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Abstract: Rare cold-inducible 2 (RCI2) genes from alfalfa (Medicago sativa L.) are part of a multigene
family whose members respond to a variety of abiotic stresses by regulating ion homeostasis and
stabilizing membranes. In this study, salt, alkali, and ABA treatments were used to induce MsRCI2D
and MsRCI2E expression in alfalfa, but the response time and the expression intensity of the MsRCI2D,-
E genes were different under specific treatments. The expression intensity of the MsRCI2D gene was
the highest in salt- and alkali-stressed leaves, while the MsRCI2E gene more rapidly responded to salt
and ABA treatment. In addition to differences in gene expression, MsRCI2D and MsRCI2E differ in
their subcellular localization. Akin to MtRCI2D from Medicago truncatula, MsRCI2D is also localized
in the cell membrane, while MsRCI2E is different from MtRCI2E, localized in the cell membrane
and the inner membrane. This difference might be related to an extra 20 amino acids in the C-
terminal tail of MsRCI2E. We investigated the function of MsRCI2D and MsRCI2E proteins in alfalfa
by generating transgenic alfalfa chimeras. Compared with the MsRCI2E-overexpressing chimera,
under high-salinity stress (200 mmol·L−1 NaCl), the MsRCI2D-overexpressing chimera exhibited a
better phenotype, manifested as a higher chlorophyll content and a lower MDA content. After salt
treatment, the enzyme activities of SOD, POD, CAT, and GR in MsRCI2D- and -E-overexpressing
roots were significantly higher than those in the control. In addition, after salt stress, the Na+ content
in MsRCI2D- and -E-transformed roots was lower than that in the control; K+ was higher than that in
the control; and the Na+/K+ ratio was lower than that in the control. Correspondingly, H+-ATPase,
SOS1, and NHX1 genes were significantly up-regulated, and the HKT gene was significantly down-
regulated after 6 h of salt treatment. MsRCI2D was also found to regulate the expression of the
MsRCI2B and MsRCI2E genes, and the MsRCI2E gene could alter the expression of the MsRCI2A,
MsRCI2B, and MsRCI2D genes. MsRCI2D- and -E-overexpressing alfalfa was found to have higher
salt tolerance, manifested as improved activity of antioxidant enzymes, reduced content of reactive
oxygen species, and sustained Na+ and K+ ion balance by regulating the expression of the H+-ATPase,
SOS1, NHX1, HKT, and MsRCI2 genes.

Keywords: Medicago saliva L.; MsRCI2s; salt tolerance; H+-ATPase; SOS1; HKT

1. Introduction

Alfalfa (Medicago sativa L.) is an important perennial legume resource with high
nutritional value and yield [1]. However, extreme environmental conditions, especially soil
salinization, severely limit its growth and production [2]. Therefore, it is critical to improve
its salt tolerance to facilitate its breeding.

High salinity leads to severe ion toxicity in plants. Salt ions, especially Na+, once taken
up by plant roots are transported to the shoots and eventually accumulate in the leaves,
disrupting the cellular ion balance and photosynthesis and impairing enzymatic activity
in some metabolic processes [3–5]. To cope with sodium toxicity, plants develop complex
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defense mechanisms, such as up-regulating the expression of membrane ion-transporter
genes, which initiates the transportation and compartmentalization of sodium in plant
cells [6]. For example, the plasma membrane H+-ATPase plays an important role in ion
transport and in the establishment and maintenance of ion homeostasis. It rapidly responds
to salt stress and is closely related to plant growth and stress tolerance [7]. NHX1 and
SOS1 transporter proteins play a role in the translocation of sodium to the vacuole and
the efflux of sodium from cells, respectively [8]. Under salt stress, to ensure potassium
translocation to alleviate potassium deficiency caused by the high concentration of sodium
in plant cell, plants also activate several kinds of potassium transporters, such as HKT [9].
However, the roles of some small membrane proteins that cannot form membrane channels
or transporters in response to salt stress are poorly understood.

The rare cold-inducible 2 (RCI2) genes encode a highly conserved small-molecule
hydrophobic peptide, identified as a plasma membrane protein by the fused GFP and
putative transmembrane domain [10–12]. They are similar to Pmp3p in that they regulate
ion homeostasis on the basis of similarities in protein structure and location as well as
evidence of RCI2 involvement in regulating Na+ and K+ levels [13–15]. Rocha (2016)
reviewed the multifunctionality of RCI2s in various plant species and suggested that RCI2s’
function was related to the mechanisms involved in the defense against cold, drought, and
salt [16]. Many studies have determined the positive regulatory function of RCI2s in abiotic-
stress responses in many species through ectopic expression [17–19], mutation [20,21], and
functional complementation of RCI2s [22,23]. In addition to regulating ion homeostasis,
RCI2s can reduce the treatment-induced accumulation of H2O2 and malondialdehyde, water
loss, and ion leakage and protect cells from oxidative stress due to abiotic stress [24,25].

