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Abstract Convolutive and under-determined blind audio

source separation from noisy recordings is a challenging

problem. Several computational strategies have been pro-

posed to address this problem. This study is concerned with

several modifications to the expectation-minimization-

based algorithm, which iteratively estimates the mixing

and source parameters. This strategy assumes that any

entry in each source spectrogram is modeled using super-

imposed Gaussian components, which are mutually and

individually independent across frequency and time bins.

In our approach, we resolve this issue by considering a

locally smooth temporal and frequency structure in the

power source spectrograms. Local smoothness is enforced

by incorporating a Gibbs prior in the complete data like-

lihood function, which models the interactions between

neighboring spectrogram bins using a Markov random

field. Simulations using audio files derived from stereo

audio source separation evaluation campaign 2008 dem-

onstrate high efficiency with the proposed improvement.

Keywords Blind source separation � Nonnegative matrix

factorization � Expectation-maximization �Markov random

field � Simultaneous auto-regression

Introduction

Blind source separation (BSS) aims to recover unknown

source signals from observed mixtures with or without very

limited information about their mixing process. BSS

problems have been addressed in many previous studies,

for example, [1–12], which were motivated by several real-

world applications.

In a cocktail-party problem, microphones receive noisy

mixtures of acoustic signals that propagate along multiple

paths from their sources. In a real scenario, the number of

audio sources may be greater than the number of micro-

phones, audio sources may have different timbres and similar

pitches, and audio signals may be only locally stationary.

A convolutive and under-determined mixing approach

needs to be adopted to model this problem. There are

several techniques for solving convolutive unmixing

problems [13]. Some of these [14] operate in the time-

domain by solving the alternative finite impulse response

(FIR) inverse model using independent component analysis

(ICA) methods [2]. Another method is to extract mean-

ingful features from the time-frequency (TF) representa-

tions of mixtures. This approach seems to be more efficient

than the ICA-based techniques especially when the number

of microphones is lower than the number of sources.

Acoustic signals are usually sparse in the TF domain, so the

source signals can be separated efficiently even if they are

partially overlapped and the problem is under-determined.

These features can be extracted using several techniques,

including TF masking [15, 16], frequency bin-wise clus-

tering with permutation alignment (FBWC-PA) [17, 18],

subspace projection [19], hidden Markov models (HMM)

[20], interaural phase difference (IPD) [21], nonnegative

matrix factorization (NMF) [22, 23], and nonnegative

tensor factorization (NTF) [24].

Nonnegative matrix factorization [25] is a feature

extraction method with many real-world applications [26]. A

convolutive NMF-based unmixing model was proposed

by Smaragdis [22]. Ozerov and Fevotte [23] developed the
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EM-NMF algorithm, which is suitable for unsupervised

convolutive and possibly under-determined unmixing of

audio sources using only stereo observations. Their model of

the sources was based on the generalized Wiener filtering

model [27–29], which assumes that each source is locally

stationary and that it can be expressed in terms of superim-

posed amplitude-modulated Gaussian components. Thus, a

power spectrogram of each source can be factorized into

lower-rank nonnegative matrices, which facilitates the use of

NMF for estimating the frequency and temporal profiles of

each latent source component. In the TF representation, the

latent components are mutually and individually independent

across frequency and time bins. However, this assumption is

very weak for any adjacent bins because real audio signals

have locally smooth frequency and temporal structures.

Motivated by several papers on smoothness [26, 28, 30,

31] in BSS models, we attempt to further improve the

EM-NMF algorithm by enforcing local smoothness both in

the frequency and temporal profiles of the NMF factors.

Similar to [28, 30, 32], we introduce a priori knowledge to

the NMF-based model using a Bayesian framework,

although our approach is based on a Gibbs prior with a

Markov random field (MRF) model to describe pairwise

interactions among adjacent bins in spectrograms. As

demonstrated in [33], the MRF model with Green’s func-

tion, which is well known in many tomographic image

reconstruction applications [34], can improve the EM-

NMF algorithm. In this paper, we extend the results pre-

sented in [33] using other smoothing functions, particularly

a more flexible simultaneous autoregressive (SAR) model

that is more appropriate in term of hyperparameter esti-

mation and computational complexity.

The rest of this paper is organized as follows. The next

section reviews the underlying separation model. Section 3

is concerned with MRF smoothing. The optimization

algorithm is described in Sect. 4. Audio source separation

experiments are presented in Sect. 5. Finally, the conclu-

sions are provided in Sect. 6.

Model

Let I microphones receive signals that can be modeled as a

noisy convolutive mixture of J audio signals. The signal

received by the i-th microphone (i ¼ 1; . . .; I) can be

expressed as

~xiðtÞ ¼
XJ

j¼1

XL�1

l¼0

~aijl~sjðt � lÞ þ ~niðtÞ; ð1Þ

where ~aijl represents the corresponding mixing filter coef-

ficient, ~sjðtÞ is the j-th source signal (j ¼ 1; . . .; J), ~niðtÞ is

the additive noise, and L is the length of the mixing filter.

