects had evidence 
any structural abnormality (both minor malformations).

3.2 | Cortical thickness covariance

The set of inter- regional correlations of cortical thicknesses was sig-
nificantly greater in the control group compared to the d- TGA group 
(control mean: r = .23; d- TGA mean: r = .19; p < .001). Across the 
range of network densities, the mean difference in correlation thresh-
olds used for network construction was .057. The threshold resulting 

F I G U R E  1 Hub regions in the control and d- TGA groups. Hub regions are displayed for the control (top) and d- TGA (bottom) groups. These 
regions were determined to be hubs in at least half of all densities tested. The left column depicts a sagittal view of the left hemisphere, the 
center column depicts an axial view, and the right column depicts a sagittal view of the right hemisphere. Colors of individual vertices are based 
on membership in brain lobes — red: frontal; green: parietal; blue: temporal; yellow: occipital
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in a network density of 0.22 was 0.378 for the control group and 
0.318 for the d- TGA group.

3.3 | Network hubs

The distribution of hubs differed both quantitatively and qualitatively 
between groups. Regions determined to be hubs in at least half of all 
densities are shown for both groups in Figure 1, overlaid onto the brain. 
There were 9 hubs in the control group and 4 hubs in the d- TGA group 
(Table 2, top and bottom, respectively). Hubs in both groups tended to 
be in the right hemisphere (8/9 control; 3/4 d- TGA). Only the right supe-
rior frontal gyrus and right fusiform gyrus were common to both groups. 
The d- TGA group rarely demonstrated more hubs than the control group 
across densities; however, the between- group difference in AUC for the 
number of hubs was not significant (pAUC = .08). Furthermore, there 
were no significant between- group differences in any measures of ver-
tex importance (degree, betweenness centrality, and nodal efficiency).

3.4 | Rich- club organization

Rich- club organization was present in both groups for a range of degree 
thresholds. The “rich- core” degree boundary was k = 19 for the control 
group	(containing	26	vertices,	or	38%	of	the	total	network)	and	k	=	16	for	
the d- TGA group (containing 27 vertices, or 40% of the total network). 
When thresholding by the maximum across groups (i.e., k = 19), as in the 
distribution of hub regions, rich- club regions were predominantly right- 
hemispheric in the control group (Figure 2, top). However, the distribu-
tion of rich- club regions in the d- TGA group was relatively symmetric 
across hemispheres (Figure 2, bottom). Based on permutation analysis, 

vertex degree was significantly greater in the control group compared 
to the d- TGA group in right pars triangularis and right superior temporal 
gyrus (p = .02 and p = .002 uncorrected, respectively).

3.5 | Network segregation

Figure 3 shows adjacency matrices for both groups at a density of 0.22 
with vertices colored by lobe (inter- lobar connections are colored gray). 
Qualitatively, the d- TGA group has more fronto- frontal and fronto- 
parietal connections than the control group, and the control group has 
more fronto-  and parieto- temporal connections. This is reflected in 
the lobe assortativity, which was greater in the d- TGA group at every 
network density tested, though the differences were not statistically 
significant (Figure 4). Additionally, both degree assortativity and modu-
larity were consistently higher in the d- TGA group, although the differ-
ence was not statistically significant across all densities (pAUC = .08 and 
pAUC = .28 for assortativity and modularity, respectively). Several other 
global network measures are also plotted against density in Figure 4.

At a density of 0.22, both groups had 4 major (i.e., containing 3 or 
more vertices) modules detected by the Louvain algorithm (Figure 5): 
a bilateral medial/posterior module predominantly in occipital and pa-
rietal cortex; a bilateral module predominantly in temporal cortex; a 
bilateral medial module predominantly in frontal cortex; and a smaller 
module in bilateral cingulate cortex for the d- TGA group, and a module 
in bilateral frontal/cingulate/occipital cortex in the control group.

3.6 | Small- worldness

Figure	6	(top)	shows	the	small-	world	index,	σ, plotted against network 
density for both groups. At all densities, σ > 1, indicating the presence 
of small- world organization in both groups. In the bottom panel, an al-
ternate small- world index ω	is	plotted.	For	both	groups,	−0.25	<	ω < 0, 
suggesting these networks possess the small- world property and are 
closer to a lattice than a random network (Telesford et al., 2011).

3.7 | Network closeness

Characteristic path length was significantly lower in the control group 
across densities, indicating that regions are topologically closer to one 
another compared to the d- TGA group (pAUC	=	.026).	Edge	distance	
was significantly different between groups at several network densi-
ties (Figure 7, top), but not across all densities (pAUC = .14). In all cases, 
the median edge distance was higher in the control group than in the 
d- TGA group. Figure 7 (bottom) shows a histogram and density plot 
of edge distances for both groups at the network density of 0.22; 
while the between- group difference was not statistically significant at 
this density (pFDR = .11), the control group tended to have more long- 
distance connections than the d- TGA group.