In alfalfa, Long et al. (2015) identified five RCI2 genes in Medicago truncatula: MtRCI2A,
MtRCI2B, MtRCI2C, MtRCI2D, and MtRCI2E. The five RCI2 genes were divided into two
groups according to the sequence characteristics of their C-terminal amino acids. MsRCI2A-
C, homologous to AtRCI2B, were classified as Group I, and MtRCI2D-E homologous to
AtRCI2(D-E), containing an extra 20 amino acids in the C-terminal tail, were classified
as Group II [26]. MtRCI2(A-C) were found to be localized in the plasma membrane, but
MtRCI2D and MtRCI2E fusion proteins were also localized in the intracellular membrane;
the difference in the localization results was thought to be related to the extra 20 amino acids
in the C-terminal tail of MtRCI2D-E. The pmp3 yeast mutant complementation experiments
were also associated with extra C-terminal hydrophilic tail features. MtRCI2(A-C) could
functionally complement the salt-sensitivity phenotype resulting from the PMP3 mutation
in yeast, but the MtRCI2D and MtRCI2E genes failed to complement the PMP3 deletion
in yeast. In previous studies, six RCI2 genes in Medicago sativa were identified, and the
functions of MsRCI2(A-C) were initially investigated. MsRCI2(A-C) expression was induced
under high-salinity, alkali, and ABA treatments, but there were differences between MsRCI2
gene expression under different treatments. The overexpression of MsRCI2(A-C) in alfalfa
could improve its tolerance to high salinity and mild alkali stress. However, under alkaline
stress, MsRCI2(A-C) exhibited functional differences, which depended not only on their
different expression extents but also on the difference in their regulatory relationship with
MsRCI2s or H+-ATPase [1].

Owing to the evidence of functional specialization of the RCI2 proteins in different
species [11,13], even if Medicago truncatula is homologous to Medicago sativa, the functional
study of MsRCI2s from M. sativa is necessary. The aims of this research study were (1) to
test the expression and locational differences between MsRCI2E and MsRCI2D under salt,
alkali, and ABA treatments, (2) to explore the differences in the response to salt tolerance in
MsRCI2D- and MsRCI2E-transferred alfalfa, and (3) to explain the response mechanism of
MsRCI2D and MsRCI2E to salt stress.
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2. Results
2.1. MsRCI2D and MsRCI2E Encode PMP3 Protein and Contain Two Putative
Transmembrane Domains

The full-length amplification of MsRCI2D and MsRCI2E was performed using cDNA
as a template to obtain 165 bp and 231 bp fragments. Compared with other MsRCI2s
and Arabidopsis AtRCI2 genes, all members of the RCI2 gene family have conserved the
characteristic of PMP3 proteins, containing two putative transmembrane domains (arrows
in Supplementary Figure S1A). The amino acid sequence similarity between MsRCI2D and
MsRCI2E was 38.89%, with MsRCI2E having an extra 20 hydrophilic amino acids in the C-
terminal tail on the second transmembrane domain (TMD). On the basis of the phylogenetic
tree (Supplementary Figure S1B), all proteins were divided into four subgroups according
to the branching situation: alfalfa MsRCI2(A-C) and Arabidopsis AtRCI2A,-B belonged to
the same branch; MsRCI2D and Arabidopsis AtRCI2C,-H belonged to the same branch; and
MsRCI2E,-F and Arabidopsis AtRCI2(D-F) belonged to the same branch. The TMD analysis
showed that both proteins contained two TMDs, but the N-terminus of MsRCI2D was
extracellular, the N- and C-termini of MsRCI2E were extracellular; furthermore, MsRCI2E
contained a hydrophilic C-terminal tail in the second TMD (Supplementary Figure S1C).

2.2. Differential Expression of the MsRCI2D,-E Genes under Abiotic Stress

Figure 1 shows the difference in the expression of the MsRCI2D,-E genes at different
time points under various treatments (salt, alkali, and ABA). In leaves and roots, after salt
and alkali stress treatment, the MsRCI2D,-E genes were first induced and then decreased,
but the expression levels of the MsRCI2D,-E genes were different between the leaves and
roots. In addition, under salt stress, the MsRCI2E gene was more rapidly up-regulated
than the MsRCI2D gene. After exogenous ABA treatment, in the leaves, the MsRCI2D gene
was continuously up-regulated and reached the highest level at 24 h, while in the roots, it
reached the highest level at 12 h and gradually decreased. After exogenous ABA treatment,
the MsRCI2D,-E genes also showed different response patterns in the roots and leaves.
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Figure 1. Relative expression of MsRCI2D (A,B) and MsRCI2E (C,D) in leaves and roots under 
abiotic stress: 200 mmol·L−1 NaCl, 200 mmol·L−1 NaHCO3 (pH 8.5), and 100 µmol·L−1 ABA treat-
ment. The figure on the left shows the gene expression changes in the leaves; the figure on the right 
shows those in the roots. The values are the means ± SDs of three replicates; * indicates a significant 
difference (p < 0.05); ** indicates an extremely significant difference (p < 0.01). 
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As shown in Figure 2, when there was only the GFP, the green fluorescence signal 

was distributed in the whole cell, but the MsRCI2D/-E–GFP fusion protein had signals in 
the cell membrane. The difference was that the fluorescence signal of MsRCI2D–GFP 
was located only in the membrane, and MsRCI2E–GFP had a large number of signals in 
the whole cell. This showed that the MsRCI2D–GFP fusion protein was localized to the 
cell membrane, while the MsRCI2E–GFP fusion protein was distributed throughout the 
cell, similar to the GFP. 

 
Figure 2. Subcellular localization of MsRCI2D/-E–GFP in Arabidopsis protoplasts. Confocal laser 
scanning microscope images of Arabidopsis protoplasts expressing GFP fused to MsRCI2D,-E 
proteins. The red fluorescence signal represents FM4-64-stained chloroplast in a cell. The white 
scale bars represent 8 or 10 µm. 