In the TF domain, the model (1) can be expressed as

xift ¼
XJ

j¼1

aijf sjft þ nift; or equivalently;

Xf ¼ Af Sf þ Nf ;

ð2Þ

where Xf ¼ ½xift�f 2 C
I�T ;Af ¼ ½aijf �f 2 C

I�J ; Sf ¼ ½sjft�f 2
C

J�T ;Nf ¼ ½nift�f 2 C
I�T , and f ¼ 1; . . .;F is the index of

a frequency bin.

The noise nift is assumed to be stationary and spatially

uncorrelated, i.e,

nift �N cð0;RnÞ; ð3Þ

where Rn ¼ diag ½r2
i �

� �
and N cð0;RnÞ is a proper complex

Gaussian distribution with a zero-mean and the covariance

matrix Rn.

Benaroya et al. [27] described an audio source ~sðtÞ as a

superimposed amplitude-modulated Gaussian process:

~sðtÞ ¼
XR

r¼1

hrðtÞ~wrðtÞ; ð4Þ

where hr(t) is a slowly varying amplitude parameter in the

r-th component (r ¼ 1; . . .;R), and ~wrðtÞ is a stationary

zero-mean Gaussian process with the power spectral

density rr
2 (f). The TF representation of (4) leads to

sðf ; tÞ�N c 0;
XR

r¼1

hrðtÞr2
r ðf Þ

 !
: ð5Þ

The power spectrogram of (5) is given by |sft|
2 =

P
r=1
R wfr

hrt, where wfr = rr
2(f). Thus, the spectrogram of the j-th

source ~sjðtÞ can be factorized as follows:

jSjj2 ¼ W jHj; ð6Þ

where Sj 2 C
F�T ;W j 2 R

F�Rj

þ ;Hj 2 R
Rj�T
þ ;Rj is the num-

ber of latent components in the j-th source, and Rþ is the

nonnegative orthant of the Euclidean space. The column

vectors of W j represent the frequency profiles of the j-th

source, while the row vectors of Hj are the temporal

profiles.

Févotte et al. [28] transformed the model (5) to the

following form:

sðf ; tÞ ¼
XR

r¼1

crðf ; tÞ ð7Þ

where crðf ; tÞ�N c 0; hrðtÞr2
r ðf Þ

� �
¼ N c 0;RðcÞft

� �
. Thus,

RðcÞft ¼ diag ½wfrhrt�r
� �

¼ diag jcrftj2
h i

r

� �
; ð8Þ

and
PR

r¼1 jcrftj2
h i

¼ WH, where W 2 R
F�R
þ ;H 2 R

R�T
þ .

Consequently, the model (2) can be expressed as
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xift ¼
XR

r¼1

�airf crft þ nift; where sjft ¼
X

r2Rj

crft; ð9Þ

R ¼ jRj is the number of entries in the set R ¼
SJ

j¼1 Rj,

and �Af ¼ ½�airf � 2 C
I�R is created from the columns of the

matrix Af . For example, assuming 8j : Rj ¼ f; . . .;Rg, we

have R ¼ J�R, and �Af ¼ ½Af ; . . .;Af � 2 C
I�R is the aug-

mented mixing matrix [23] created from �R matrices Af .

From (8) and (9), we have sjft�N cð0;RðsÞft Þ where

RðsÞft ¼ diag
P

r2Rj
wfrhrt

h i

j

� �
.

To estimate the parameters A ¼ ½aijf � 2 C
I�J�F;

C ¼ ½crft� 2 C
R�F�T ;W 2 R

F�R
þ ;H 2 R

R�T
þ , and Rn 2

R
I�I
þ , we formulate the following posterior:

PðC;W;HjX ;A;RnÞ¼
PðXjC;A;RnÞPðCjW;HÞPðWÞPðHÞ

PðXjA;RnÞ
;

ð10Þ

from which we obtain

ln PðX ; C;W;HjA;RnÞ ¼ ln PðXjC;A;RnÞ þ ln PðCjW;HÞ
þ ln PðWÞ þ ln PðHÞ: ð11Þ

From (3) and (9), we have the joint conditional PDF forX :

PðXjC;A;RnÞ ¼
Y

i;f ;t

N c

XR

r¼1

�airf crft; r
2
i

 !

¼
Y

f ;t

N cðAf sft;RnÞ: ð12Þ

Based on (12), the log-likelihood term in (11) can be

expressed as

ln PðXjC;A;RnÞ ¼ �
X

f ;t

ðxft � �Af cftÞHR�1
n ðxft � �Af cftÞ

�
X

f ;t

ln det Rn

¼ �
X

f ;t

ðxft � Af sftÞHR�1
n ðxft � Af sftÞ

�
X

f ;t

ln det Rn þ const; ð13Þ

where cft ¼ ½c1ft; . . .; cRft�T 2 C
R; sft ¼ ½s1ft; . . .; sJft�T 2 C

J ,

and xft ¼ ½x1ft; . . .; xIft�T 2 C
I .