3.8 | Asymmetry and hemispheric efficiency

Asymmetry was negative and lower in the control group at all network 
densities (Figure 4), indicating a greater number of intrahemispheric 

TABLE  2 Hub region locations

Region Hemisphere Lobe

Control

Superior frontal gyrus L Frontal

Lateral orbitofrontal 
cortex

R Frontal

Pars triangularis R Frontal

Superior frontal gyrus R Frontal

Superior temporal gyrus R Temporal

Fusiform gyrus R Temporal

Supramarginal gyrus R Parietal

Inferior parietal lobule R Parietal

Pars orbitalis R Frontal

d- TGA

Lateral orbitofrontal 
cortex

L Frontal

Superior frontal gyrus R Frontal

Fusiform gyrus R Temporal

Lingual gyrus R Occipital

L, left; R, right.
Regions in bold typeface are hub regions in both the control and d- TGA 
groups for at least half of all densities tested.
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connections in the right hemisphere than in the left. This between- 
group difference was statistically significant at multiple network 
densities, including a density of 0.22 (p = .04). Across all densities, 
the between- group difference did not reach statistical significance 
(pAUC > .05). Additionally, a rightward asymmetry is evident in the 
control network’s rich club, whereas the d- TGA network has rich- club 
regions distributed more evenly across hemispheres (Figure 2).

In the individual hemispheres, global efficiency was significantly 
higher in the control group than the d- TGA group for the right hemi-
sphere at multiple densities (statistically significant across all densities, 
pAUC = .02) but was lower for the left hemisphere (statistically significant 
across all densities, pAUC = .03) (Figure 8, top). In the control group, global 
efficiency was higher in the right than the left hemisphere at every density; 
in the d- TGA group, global efficiency was lower in the right hemisphere 
or nearly equal to the left hemisphere. Local efficiency was higher in the 
left hemisphere for the d- TGA group, but lower in the right hemisphere 
(except for two densities), compared to the control group (Figure 8, bot-
tom). The between- group difference in AUC of local efficiency was not 
significant for either hemisphere (pAUC = .52 and pAUC = .37 for the left 
and right hemispheres, respectively). In the control group, local efficiency 
was higher in the right hemisphere compared to the left at every density; 
in the d- TGA group, there was no consistent pattern present.

3.9 | Network robustness

At a density of 0.22, global vulnerability was significantly higher in the 
d-	TGA	group	 compared	 to	 the	 controls	 (group	difference	=	−0.049;	
p = .027); a similar relationship was seen at multiple densities 
(Figure 4). For the random failure and targeted attack analyses, at a 
density of 0.22, there were no significant differences between groups 
(Figure 9). Both groups’ networks were resilient against random fail-
ure of vertices and edges, and were similarly resilient to targeted 
 attacks of vertices and edges.

4  | DISCUSSION

Using a graph theoretical approach to analyze cortical thickness 
networks, we found both qualitative and quantitative differences 
in brain organization between a group of adolescents with d- TGA 
and healthy controls. The d- TGA network tended to be more seg-
regated, with higher modularity and assortativity. The control net-
work had more long- range connections and was significantly more 
asymmetric toward the right hemisphere, both in terms of number 
of connections and global and local efficiency. The control network 

F IGURE  2 Rich- club regions in the control and d- TGA groups at a density of 0.22. Rich- club regions and their connections are displayed 
for the control (top) and d- TGA (bottom) groups. The left column depicts a sagittal view of the left hemisphere, the center column depicts an 
axial view, and the right column depicts a sagittal view of the right hemisphere. Colors of individual vertices are based on membership in brain 
lobes — red: frontal; green: parietal; blue: temporal; orange: occipital; yellow: insula
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also had more hub regions, which, in turn, demonstrated more long- 
range connections distributed across both hemispheres and all the 
major lobes of the brain. Finally, global vulnerability was higher in 
the d- TGA network for a range of network densities, indicating a 
lower resilience to vertex “attacks.” However, networks in both 
groups did display small- world and rich- club organization in addi-
tion to having similar modular structure. In summary, these results 
suggest that compromised brain networks in d- TGA adolescents 
possess less efficient and less integrated information processing as 
compared to control adolescents.