Figure 1. Relative expression of MsRCI2D (A,B) and MsRCI2E (C,D) in leaves and roots under abiotic
stress: 200 mmol·L−1 NaCl, 200 mmol·L−1 NaHCO3 (pH 8.5), and 100 µmol·L−1 ABA treatment. The
figure on the left shows the gene expression changes in the leaves; the figure on the right shows those
in the roots. The values are the means ± SDs of three replicates; * indicates a significant difference
(p < 0.05); ** indicates an extremely significant difference (p < 0.01).
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2.3. Subcellular Localization of MsRCI2D/-E

As shown in Figure 2, when there was only the GFP, the green fluorescence signal
was distributed in the whole cell, but the MsRCI2D/-E–GFP fusion protein had signals in
the cell membrane. The difference was that the fluorescence signal of MsRCI2D–GFP was
located only in the membrane, and MsRCI2E–GFP had a large number of signals in the
whole cell. This showed that the MsRCI2D–GFP fusion protein was localized to the cell
membrane, while the MsRCI2E–GFP fusion protein was distributed throughout the cell,
similar to the GFP.
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2.4. Generation of Transgenic Alfalfa Chimeras That Overexpress MsRCI2D/-E in Hairy Roots via
Agrobacterium Rhizogenes

To obtain herbicide-resistant alfalfa chimeras, genetic transformation was carried out
with Agrobacterium-mediated methods. The transgenic hairy roots were detected using
PCR and real-time PCR (Supplementary Figures S2–S4). The alfalfa chimeras with a more
than 15-fold relative expression level compared with that of the non-transgenic control
were considered to be overexpressing and could be used for subsequent research. There
were 10 MsRCI2D-,-E-overexpressing alfalfa chimeras. The PCR-positive hairy roots were
detected using fluorescence microscopy. As shown in Figure 3, no green fluorescence
signals were observed in alfalfa hairy roots infected by the empty MSU440, while a green-
fluorescence signal was observed in PCR-positive hairy roots.
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Figure 3. Transgenic alfalfa chimera overexpressing MsRCI2D–GFP or MsRCI2E–GFP in hairy roots
due to Agrobacterium rhizogenes. (A) Vector structure; (B) green-fluorescent-signal detection in
MsRCI2D/-E transgenic hairy roots. Confocal laser scanning microscope images of MsRCI2D- and
-E–GFP-overexpressing transgenic alfalfa chimera. White scale bars represent 25 µm.

2.5. Overexpression of MsRCI2D/-E Gene Significantly Increases the Salt Tolerance of the
Transgenic Alfalfa Chimera

After treatment with 200 mmol·L−1 NaCl, the degree of wilting was severe, while
the transgenic alfalfa chimera was only partially wilted. With the MsRCI2E gene, the
degree of wilting in the MsRCI2D-overexpressing alfalfa chimera was lower than that in
the transgenic alfalfa chimera (Figure 4A). Before treatment, only the chlorophyll content
in the MsRCI2D-overexpressing alfalfa chimera was significantly higher than that of the
WT line (p < 0.05). After salt treatment for 5 days, the chlorophyll contents in the alfalfa
chimera were 1.45 times and 1.22 times those of the WT line, respectively, i.e., significantly
higher than the chlorophyll contents in the WT line (p < 0.01 or p < 0.05). During the 10-day
exposure to salt stress, only the chlorophyll content in the alfalfa chimera transfected with
the MsRCI2D gene was significantly higher than that in the WT line (p < 0.01; Figure 4B).
Thus, the overexpression of the MsRCI2D/-E gene improved the salt tolerance of alfalfa,
and the overexpression of MsRCI2D resulted in stronger salt tolerance. Figure 4C shows
the changes in relative conductivity under salt stress in the transgenic alfalfa chimera and
WT lines. After exposure to salt stress, the relative conductivity of each line increased,
while that of the transgenic alfalfa chimera was significantly lower than that of WT lines
(p < 0.01). Thus, the overexpression of the MsRCI2D/-E gene in roots could slow down the
increase in leaf cell-membrane permeability and improve the salt tolerance of alfalfa.
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Figure 4. Phenotype (A), chlorophyll content (B), relative conductivity (C), malondialdehyde con-
tent (D), and soluble sugars (E) analysis of alfalfa transformed with the MsRCI2D and MsRCI2E
genes on the 5th and 10th days of salt treatment. WT stands for wild type. RCI2D and RCI2E were
transformed with the MsRCI2D and MsRCI2C genes in hairy roots, respectively. The values are the
means ± SDs of three replicates; * indicates a significant difference (p < 0.05); ** indicates an extremely
significant difference (p < 0.01).

2.6. Changes in Physiological Indexes in the Transgenic MsRCI2D/-E Gene in Alfalfa under
Salt Stress

Figure 4D shows the malondialdehyde (MDA) content in transgenic hairy roots and
WT lines under salt stress. After treatment for 5 days, the MDA content in the MsRCI2E
gene transgenic line was significantly lower than that in the WT line (p < 0.01), and there
were no significant differences between the MsRCI2E gene transgenic line and the WT
line. When the samples were exposed to salt stress for 10 days, the MDA content in
transgenic hairy roots was significantly lower than that in the WT line (p < 0.01). In
addition, the soluble-sugar content in transgenic hairy roots was significantly increased
and was obviously higher than that in the WT lines (p < 0.01; Figure 4E). These results
indicate that the overexpression of MsRCI2D/-E resulted in less damage to membrane lipids
and stronger salt tolerance.
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2.7. Change in the Antioxidant Capacity of MsRCI2D/-E Transgenic Alfalfa Hairy Roots under
Salt Stress