The joint conditional PDF for C comes from the model (5):

PðCjW;HÞ ¼
YR

r¼1

YF

f¼1

YT

t¼1

N c 0;wfrhrt

� �

¼
YR

r¼1

YF

f¼1

YT

t¼1

jpwfrhrtj�1
exp � jcrftj2

wfrhrt

( )
:

ð14Þ

From (14), we have the log-likelihood functional for C :

ln PðCjW;HÞ ¼ �
X

r;f ;t

lnðwfrhrtÞ þ
jcrftj2

wfrhrt

 !
þ const:

ð15Þ

The negative log-likelihood in (15) is the Itakura-Saito (IS)

divergence [35], which is particularly useful for measuring

the goodness of fit between spectrograms. The IS diver-

gence is the special case of the b-divergence when b! �1

[26].

The priors PðWÞ and PðHÞ in (10) can be determined in

many ways. Févotte et al. [28] proposed the determination

of priors using Markov chains and the inverse Gamma

distribution. In our approach, we propose to model the

priors with the Gibbs distribution, which is particularly

useful for enforcing local smoothness in images.

MRF Smoothing

Let us assume that prior information on the total smooth-

ness of the estimated components W and H is modeled

using the following Gibbs distributions:

PðWÞ ¼ 1

ZW

exp �aWUðWÞf g;

PðHÞ ¼ 1

ZH

exp �aHUðHÞf g
ð16Þ

where ZW and ZH are partition functions, aW and aH are

regularization parameters, and U(P) is a total energy

function, which measures the total roughness in P. The

function U(P) is often formulated with respect to the MRF

model, which is commonly used in image reconstruction

for modeling local smoothness.

The functions U(W) and U(H) can be determined for the

matrices W and H in the following way:

UðWÞ ¼
X

f ;r

X

l2Sf

mflw wfr � wlr; dW

� �
; ð17Þ

UðHÞ ¼
X

t;r

X

l2St

mtlw hrt � hrl; dHð Þ: ð18Þ

In the first-order interactions (nearest neighborhood), we

have Sf = {f - 1, f ? 1} and the weighting factor mfl = 1,

and St = {t - 1, t ? 1} with mtl = 1. In the second-order

interactions, Sf = {f - 2, f - 1, f ? 1, f ? 2} and St =

{t - 2, t - 1, t ? 1, t ? 2}. The parameters dW and dH are

scaling factors, while w n; dð Þ is a potential function of n that

can take different forms. The potential functions that can be

applied to the EM-NMF algorithm are listed in Table 1.

According to Lange [41], a robust potential function in

the Gibbs prior should have the following properties:

nonnegative, even, 0 at n = 0, strictly increasing for n[ 0,
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unbounded, and convex with bounded first-derivative. Of the

functions listed in Table 1, Green’s function satisfies all of

these properties, and consequently, it was selected for use in

the tests in [33]. Unfortunately, the application of Green’s

function to both matrices W and H demands the determi-

nation of two hyperparameters dW and dH, and two penalty

parameters aW and aH. Moreover, data-driven hyperparam-

eter estimation usually involves an approximation of the

partition functions ZW and ZH , which is not easy in this task.

The Gaussian function w n; dð Þ ¼ n=dð Þ2, as shown in

Table 1, does not have a bounded first-derivative, but its

scaling parameter d may be merged with a penalty

parameter a. Consequently, only two parameters need to be

determined. The MRF model with a Gaussian potential

function is actually the SAR model [42–44], which is used

widely in many scientific fields [44, 45] to represent the

interactions among spatial data with Gaussian noise. Let

wr 2 R
F
þ be the r-th column of the matrix W, and

hr 2 R
1�T
þ be the r-th row of the matrix H. Random vari-

ables in the vectors wr and hr can be modeled using the

following stochastic equations:

wr ¼ SðWÞwr þ �; hr ¼ hrS
ðHÞ þ �; ð19Þ

where SðWÞ 2 R
F�F and SðHÞ 2 R

T�T are symmetric

matrices of spatial dependencies between the random

variables, ��Nð0; r2IÞ is an i.i.d. Gaussian noise, and I is

an identity matrix with a corresponding size.