Congenital heart disease affects brain structure and development 
as early as the 3rd trimester in utero causing features of developmental 
immaturity (Clouchoux et al., 2013; Dimitropoulos et al., 2013; Licht 
et al., 2009; Limperopoulos et al., 2010; Miller et al., 2007). Both pre-  
and postoperatively, the most common location of brain injury involves 
white matter, sometimes manifested as periventricular leukomalacia 
(PVL)	 (Beca	et	al.,	2013;	Gaynor,	2004).	White	matter	damage	early	
in development can adversely affect neuronal number and organi-
zation in gray matter (Inder et al., 1999; Leviton & Gressens, 2007; 
Volpe,	2009).	 Interestingly,	while	neuroimaging	and	neuropathologic	
evaluation performed in the postoperative period in infants with 
CHD has yielded evidence of white matter injury, radiologic features 
of chronic white matter injury have not been evident on routine MRI 
performed in longer term follow- up. However, in the current sample of 
d- TGA and control adolescents, we have found distributed reductions 
in white matter FA in the d- TGA group, in addition to altered global 
network organization based on white matter networks constructed 
from DTI tractography, despite the absence of gross white matter ab-
normalities (Panigrahy et al., 2015; Rivkin et al., 2013; Rollins et al., 

2014). Importantly, in this same cohort of adolescents with d- TGA 
we have found various alterations of cortical volume and thickness 
(Watson	et	al.,	2016).	The	current	analysis	of	cortical	 thickness	net-
works extends our previous finding of altered white matter network 
segregation in d- TGA adolescents to include alteration of gray matter 
networks, as well.

Graph theory analysis of gray matter networks has been success-
ful in differentiating other patient groups from healthy controls. An 
analysis of adults with temporal lobe epilepsy showed similar global 
organization but altered hub distribution relative to healthy controls 
(Bernhardt et al., 2011). Similarly, in adolescents with scoliosis, both 
the patient and control networks showed small- world organization, 
but an altered hub distribution; interestingly, there was an asymmetry 
in hub location matching the patient group’s thoracic curves, suggest-
ing a functional relevance of hub regions (Wang et al., 2013). In young 
adults with a history of childhood maltreatment, Teicher, Anderson, 
Ohashi, and Polcari (2014) found that regions involved in emotional 
processing possessed lower centrality in the proband group as com-
pared to controls; the groups also had significantly different rich- club 
organization (Teicher et al., 2014). Taken together, these findings indi-
cate that analysis of cortical thickness networks can reveal large- scale 
differences in connected brain regions known to underlie various dis-
ease states. Our findings of differences between d- TGA adolescents 
and healthy controls are in accord with this literature.

In this study, hub regions for the control group were mostly 
right- hemispheric and distributed across frontal, parietal, temporal, 
and occipital lobes. In contrast, hub regions for the d- TGA group 
were more bilaterally distributed and tended to involve frontal, tem-
poral, and cingulate regions only. A similar pattern of asymmetry 

F IGURE  3 Adjacency matrix plots for the control and d- TGA groups at a density of 0.22. Colors of individual vertices are based on 
membership in brain lobes — red: frontal; green: parietal; blue: temporal; magenta: occipital; yellow: insula; orange: cingulate; gray: inter- lobar 
connections



     |  9 of 15WATSON eT Al.

was present in the rich clubs of both groups. In both groups, hubs 
were located in multi- modal association areas, appropriate for their 
developmental stage (Khundrakpam et al., 2013). In the control 
group, there was strong right hemispheric occipito-  and parieto- 
frontal connectivity between hubs for most densities; these regions 
are broadly involved in attention and visuospatial functions. Altered 
asymmetry in cortical GM gyrification, particularly in frontal and 
temporal regions, has been found in HLHS fetuses (Clouchoux et al., 
2013). The mechanisms contributing to such asymmetries remain 
unknown; however, the relatively reduced blood flow in the right 
internal carotid artery as compared to the left, may render cere-
bral tissue on that side more vulnerable to injury during periods of 

significant reduction in oxygen delivery in hypoxic or ishemic con-
ditions (Bogren, Buonocore, & Gu, 1994). Finally, edge distances 
tended to be greater in the control group; long- distance connections 
may provide “shortcuts,” and support improved integration among 
brain regions underlying different cognitive functions (Kaiser, 2011).

We, and others have reported that patients with d- TGA and other 
CHD have a high incidence of attention deficit hyperactivity disorder 
(ADHD), as well as deficits in executive function, attention, and visu-
ospatial functioning (Bellinger et al., 2003, 2011; Razzaghi, Oster, & 
Reefhuis, 2015; von Rhein et al., 2015). The right hemisphere’s impor-
tance in attention has been established for several decades, particu-
larly in the study of patients with spatial neglect (Brain, 1941; Corbetta 