There were no significant differences in the hydrogen peroxide (H2O2) content in
transgenic hairy roots and wild-type lines before treatment and after 5 days of exposure to
salt stress. After 10 days of exposure to salt stress, the H2O2 content in the hairy roots of
the MsRCI2E transgenic sample was significantly lower than that in the WT line (p < 0.01;
Figure 5A). In terms of the superoxide anion (oxygen free radical (ORF)) content, when
both lines were exposed to salt stress for 5 days and 10 days, the ORF content in each line
increased, but the ORF content in transgenic hairy roots was significantly lower than that
in the WT line (p < 0.05 or p < 0.01; Figure 5B), which indicates that when subjected to salt
damage, MsRCI2D/-E-overexpressing leaves accumulated less H2O2 and ORF than the WT
line and had less oxidative stress damage. Figure 5C–F show the antioxidant enzymatic
activities in transgenic hairy roots and WT lines under salt stress. Before treatment, only
the superoxide dismutase (SOD) enzyme activity in transgenic hairy roots was significantly
higher than that in the WT lines (p < 0.05). When both lines were treated with salt stress for
5 days, the enzyme activities of SOD, peroxidase (POD), catalase (CAT), and glutathione
reductase (GR) in transgenic hairy roots were significantly increased (p < 0.05 or p < 0.01)
and obviously higher than those in the WT lines. When both lines were exposed to salt
stress for 10 days, only the POD activity in MsRCI2D transgenic roots and the GR enzyme in
MsRCI2E transgenic roots were significantly higher than those of the other lines (p < 0.01 or
p < 0.05). The results showed that increased antioxidant enzyme activity played a positive
role in reducing the accumulation of reactive oxygen species (ROS).
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Figure 5. Changes in the antioxidant capacity of MsRCI2D/-E transgenic alfalfa hairy roots before
and after exposure to salt stress. Comparison of H2O2 and ORF contents (A,B), SOD activity (C), POD
activity (D), CAT activity (E), and GR (F) in WT plants and transgenic alfalfa hairy roots before and
after 5 and 10 days of salt treatment. The values are the means ± SDs of three replicates; * indicates a
significant difference (p < 0.05); ** indicates an extremely significant difference (p < 0.01).
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2.8. Changes in Na+ and K+ Ions in Transgenic Alfalfa Hairy Roots under Salt Stress

To better understand the salt tolerance mechanism in transgenic plants, the changes
in the Na+ and K+ contents and the Na+/K+ ratio in the roots of the transgenic and WT
lines were studied (Figure 6). Before exposure to salt stress, only the K+ content in MsRCI2D
transgenic roots was significantly lower than that in the WT line. After both lines were
treated with 200 mmol·L−1 NaCl, the Na+ content increased and the K+ content decreased in
each line, resulting in a significant increase in the Na+/K+ ratio, but the increase in Na+ and
the decrease in K+ in the WT line were greater, leading to a significantly greater increase in
the Na+/K+ ratio in the WT line than in the transgenic line. This indicates that MsRCI2D/-E
gene overexpression could reduce Na+ toxicity under salt stress, increase the K+ content in
root cells, and ensure the maintenance of the Na+/K+ ratio, reducing salt damage.
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Figure 6. Changes in Na+ and K+ contents (A,B) and Na+/K+ ratio (C) in the hairy roots of transgenic
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2.9. Differences in the Expression of Genes Related to Salt Stress in Transgenic Alfalfa Hairy Roots

To further explore the response of the MsRCI2D,-E genes to salt stress, real-time PCR
was used to detect the changes in the expression of genes closely related to antioxidants in
transgenic hairy roots (Figure 7A–D). After the three lines were exposed to salt stress, the
gene expression of MsCu/Zn-SOD was not significantly different across the three lines. The
expression of the MsCAT gene in the roots of WT and transgenic lines showed opposite
trends. When the three lines were exposed to salt stress for 12 h, the MsCAT gene was
significantly down-regulated in WT roots, while it was significantly up-regulated in the
two transgenic hairy roots, consistent with the change trend shown by CAT enzyme activity.
Likewise, the expression trend shown by the MsGR gene was different in WT and transgenic
lines. Note that under salt stress for 12 h, the gene expression of each line was essentially
the same. This result may explain why GR enzyme activity did not change much after the
lines were exposed to salt stress. The GR gene expression in transgenic alfalfa changed
significantly only in the early stages of salt treatment. The expression of the MsGS gene was
similar to that of the MsGR gene, and the gene expression in the roots of each line was the
same when the lines were given salt treatment for 12 h. However, it is worth mentioning
that under normal conditions, the overexpression of the MsRCI2E gene increased the
expression of the MsGS gene.
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Numerous studies have shown that RCI2 proteins are involved in maintaining cellular
ion homeostasis, ATP proton pump (H+-ATPase), plasma membrane Na+/H+ antiporter
(SOS1), tonoplast Na+/H+ antiporter (NHX1), and K+ transport channels (HKT1); thus,
they also play a role in maintaining cellular ion homeostasis. To determine whether the
RCI2 proteins regulate or interact with these membrane proteins, real-time PCR was used
to examine the differences in the expression of four genes related to ion homeostasis in
transgenic hairy and WT roots (Figure 7E–H). The expression trend of the H+-ATPase gene
was significantly different in the roots of transgenic and WT lines after they were given
salt treatment. The overexpression of the MsRCI2D,-E genes significantly increased the
H+-ATPase gene expression; the H+-ATPase gene was significantly increased (p < 0.01)
at 6 h of salt stress. However, the H+-ATPase gene in MsRCI2D-transferred roots was
continuously up-regulated and that in MsRCI2E-transferred roots was obviously decreased.
The expression trend of the SOS1 gene in the two transgenic alfalfa roots was similar, that
is, it was significantly increased at 6 h and decreased at 12 h under salt stress, and the
up-regulation of the SOS1 gene was extremely significant in MsRCI2D transgenic roots
(p < 0.01). The change trend shown by the NHX1 gene in MsRCI2D transgenic alfalfa roots
was the same as that shown by the SOS1 gene, while the expression of the NHX1 gene in
WT roots was significantly down-regulated. The expression of the NHX1 gene in MsRCI2E
transgenic alfalfa roots did not change significantly but was significantly higher than that
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in the WT at 6 h (p < 0.01). In the roots of WT plants, the expression of the HKT1 gene first
increased and then decreased, but in the roots of the transgenic lines, the expression of
the HKT1 gene decreased. Although changes in gene expression alone are not enough to
determine the regulatory relationship between the MsRCI2D/-E protein and membrane ion
channel proteins, it can be determined that the realization of MsRCI2D,-E gene functions
under salt stress is closely related to the regulation of ion homeostasis.