According to [45, 46], the spatial dependence matrices

can be expressed as SðWÞ ¼ cZðWÞ and SðHÞ ¼ cZðHÞ, where

c is a constant that ensures that the matrices CðWÞ ¼
IF � SðWÞ and CðHÞ ¼ IT � SðHÞ are positive-definite, while

ZðWÞ ¼ ½zðWÞmf � and ZðHÞ ¼ ½zðHÞtn � are binary symmetric band

matrices indicating the neighboring entries in wr and hr,

respectively. In the first-order interactions, we have z1,2
(W) =

zF,F-1
(W) = zm,m-1

(W) = zm,m?1
(W) = 1 for m 2 f2; . . .;F � 1g;

z
ðHÞ
2;1 ¼ z

ðHÞ
T�1;T ¼ z

ðHÞ
n�1;n ¼ z

ðHÞ
nþ1;n ¼ 1 for n 2 f2; . . .; T � 1g,

and zmf = ztn = 0 otherwise. In the P-order interactions,

each entry wfr and hrt has the corresponding sets of

neighbors: {wf-m,r}, {wf+m,r}, {hr,t-m}, {hr,t+m} with m ¼
1; . . .; P. As a consequence, ZðWÞ and ZðHÞ are symmetric

band matrices with P sub-diagonals and P super-diagonals,

the entries of which are equal to ones, but zeros otherwise.

The matrices CðWÞ and CðHÞ are positive-definite, if

c\ (2P)-1 for P-order interactions [45, 46]. We selected

c ¼ ð2PÞ�1 � ~�, where ~� is a small constant, for example,

~� ¼ 10�16.

In the SAR model, Gibbs priors (16) may be expressed

as their joint multivariate Gaussian priors:

PðWÞ ¼
YR

r¼1

Z�1
W exp � aW

2
jjCðWÞwrjj22

n o
; ð20Þ

PðHÞ ¼
YR

r¼1

Z�1
H exp � aH

2
jjhrC

ðHÞjj22
n o

ð21Þ

where ZW ¼ 2p
aW

� �F=2 QF
f¼1 k2

f ðCðWÞÞ
� ��1=2

, and kf ðCðWÞÞ is

the f-th eigenvalue of the matrix CðWÞ. Similarly,

ZH ¼ 2p
aH

� �T=2 QT
t¼1 k2

t ðCðHÞÞ
� ��1=2

. If P ¼ 1 : kf ðCðWÞÞ ffi

1� cos pf
F

� �
and ktðCðHÞÞ ffi 1� cos pt

T

� �
, which simplifies

the hyperparameter estimation.

Algorithm

The EM algorithm [47] is applied to maximize

ln PðX ; C;W;HjA;RnÞ in (11). To calculate the E-step, the

log-likelihood functional (13) is transformed to the fol-

lowing form

ln PðXjC;A;RnÞ ¼ �T
X

f

tr R�1
n R

ðxxÞ
f

n o

þ T
X

f

tr AH
f R�1

n R
ðxsÞ
f

n o

þ T
X

f

tr R�1
n Af ðRðxsÞ

f Þ
H

n o

� T
X

f

tr AH
f R�1

n Af R
ðssÞ
f

n o

�
X

f ;t

ln det Rn;

ð22Þ

where the correlation matrices are given by R
ðxxÞ
f ¼

1
T

P
t xftx

H
ft ;R

ðssÞ
f ¼ 1

T

P
t sfts

H
ft , and the cross-correlation

R
ðxsÞ
f ¼ 1

T

P
t xfts

H
ft .

Ozerov et al. [23] observed that the set

{Rf
(xx), Rf

(xs), Rf
(ss), |crft|

2 } provides sufficient statistics for

the exponential family [47], so the sources sft and the latent

components cft can be estimated by computing the condi-

tional expectations of the natural statistics. According to

[23], we have the following posterior estimates:

Table 1 Potential functions

Author(s) (name) Functions: w(n, d) Reference

(Gaussian) (n/d)2

Besag (Laplacian) n=dj j [36]

Bouman and Sauer (GGMRF) |n/d|p [37]

Geman and McClure 16

3
ffiffi
3
p ðn=dÞ2

ð1þðn=dÞ2Þ
[38]

Geman and Reynolds jn=dj
1þjn=dj

[39]

Green d ln½coshðn=dÞ� [34]

Hebert and Leahy d ln½1þ ðn=dÞ2� [40]
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ŝft ¼ RðsÞft AH
f ðAf R

ðsÞ
ft AH

f þ RnÞ�1xft; ð23Þ

R̂ðsÞft ¼ RðsÞft � RðsÞft AH
f ðAf R

ðsÞ
ft AH

f þ RnÞ�1Af R
ðsÞ
ft : ð24Þ

Similarly, for the latent components, we have

ĉft ¼ RðcÞft
�AH

f ð�Af R
ðcÞ
ft

�AH
f þ RnÞ�1xft; ð25Þ

R̂ðcÞft ¼ RðcÞft � RðcÞft
�AH

f ð�Af R
ðcÞ
ft

�AH
f þ RnÞ�1 �Af R

ðcÞ
ft : ð26Þ

The conditional expectations for the sufficient statistics are

as follows:

R̂
ðxxÞ
f ¼R

ðxxÞ
f ; R̂

ðxsÞ
f ¼ 1

T

X

t

xftEðsH
ft Þ ¼

1

T

X

t

xft ŝ
H
ft ; ð27Þ

R̂
ðssÞ
f ¼ 1

T

X

t

EðsftÞEðsH
ft Þ þ R̂ðsÞft ¼

1

T

X

t

ŝft ŝ
H
ft þ R̂ðsÞft ;

ð28Þ

jcrftj2  EðcrftÞEðcH
rftÞ þ ðR̂

ðcÞ
ft Þrr ¼ jĉrftj2 þ ðR̂ðcÞft Þrr: ð29Þ

Detailed derivations of the formulae (23)–(26) are pre-

sented in the ‘‘Appendix’’.