F IGURE  4 Global network measures plotted against density for the control and d- TGA groups. Red asterisks indicate a significant (p < .05) 
group difference based on permutation testing (N = 10,000); blue asterisks indicate a trend (p < .1). The dashed vertical lines represent a density 
of 0.22
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& Shulman, 2002; Gainotti, Messerli, & Tissot, 1972; Mesulam, 1981). 
Unilateral neglect is more commonly the result of right- hemisphere 
lesions and tends to be more severe compared to neglect consequent 
to left hemisphere lesions. In addition to study of stroke patients, 
abnormalities in right hemispheric structure and function have been 
found in children and adults with ADHD (Almeida et al., 2010; Epstein, 
Conners,	Erhardt,	March,	&	Swanson,	1997;	Makris	et	al.,	2007;	Valera,	
Faraone,	Murray,	&	Seidman,	2007;	Vance	et	al.,	2007).	Network	effi-
ciency is representative of parallel information processing and fault 
tolerance (Latora & Marchiori, 2001). Importantly, right- hemispheric 
asymmetry in efficiency has been shown to be present in healthy adult 
humans and non- human primates, but deficient in schizophrenia pa-
tients (Iturria- Medina et al., 2011; Sun, Chen, Collinson, Bezerianos, 
& Sim, 2017). The strong rightward asymmetry in the control group 
compared to the d- TGA group is consistent with these findings and 
suggests that the differences in hemispheric connectivity and network 
efficiency of d- TGA adolescents are associated with their long- term 
neurodevelopmental challenges in the cognitive domains of executive 
function and attention.

Our study has limitations. Imaging data were acquired on two 
separate MRI scanners. However, the scanners were the same model 

(GE Twinspeed 1.5T), the image sequence was identical on both scan-
ners, and both subject groups were balanced across scanning location. 
Additionally, we included a covariate for scanning location when per-
forming linear models of cortical thickness. Second, there were more 
males in the d- TGA group; we similarly adjusted for subject sex in the 
linear models. Finally, our patient group consists of patients with one 
type of CHD who underwent surgery at a single institution more than 
20 years ago. Thus, our results may not be generalizable to patients 
with different CHD types.

5  | CONCLUSIONS

Structural brain networks in adolescents with d- TGA, as measured by 
inter- regional cortical thickness correlations, differ in several aspects 
from a group of control subjects. Globally, both groups possessed 
small- world architecture, but network segregation tended to be 
higher in the d- TGA group. The control network was more asymmet-
ric, containing more connections in the right hemisphere, and had a 
more efficient right hemisphere than the d- TGA group. Additionally, 
the d- TGA group had fewer long- range connections. Locally, the 

F IGURE  5 Modules in the control and d- TGA groups at a density of 0.22. The control (top) and d- TGA (bottom) groups have a similar 
distribution of modules. The left column depicts a sagittal view of the left hemisphere, the center column depicts and axial view, and the right 
column depicts a sagittal view of the right hemisphere. Colors of individual vertices are based on membership of specific module as detected by 
the Louvain algorithm — red: medial/posterior; green: temporal; blue: frontal; cyan: medial frontal/cingulate/occipital (top) and medial cingulate 
(bottom)
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F IGURE  6 Small- world coefficients 
plotted against density for the control and 
d- TGA groups. The small- world coefficients 
σ (top) and ω (bottom) are shown for the 
control (red) and d- TGA (blue) groups. 
Top: The dashed line at y = 1 indicates 
the minimum value for a network to be 
considered a small- world network. Bottom: 
The dashed line at y = 0 indicates the 
value at which a network is considered to 
display a balance between global clustering 
coefficient and characteristic path length

F IGURE  7 Edge distances. (Top) 
Median edge distances plotted against 
density for the control and d- TGA groups. 
The shaded region indicates the 99% 
confidence interval across densities. Red 
asterisks indicate a significant (pFDR < .05) 
group difference; blue asterisks indicate 
a trend (pFDR < .1). The dashed vertical 
line represents a density of 0.22. (Bottom) 
Histogram of edge distances for the control 
and d- TGA groups at a density of 0.22. The 
solid lines are group density curves, and the 
dashed vertical lines represent the group 
median edge distance
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F IGURE  8 Global and local efficiency 
in individual hemispheres plotted against 
density for the control and d- TGA groups. 
Red asterisks indicate a significant (p < .05) 
group difference based on permutation 
testing (N = 1,000); blue asterisks indicate 
a trend (p < .1). LH and RH indicate left and 
right hemispheres, respectively

F IGURE  9 Robustness analyses for 
the control and d- TGA groups at a density 
of 0.22. Relative maximal connected 
component sizes plotted as a function 
of: upper left, the percent of total edges 
removed in a random failure analysis; upper 
right, the percent of total vertices removed 
in a random failure analysis; lower left, 
the percent of total edges removed in a 
targeted attack analysis; and lower right, 
the percent of total vertices removed in a 
targeted attack analysis
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d- TGA group had fewer hub regions which were connected to closer 
brain regions than in the control group. Taken together, these differ-
ences in structural connectivity based on cortical thickness indicate 
differences in brain organization that likely relate not only to gray 
matter connectivity but also to underlying white matter differences 
we have seen in these patients. Further, these network differences 
constitute candidate measures to test for associations with the cog-
nitive differences already identified between typically developing 
adolescents and those born with and treated for d- TGA.
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