2.10. Differential Expression of MsRCI2 Genes in MsRCI2D,-E Transgenic Alfalfa

A preliminary analysis showed that both MsRCI2D and MsRCI2E could respond to salt
stress and MsRCI2(A-C) could also respond to salt stress, suggesting an interaction between
or regulatory relationship within the RCI2 proteins. To test this hypothesis, real-time PCR
was used to detect the changes in the expression of the MsRCI2(A-F) genes in transgenic
hairy roots and WT roots (Figure 8). Under normal conditions, the overexpression of the
MsRCI2D gene decreased the MsRCI2B gene (p < 0.01), and MsRCI2E was up-regulated
(p < 0.01); the overexpression of the MsRCI2E gene decreased the MsRCI2A and MsRCI2B
genes (p < 0.05; p < 0.01). After salt treatment, the changes in the expression of the
MsRCI2C and MsRCI2F genes in MsRCI2D,-E transgenic hairy roots and WT roots were
the same (Figure 8C,D), and both showed a downward trend. There were differences
between MsRCI2D/-E transgenic hairy roots and WT roots in terms of the expression of the
MsRCI2A, MsRCI2B, MsRCI2D, and MsRCI2E genes (Figure 8A,B,E,F). This indicates that
the MsRCI2D gene affected the expression of the MsRCI2B and MsRCI2E genes and the
MsRCI2E gene affected the expression of the MsRCI2A, MsRCI2B, and MsRCI2D genes.
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3. Discussion

An increasing number of studies have confirmed the role of RCI2 proteins in abiotic-
stress responses of plants genetically engineered to express high levels of RCI2 transgenes
(an example of such a response is increased plant resistance to salt, drought, cold, heat
shock, osmotic stress, and H2O2 stress) [17,18]. In alfalfa, the overexpression of MsRCI2A
transgenic Arabidopsis thaliana led to an increased resistance to salt stress [16]. In previous
studies, the overexpression of MsRCI2(A-C) in alfalfa (Medicago sativa L.) not only enhanced
salt tolerance but also increased resistance to alkali stress [1]. In this study, MsRCI2D/-E
overexpression improved salt tolerance in alfalfa chimeras, manifested as increased chloro-
phyll and soluble-sugar contents, reduced MDA content, and reduced relative conductivity.
However, the notion that MsRCI2D and MsRCI2E have differences in functions was con-
firmed by the gene expression under abiotic stress and the phenotypes and physiological
indicators of the transgenic plants.

3.1. Differences in Terms of Gene Function between MsRCI2D and MsRCI2E under Salt Stress

In [26], six RCI2 proteins from Medicago sativa and Medicago truncatula were divided
into two groups. MsRCI2A and MtRCI2(A-C) belonged to the first group, both containing
about 54 amino acids, and MtRCI2(D-E) belonged to the second group, consisting of
about 76 amino acids with a C-terminal tail of about 20 amino acids [26]. In this study,
MsRCI2D from M. sativa had about 54 amino acids, while MsRCI2E had about 76 amino
acids, with a hydrophilic C-terminal tail of about 20 amino acids. They were classified
into different groups. The subcellular localization of MsRCI2D and MsRCI2E was also
different. MsRCI2D–GFP was only located in the cell membrane, while MsRCI2E–GFP had
fluorescent signals on the plasma membrane and the inner membrane (Figure 1). This result
was not completely consistent with MtRCI2D and MtRCI2E from M. truncatula. MtRCI2D–
GFP and MtRCI2E–GFP fusions were all located in unspecified intracellular membranes,
apparently including the ER [26]. Perhaps this result was related to the 20 C-terminal amino
acids of MsRCI2E.

In general, homologous genes in the same species show differences in their expression
in response to abiotic stress and hormonal treatment, suggesting that they may play
different roles in stress resistance [27–29]. In this study, the MsRCI2D,-E genes in alfalfa
could respond to salt and alkali stress and be regulated by ABA; the expression levels of
the MsRCI2D,-E genes in roots and leaves showed an overall trend first increasing and
then decreasing, but the up-regulation of the MsRCI2E gene was more rapid than that of
the MsRCI2D gene (Figure 2). This indicates that MsRCI2D,-E could both respond to salt
and alkali stress, but there were differences in the speed of response and the intensity of
expression of the two genes.