From the M-step, we have o
oAf

ln PðX ; C;W;HjA;RnÞ

¼ 2Tð�R�1
n R

ðxsÞ
f þ R�1

n Af R
ðssÞ
f Þ ¼ 0, which gives Af ¼

R̂
ðxsÞ
f ðR̂

ðssÞ
f Þ

�1
. From

o

oR�1
n

ln PðX ; C;W;HjA;RnÞ ¼ 0;

we have

Rn ¼ diag R
ðxxÞ
f � Af ðR̂ðxsÞ

f Þ
H � R̂

ðxsÞ
f AH

f þ Af R̂
ðssÞ
f AH

f

n o
:

From o
owfr

ln PðX ; C;W;HjA;RnÞ ¼ 0, we have

wfr ¼
1

T

XT

t¼1

jcrftj2

hrt

� aWrwfr
UðWÞ: ð30Þ

Similarly, from o
ohrt

ln PðX ; C;W;HjA;RnÞ ¼ 0, we get

hrt ¼
1

F

XF

f¼1

jcrftj2

wfr

� aHrhrt
UðWÞ: ð31Þ

The terms rwfr
UðWÞ and rhrt

UðWÞ in (30) and (31) take

the following forms with respect to the potential functions:

• Gaussian (SAR model):

rwfr
UðWÞ ¼ ðCðWÞÞTCðWÞW

h i

fr
; ð32Þ

rhrt
UðHÞ ¼ HCðHÞðCðHÞÞT

h i

rt
; ð33Þ

• GR function (proposed by Green [34]):

rwfr
UðWÞ ¼

X

l2Sf

mfl tanh
wfr � wlr

dW

� �
; ð34Þ

rhrt
UðHÞ ¼

X

l2St

mtl tanh
hrt � hrl

dH

� �
: ð35Þ

• HL function (proposed by Hebert and Leahy [40]):

rwfr
UðWÞ ¼

X

l2Sf

mfl

2dWðwfr � wlrÞ
d2

W þ ðwfr � wlrÞ2
; ð36Þ

rhrt
UðHÞ ¼

X

l2St

mtl

2dHðhrt � hrlÞ
d2

H þ ðhrt � hrlÞ2
: ð37Þ

Experiments

Experiments were conducted using selected sound

recordings taken from the stereo audio source separation

evaluation campaign (SiSEC)1 in 2007. This campaign

aimed to evaluate the performance of source separation

algorithms using stereo under-determined mixtures. We

selected the benchmarks given in Table 2, which included

speech recordings (three male voices—male3, and three

female voices—female3), three nonpercussive music

sources—nodrums, and three music sources that inclu-

ded drums—wdrums. The mixed signals were recordings

that lasted 10 s, which were sampled at 16 kHz (the

standard settings of recordings from the ‘‘Under-deter-

mined speech and music mixtures‘‘ datasets in the Si-

SEC2008). For each benchmark, the number of true

sources was three (J = 3) but it only had two micro-

phones (I = 2), that is, stereo recordings. Thus, for each

case, we faced an under-determined BSS problem. All

instantaneous mixtures were obtained using the same

mixing matrix with positive coefficients. Synthetic con-

volutive mixtures were obtained for a meeting room with

a 250 ms reverberation time using omnidirectional

microphones with 1 m spacing.

The spectrograms were obtained by a short-time fourier

transform (STFT) using half-overlapping sine windows. To

create the spectrograms and recover the time-domain sig-

nals from STFT coefficients, we used the corresponding

stft_multi and istft_multi Matlab functions from

the SiSEC2008 webpage2 [48]. For instantaneous and

convolutive mixtures, the window lengths were set to 1,024

and 2,048 samples, respectively.

1 http://sisec.wiki.irisa.fr.
2 http://sisec2008.wiki.irisa.fr.

Cogn Comput (2013) 5:493–503 497

123

http://sisec.wiki.irisa.fr
http://sisec2008.wiki.irisa.fr


The EM-NMF algorithm was taken from Ozerov’s

homepage3, while the MRF-EM-NMF algorithm was

coded and extensively tested by Ochal [49].

The proposed algorithm is based on an alternating

optimization scheme, which is intrinsically non-convex,

and hence, its initialization plays an important role. An

incorrect initialization may result in slow convergence and

early stagnation at an unfavorable local minimum of the

objective function. As done in many NMF algorithms, the

factors W and H are initialized with uniformly distributed

random numbers, whereas the entries in the matrix A are

drawn from a zero-mean complex Gaussian distribution.

After W and H have been initialized, the covariance

matrices RðsÞft and RðcÞft given by (8) can be computed. A

noise covariance matrix Rn is needed to update the E-step.

Ozerov and Fevotte [23] tested several techniques for

determining this matrix. The E-step in MRF-EM-NMF is

identical to that in EM-NMF [23], and hence, all of these

techniques can be used in this experiment. The initial

matrix Rn was determined based on the empirical variance

of the observed power spectrograms.

The MRF-EM-NMF and EM-NMF algorithms were

initialized using the same random values (given as �R) and

run for 1,500 iterations.

The choice of the parameters {aW, aH, cW, cH} used in

the Gibbs distributions also affected the performance. The

regularization parameters can be fixed or changed with

iterations. Motivated by iterative thresholding strategies

[26], we used the following strategies:

• Linear thresholding:

aðkÞ ¼ a
k

kmax

;

• Nonlinear thresholding:

aðkÞ ¼ a
2

1þ tanh
k � mkmax

skmax

� �� �
;

• Fixed thresholding:

aðkÞ ¼ a if k [ k1;
0 otherwise

	

where k is the current iteration, kmax is the maximum

number of iterations, s 2 ð0; 1Þ is the shape parameter, m 2
ð0; 1Þ is the shift parameter, k1 is the threshold, and a can

be equal to aW or aH. All of the above thresholding strat-

egies aim to relax smoothing during the early iterations

when the descent directions in the updates are sufficiently

steep and to emphasize smoothing if noisy perturbations

become significantly detrimental to the overall smoothness.

These strategies are motivated by standard regularization

rules that apply to ill-posed problems. We tested all of the

thresholding strategies using instantaneous and convolutive

mixtures, and we obtained the best performance with fixed

thresholding using k1 = kmax/2.

The parameters dW and dH in the MRF models can be

estimated using standard marginalization procedures or by

maximizing the Type II ML estimate for (10). However,

these techniques have a huge computational cost for the

nonlinear potential functions in the MRF models. For

practical reasons, they are not very useful for the GR or HR

functions.

In this study, we tested all of the benchmarks in Table 2

and the following potential functions: the first- and second-

order Gaussian, GR, and HR. For the Gaussian functions,

we tested all combinations of the regularization parameters

aW and aH from the discrete set {0.001, 0.005, 0.01, 0.05,

0.1}. For GR and HL, the regularization parameters could

take only two values, {0.001, 0.01}, although the param-

eters dW and dH were tested with the following values:

{0.1, 1, 10}. The optimal values of the smoothing param-

eters are summarized in Table 3.

The separation results were evaluated in terms of the sig-

nal-to-distortion ratio (SDR) and the signal-to-interference

ratio (SIR) [50]. Figure 1 shows the SDRs and SIRs averaged

for the sources, which were estimated using the EM-NMF and

MRF-EM-NMF with various smoothing functions based on

instantaneous and convolutive mixing models. For each

sample in Table 2 and each smoothing function, the

smoothing parameters were tuned optimally for a given fixed

initializer. This unsupervised learning approach evaluated

the efficiency of the smoothing functions with respect to a

given recording scenario. However, the smoothing parame-

ters need to be determined with a supervised learning

framework in practice. To test this option, each recording in

Table 2 was divided into two 5 s excerpts during the training

and testing stages. For each training excerpt, the smoothing

parameters and initializer were selected to maximize the

SDR performance. Testing was performed on the other

excerpt with the same initializer. The results obtained during

the testing stage with the instantaneous mixtures are shown

in Fig. 2.

For comparison, Table 4 shows the average SDR results

produced and the running time taken when using several

Table 2 Benchmarks

Instantaneous Convolutive

male3_inst_mix male3_synthconv_250ms_1m_mix

female3_inst_mix female3_synthconv_250ms_1m_mix

nodrums_inst_mix nodrums_synthconv_250ms_1m_mix

wdrums_inst_mix wdrums_synthconv_250ms_1m_mix

3 http://www.irisa.fr/metiss/ozerov/.
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state-of-the-art algorithms, which were applied to the mix-

tures in Table 2. The generalized Gaussian prior (GGP)

algorithm [51] and the statistically sparse decomposition

principle (SSDP) algorithms [52] were applied to the

instantaneous mixtures. The convolutive mixtures were

unmixed with the IPD [21], two versions of the FBWC-PA
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Fig. 1 Source separation results obtained with the MRF-EM-NMF

(first- and second-order Gaussian, GR, and HL functions) and EM-

NMF (no smoothing) algorithms after 1,500 iterations: a mean SDR

(dB) for instantaneous mixture, b mean SDR (dB) for convolutive

mixture, c mean SIR (dB) for instantaneous mixture, d mean SIR (dB)

for convolutive mixture. The smoothing parameters were tuned

separately for each mixture in Table 2

Table 3 Parameters of the MRF-EM-NMF algorithm for each test case shown in Fig. 1