In this study, MsRCI2D,-E overexpression in hairy roots improved the salt tolerance
of alfalfa. The analysis showed different trends in antioxidant enzyme activities among
different transgenic hairy roots under salt stress. POD and GR activities in MsRCI2D- and
-E-overexpressing hairy roots were significantly different (Figure 6). According to the data
results, the antioxidant indexes in hairy roots overexpressing MsRCI2D or MsRCI2E were
not completely consistent; neither was it certain whether this inconsistency was caused
by different genes nor could it be determined which gene-overexpressing plants had the
strongest antioxidant capacity.

In addition to the differences in gene expression and oxidase activities, there were
differences in the regulation of ion homeostasis between MsRCI2D and MsRCI2E. Under
normal conditions, only the K+ content in MsRCI2D-overexpressing transgenic hairy roots
was significantly lower than that in the WT line (Figure 7). Correspondingly, the expression
of ion channel protein H+-ATPase and the SOS1 gene also differed in MsRCI2D- and -E-
overexpressing hairy roots (Figure 8). There were also different regulatory relationships
between MsRCI2D,-E genes, and membrane ion channels.

In conclusion, MsRCI2D and MsRCI2E have differences in gene structure, response
to salt stress, and function, which also reflects the specificity of RCI2 proteins’ function.
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The specificity of RCI2 proteins’ function may be used as a molecular marker of salt
tolerance. There are differences in expression or sequence in different alfalfa varieties, and
the specificity of this function provides a new idea for the breeding of salt-tolerant alfalfa.

3.2. Molecular Mechanism of MsRCI2D and MsRCI2E Regulating Salt Tolerance

At the transcriptional level, the transcription of almost all examined RCI2 genes was
altered by one or more stresses, including drought, osmotic stress, low temperature, and salt
or upon treatment with ABA, SA, H2O2, or other signal molecules [16]. In this study, there
were differences in the MsRCI2D,-E gene expression under salt, alkali, and ABA treatments.
Similar studies have been carried out in other species. For example, in Arabidopsis, the
expression of AtRCI2 genes was induced by the cold, ABA, dehydration, and high-salinity
exposure, and there were differences in their expression [14]. The expression of ten ZmRCI2
members in response to drought stress either induced (ZmRCI2-1,-2,-6,-7) or decreased
(ZmRCI2-3,-5,-8,-9,-10) [30]. These results suggest that the expression of each RCI2 in plant
species has an individual characteristic response to its corresponding abiotic stress. RCI2s
may not respond to all abiotic stresses but may react to a specific stress type depending on
their promoter. Therefore, to understand the functional specificity of RCI2 proteins, further
studies need to focus on the upstream-region differences in RCI2s and on the identification
of transcription factors that regulate RCI2 expression under specific stresses.

Salt stress can lead to the accumulation of a large amount of ROS in plant cells, and
the oxidative stress generated by it destroys various components in the cells, leading to
the lipid peroxidation of cell membranes and severe cell damage [3]. Antioxidant enzymes
SOD, POD, CAT, GR, etc., are important ROS scavengers that can regulate the active oxygen
balance in plants [31]. In this study, the enzymatic activities of SOD, POD, CAT, and GR
in transgenic hairy roots with MsRCI2D,-E genes (Figure 5) were significantly higher than
those of the WT (p < 0.05 or p < 0.01), indicating that MsRCI2D,-E overexpression could
enhance the antioxidant capacity of alfalfa, more effectively remove excess ROS, and reduce
membrane lipid peroxidation. This was also demonstrated by the reduced contents of MDA,
H2O2, and OFR. Mohamad et al. found that salt-stress-triggered augmented levels of Na+,
K+, and ROS altered salt-related gene expression in tall wheatgrass [31]. Ion homeostasis
is related to ROS scavenging, and plasma membrane transporters play a key role in the
response to salt stress [32]. As membrane proteins, RCI2 proteins might alter the changes
in Na+ and K+ and enhance ROS scavenging by regulating other membrane transporters,
but the mechanism is still unclear. However, it is certain that MsRCI2D,-E overexpression
can reduce the ROS accumulation caused by high-salt stress and slow down the damage to
plants caused by oxidative stress.

Several studies have shown that RCI2/PMP3 proteins are involved in cellular ion
homeostasis, which can stabilize the ion balance in cells and prevent excessive Na+ up-
take [16,21], as well as regulate membrane stability and polarization. In this study, com-
pared with WT, in transgenic hairy roots, MsRCI2D,-E overexpression decreased the Na+

content, increased the K+ content, and decreased the Na+/K+ ratio (Figure 6). MsRCI2D,-E
played a certain role in cellular ion homeostasis. The expression of SOS1, H+-ATPase, NHX1,
and HKT1 genes related to ion transporters or other membrane proteins in transgenic roots
also proved this. Due to ion balance stabilization under salt stress, the MDA content in
transgenic hairy roots was also significantly lower than that in WT plants (Figure 4D).
Although there was no overexpression of exogenous genes in the aerial parts, the electrical
conductivity in the leaves was also lower than that in WT plants (Figure 4C). This indicates
that the ion balance under salt stress is beneficial to maintaining the stability of the mem-
brane and improving the salt tolerance of plants. Long et al. found that MtRCI2D,-E with
an extra 20 hydrophobic amino acids at the C-terminus could not functionally complement
the phenotypes of salt sensitivity, resulting from the mutation of PMP3 in yeasts, and could
not regulate salt ionic homeostasis under stress. The function of RCI2 was thought to be
directly related to the C-terminal hydrophilic tail. Although MsRCI2E also has an extra
20 hydrophobic amino acids at the C-terminus, the gene still plays a role in regulating ion
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homeostasis; it seems to be different from MsRCI2D. As mentioned earlier, only the K+

content in MsRCI2D-overexpressing transgenic hairy roots was significantly lower than
that in the WT line. The relationship between the regulation of ionic homeostasis and the
20 C-terminal hydrophobic amino acids is still uncertain and can be demonstrated via
mutation in later studies.