Benchmark Smoothing Instantaneous mixture Convolutive mixture

�R aW aH dW dH
�R aW aH dW dH

Male GR 12 0.01 0.01 1 1 4 0.01 0.01 0.1 10

Male HL 12 0.001 0.001 1 10 4 0.001 0.01 1 1

Male 1-Gaussian 12 0.001 0.01 – – 4 0.05 0.05 – –

Male 2-Gaussian 12 0.001 0.01 – – 4 0.05 0.01 – –

Female GR 12 0.01 0.01 10 10 4 0.01 0.01 1 1

Female HL 12 0.001 0.001 1 10 4 0.001 0.001 0.1 10

Female 1-Gaussian 12 0.001 0.001 – – 4 0.1 0.001 – –

Female 2-Gaussian 12 0.001 0.001 – – 4 0.05 0.005 – –

Nodrums GR 4 0.01 0.01 10 1 4 0.01 0.01 10 0.1

Nodrums HL 4 0.01 0.001 1 10 4 0.01 0.01 0.1 0.1

Nodrums 1-Gaussian 4 0.001 0.01 – – 4 0.001 0.05 – –

Nodrums 2-Gaussian 4 0.01 0.001 – – 4 0.005 0.01 – –

Wdrums GR 4 0.01 0.01 1 10 4 0.01 0.01 1 1

Wdrums HL 4 0.01 0.001 1 10 4 0.001 0.01 1 0.1

Wdrums 1-Gaussian 4 0.001 0.001 – – 4 0.001 0.1 – –

Wdrums 2-Gaussian 4 0.001 0.001 – – 4 0.005 0.1 – –

The notations ‘‘1-Gaussian’’ and ‘‘2-Gaussian’’ represent the first- and second-order Gaussian functions, respectively
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[17, 18] algorithm, and the Convolutive NMF [22]. Note that

the last method in this list was based on supervised learning,

whereas the others were unsupervised learning algorithms.

In this case, the first 8 s excerpts of the 10 s source record-

ings were used for learning, while the remainder was used for

testing.

The averaged elapsed time measured using Matlab

2008a for 1,500 iterations with �R ¼ 12, executed on a 64-

bit Intel Quad Core CPU 3 GHz with 8 GB RAM was

almost the same for the MRF-EM-NMF and EM-NMF

algorithms (see Table 4).

The simulations demonstrate that MRF smoothing

improved the source separation results in almost all test

cases. The results confirmed that instantaneous mixtures

were considerably easier to separate than convolutive

ones. The MRF-EM-NMF algorithm delivered the best

mean SDR performance of all the algorithms tested with

instantaneous mixtures. The highest SDR values were

produced with instantaneously mixed non-percussive

music sources. This was justified by the smooth frequency

and temporal structures of non-percussive music spectro-

grams. If the source spectrograms were not very smooth

(as with the percussive audio recordings), MRF smoothing

gave only a slight improvement (see Figs. 1, 2) in the

first-order MRF interactions, and even a slight deteriora-

tion in the higher-order MRF interactions. According to

Fig. 1, the HL function delivered the most promising SDR

results, which were stable with a wide range of parame-

ters. In each case with the instantaneous mixtures, the best

results were produced with the same hyperparameter

values, dW = 1 and dH = 10, and almost the same penalty

parameter values, aW and aH. The SAR model also

improved the results compared with the standard EM-

NMF algorithm. Moreover, the SAR model was tuned

using only two penalty parameters, and the partition

function of the associated Gibbs prior could be derived

using a closed-form expression, which might be very

useful for data-driven hyperparameter estimation.
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Fig. 2 Source separation results obtained in the testing stage with the

MRF-EM-NMF (first- and second-order Gaussian, GR, and HL

functions) and EM-NMF (no smoothing) algorithm after 1,500

iterations: a mean SDR (dB), b mean SIR (dB). The smoothing

parameters were determined during the training stage. 5 s excerpts

were used in the training and testing stages

Table 4 Mean SDR (dB) and running time (s) for sources estimated from the mixtures shown in Table 2

Benchmark Mixture Male Female Nodrums Wdrums Time

MRF-EM-NMF (HR) inst 8.06 9.95 24.07 21.72 2487

MRF-EM-NMF (GR) [33] inst 7.69 8.86 26.65 21.28 2498

EM-NMF [23] inst 2.62 6.5 11.7 19.87 2456

GGP [51] inst 8.4 8.57 13.9 10.3 5

SABM?SSDP [52] inst 4.25 3.82 5.83 9.43 2

MRF-EM-NMF (HR) conv 1.06 2.2 1.17 1.7 2760

MRF-EM-NMF (GR) [33] conv 1.4 2.1 1.2 1.56 2762

EM-NMF [23] conv 0.95 1.6 0.2 0.44 2720

IPD [21] conv 1.53 1.43 2.2 -2.7 1200

FBWC-PA [17] conv -0.1 4.43 0.77 -2.53 40

Generalized FBWC-PA [18] conv 5.95 7.45 1.2 -0.69 8

ConvNMF [22] conv -0.7 -0.47 3.85 8.13 347
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The source separation results produced with the MRF-

EM-NMF algorithm for convolutive and under-determined

mixtures were better than those obtained with the EM-NMF

algorithm. Unfortunately, the SDR values showed that these

results were still a long way from being perfect, even after

1,500 iterations, and thus, further research is needed in this

field. It is likely that some additional prior information

could be imposed, especially on a mixing operator, which

might increase the efficiency considerably.