RCI2-like genes can improve the salt tolerance of plants by regulating intracellular ion
homeostasis, while RCI2 proteins are small-molecule polypeptides and cannot form ion
channels alone. Therefore, many studies have speculated that RCI2-like genes may regulate
other ion transporters or membrane proteins to function [19,33]. Several studies have shown
that H+-ATPase can maintain the intracellular pH level under alkaline stress [32,34,35]. PM
H+-ATPase is a key regulator of NaCl tolerance, as it provides a proton-driving force for
Na+/H+ exchange [36]. Liu et al. found that under salt stress, the activity of H+-ATPase
in an Arabidopsis rci2a mutant, complemented by MpRCI2 overexpression, was increased
compared with its activity in the WT, suggesting that AtRCI2A and MpRCI genes can
affect H+-ATPase activity, but the function of RCI2-induced PM H+-ATPase activation
was not clear [22]. Previous studies have also found a regulatory relationship between
H+-ATPase and MsRCI2C under alkali stress, and the expression level of H+-ATPase is
related to MsRCI2C, which maintains intracellular pH [1]. In this study, the expression of
the H+-ATPase gene was only increased in MsRCI2D-overexpressing hairy roots at 6 h of
salt stress (p < 0.01), but it was decreased at 12 h of salt exposure (Figure 7E). However, the
relationship between MsRCI2s and PM H+-ATPase was uncertain and requires additional
analyses of different MsRCI2 proteins when PM H+-ATPase is subjected to different stress
conditions. The interaction or the trafficking status of MsRCI2s and PM H+-ATPase should
also be considered in further studies. NaCl-induced CsRCI2E and CsRCI2F interact with
the aquaporin CsPIP2;1, reducing the accumulation of CsPIP2;1 on the membrane and
reducing water transport [13,19], which is enough to prove that the RCI2 proteins interact
with membrane proteins to assist in cellular trafficking.

Most researchers have reasoned that due to their small size, RCI2s cannot act as
ion transporters alone, and it is theoretically possible that two or more RCI2 oligomers
jointly form a transporter [16]. In a previous study, we found that MsRCI2A,B,C gene
expression was mutually regulated but physical interactions among MsRCI2 proteins were
not concluded [1]. In this study, we also analyzed the expression of the homologous
RCI2 genes in transgenic hairy roots with the MsRCI2D/-E gene under salt stress. The
overexpression of the MsRCI2D/-E gene had no effect on the expression of MsRCI2C and
MsRCI2F genes, while the MsRCI2D gene could regulate the expression of the MsRCI2B and
MsRCI2E genes, and the MsRCI2E gene could affect the MsRCI2A, MsRCI2B, and MsRCI2D
genes. Thus, future work should also concern RCI2 oligomers and their function in ion
homeostasis and interaction with other proteins. The identification of protein interaction
partners of RCI2s is critical to future studies.

At present, it is clear that the overexpression of the MsRCI2D and MsRCI2E genes
could improve the salt tolerance of alfalfa. Combined with existing research, the salt-
stress response pattern diagram (Figure 9) was obtained, that is, the MsRCI2D,-E genes
mainly respond to salt stress by increasing the accumulation of soluble sugars, regulating
ion homeostasis, and improving antioxidant systems. It is mainly manifested as the
regulation of the MsRCI2D/-E gene and membrane ion channel proteins SOS1, H+-ATPase,
NHX1, and HKT1, as well as the mutual regulation with other MsRCI2 genes, reducing the
content of Na+, increasing the influx of K+, and reducing the Na/K ratio, thus maintaining
ionic balance. At the same time, due to the change in Na+, the enzyme activities of
SOD, CAT, POD, and GR are increased, which promotes ROS scavenging; decreases the
contents of MDA, H2O2, and ORF; and decreases relative conductivity and enhances the
antioxidant capacity.
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Figure 9. Functional model of the MsRCI2D/-E response to salinity stress. The main functions
of MsRCI2D/-E are as follows: (1) ROS scavenging and stabilization of the antioxidant system in
response to salinity stress and (2) differences in MsRCI2 gene expression and regulatory relationships
with H+-ATPase, SOS1, NHX1, HKT1, or MsRCI2s.

4. Materials and Methods
4.1. Cloning and Bioinformatic Analysis of MsRCI2 Genes

We designed full-length amplification primers for MsRCI2D,-E on the basis of the
known nucleic acid sequences of MtRCI2D (Medtr6g033495) and MtRCI2E (Medtr4g130660),
and the primers are shown in Supplementary Table S1. Alfalfa cDNA was used as a tem-
plate. The amino acid sequences of RCI2s in alfalfa and Arabidopsis were obtained from
the Phytozome database (https://phytozome.jgi.doe.gov/, for Medicago truncatula accessed
on 24 April 2014) with the help of TBtools software (V1.09857) (It was freely available at
https://github.com/CJ-Chen/TBtools/releases accessed on 1 August 2022) [37]. Alfalfa
RCI2-like proteins were analyzed for their conserved motifs and structures compared
with the amino acid sequence of Arabidopsis RCI2 proteins. A neighbor joining (NJ)
phylogenetic tree was constructed on the basis of the phylogenetic analysis of RCI2-like
proteins in alfalfa, Arabidopsis, maize, rice, and cucumber. The pupation of the trans-
membrane domain of alfalfa RCI2-like proteins was obtained using an online service
(http://www.cbs.dtu.dk/services/TMHMM/ accessed on 1 August 2022).