It should be noted that the SDR performance with both

mixtures could still be improved by refining the associated

parameters, especially in the MRF models, and by using

more efficient initializers.

Conclusions

This study demonstrated that imposing MRF smoothing

on the power spectrograms of audio sources estimated

from under-determined unmixing problems may improve

the quality of estimated audio sounds considerably. This

was justified because any type of meaningful prior

information improves the performance, especially with

under-determined problems. This study addressed the

application of MRF smoothing in the EM-NMF algo-

rithm, but this type of smoothing could be applied to

many other related BSS algorithms based on feature

extraction from power spectrograms. Thus, the theoretical

results presented in this paper may have broad practical

applications. Clearly, further studies are needed to

improve this technique for convolutive mixtures and to

integrate regularization parameter estimation techniques

in the main algorithm.
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Appendix

The conditional expectations of the natural statistics can be

derived from the a posteriori distributions PðsftjxftÞ and

PðcftjxftÞ. Thus,

PðsftjxftÞ ¼
Pðxft; sftÞ

PðxftÞ

¼
ðpIþJ det RftÞ�1

exp �
�xft

�sft


 �H

ðRftÞ�1 �xft

�sft


 �( )

ðpI det RðxÞft Þ
�1

exp �ð�xftÞHðRðxÞft Þ
�1�xft

n o

¼ ðpJ det CftÞ�1
exp �Wft

� 

;

ð38Þ

where �xft ¼ xft � EðxftÞ;�sft ¼ sft � EðsftÞ;Cft ¼ RðsÞft � RðsxÞ
ft

ðRðxÞft Þ
�1RðxsÞ

ft ,

Rft ¼
RðxÞft RðxsÞ

ft

RðsxÞ
ft RðsÞft

" #
;

Wft ¼
�xft

�sft


 �H

ðRftÞ�1 �xft

�sft


 �
� ð�xftÞHðRðxÞft Þ

�1�xft:

We can transform R�1
ft in (38) into the following form:

R�1
ft ¼

RðxÞft �RðxsÞ
ft ðR

ðsÞ
ft Þ
�1RðsxÞ

ft

� ��1

�ðRðxÞft Þ
�1RðxsÞ

ft C�1
ft

�C�1
ft RðsxÞ

ft ðR
ðxÞ
ft Þ
�1 C�1

ft

2
4

3
5:

Using the Woodbury matrix identity, we have

ðRðxÞft � RðxsÞ
ft ðR

ðsÞ
ft Þ
�1RðsxÞ

ft Þ
�1

¼ ðRðxÞft Þ
�1 þ ðRðxÞft Þ

�1RðxsÞ
ft C�1

ft RðsxÞ
ft ðR

ðxÞ
ft Þ
�1;

and finally,

Wft ¼ �sft � RðsxÞ
ft ðR

ðxÞ
ft Þ
�1�xft

� �H

C�1
ft �sft � RðsxÞ

ft ðR
ðxÞ
ft Þ
�1�xft

� �

¼ sft � ŝft

� �HðR̂ðsÞft Þ
�1 sft � ŝft

� �
;

ð39Þ

where

ŝft ¼ EðsftÞ þ RðsxÞ
ft ðR

ðxÞ
ft Þ
�1 xft � EðxftÞ
� �

; ð40Þ

R̂ðsÞft ¼ Cft ¼ RðsÞft � RðsxÞ
ft ðR

ðxÞ
ft Þ
�1RðxsÞ

ft : ð41Þ

Thus, PðsftjxftÞ ¼ N cðsft; ŝft; R̂
ðsÞ
ft Þ. From (5), it follows that

EðsftÞ ¼ 0, so EðxftÞ ¼ 0. Since the zero-mean noise nft

from (3) is not correlated with sft, we have

RðxsÞ
ft ¼E ðxft�EðxftÞÞðsft�EðsftÞÞH

� �

¼E ðAf sftþnftÞsH
ft

� �
¼AfEðsfts

H
ft ÞþEðnfts

H
ft Þ¼Af R

ðsÞ
ft :

ð42Þ

Inserting (42) and RðsxÞ
ft ¼ ðR

ðxsÞ
ft Þ

H ¼ RðsÞft AH
f into (40) and

(41), we obtain the update rules (23) and (24), respectively.
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Analyzing PðcftjxftÞ, one can obtain PðcftjxftÞ ¼
N cðcft; ĉft; R̂

ðcÞ
ft Þ, which yields the update rules (25) and

(26).
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