4.2. Analysis of the Expression of MsRCI2 Genes under Different Treatments

The seeds of alfalfa “Longmu 806” were selected, and the seedlings were treated with
exogenous ABA (100 µmol·L−1) and exposed to salt stress (200 mmol·L−1 NaCl) and alkali
stress (200 mmol·L−1 NaHCO3, pH = 8.5) for 20 days. The sampling time points were 1,
6, 12, and 24 h after the start of stress treatment. A total of 200 mg of seedling leaf and
root tissue was harvested at each time point and individually stored at −80 ◦C for RNA
extraction. We performed three biological replicates per time point and tissue [1].

An Ultrapure RNA kit (Kangwei Century Biotechnology Co., Ltd., Beijing, China)
was used to extract total RNA after abiotic-stress treatment. RNA extracted from cells
was reverse-transcribed into cDNA, and the quality of the extracted cDNA was verified
via PCR using GAPDH as an internal reference gene. Real-time PCR was used to analyze
the difference in the expression of MsRCI2D,-E genes under salt- and alkali-stress and
ABA treatment. The relative expression levels were calculated using the 2−∆∆Ct method.
Supplementary Table S1 lists the gene primers. Three biological replicates (separate experi-
ments) were performed.

4.3. Subcellular Localization

To observe MsRCI2D and MsRCI2E localization in Arabidopsis protoplasts, the target
gene was fused with the GFP and constructed on the pUC19 vector. Transient expres-
sion [38] was performed in Arabidopsis protoplasts using Arabidopsis Protoplast Prepara-

https://phytozome.jgi.doe.gov/
https://github.com/CJ-Chen/TBtools/releases
http://www.cbs.dtu.dk/services/TMHMM/
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tion and Transformation Kit (Coolaber Co., Ltd., Beijing, China) at room temperature. After
18 days of cultivation without light, fluorescent signals of GFP-labeled MsRCI2s were de-
tected with a laser-scanning confocal microscope (Leica, Heidelberg, Baden-Württemberg,
Germany). FM4−64 (Invitrogen, Carlsbad, CA, USA) was used to locate the plasma
membrane, and the signal was observed under excitation at 559 nm.

4.4. Generation of MsRCI2-Overexpressing Transgenic Alfalfa Chimera

To construct the MsRCI2 overexpression vector, the MsRCI2D/-E PCR product was
connected to pMDC123 via homologous recombination; then, the pMDC123-MsRCI2D/-E
plant expression vector was transformed into Agrobacterium rhizogenes MSU440-competent
cells by the freeze–thaw method.

After the alfalfa seeds were germinated and cultured for 7–8 days, the cotyledonary
without roots was pre-cultured as the receptor, and Agrobacterium was activated for
infection and co-culture. The cotyledonary was cultured in the dark for about 3–4 days
and then placed in sterile water (after adding 100 mg·L−1 amoxicillin and clavulanate
potassium). This was followed by selection and rooting. The transformed hairy roots were
selected using 1.0 mg·L−1 glufosinate ammonium. When the glufosinate-resistant hairy
roots grew to a length of 3–4 cm, the seedlings were taken out and moved to the greenhouse
under controlled conditions [39].

DNA was extracted from the roots of the wild type (WT) and MsRCI2D- and -E-
resistant hairy roots, and the DNA of each line was used for PCR detection with bar-gene-
specific primers (Supplementary Table S1). The target gene and the GFP were fused on
the MDC123 vector. Therefore, the roots of the wild-type lines and the hairy roots of
transgenic alfalfa were intercepted one by one, and green fluorescence was detected with a
fluorescence microscope to further identify the transgene-positive hairy roots.

The real-time PCR method was used to quantitatively detect the target gene expression
in the hairy roots of the above-mentioned MsRCI2D,-E resistant lines. Supplementary Table
S1 displays the primers of the target gene and internal-reference gene GAPDH primers.
Wild-type (WT) lines were used as controls, and all samples were subjected to three
biological replicates and three technical replicates.

4.5. Determination of Salt Tolerance of Transgenic Alfalfa Chimera

Under growth conditions as above, transgenic and wild type (WT) alfalfa plants were
transplanted into separate pots containing vermiculite and perlite in a 1:1 ratio. The plants
were watered with a 1/5 concentration of Hoagland nutrient solution every 2 days for
20 days; after that, alfalfa plants in the same growth state were selected for salt treatment
(200 mmol·L−1 NaCl). In each pot, 200 mL of the relevant solution (1/5 Hoagland solution
or 200 mmol·L−1 NaCl) was poured, and samples were taken at 0, 6, and 12 days after
treatment for physio-biochemical analysis.

The determination of physiological and biochemical indicators was divided into two
parts: (1) The relative chlorophyll content (Chl) was measured using a SPAD chlorophyll
meter. Each recorded value included 3 biological replicates and 5 technical replicates. The
relative conductivity of a leaf blade was then determined with the vacuum method. The
malondialdehyde (MDA) content was measured with a UV–vis spectrophotometer and
using a Solarbio kit (Beijing Solarbio Science and Technology Co., Ltd., Beijing, China).
The MDA content was calculated as the subtraction of absorbance at 532 and 600 nm. The
soluble-sugar content in transgenic plants and WT roots after salt stress was measured with
a Solarbio kit (Beijing Solarbio Science Technology Co., Ltd., Beijing, China), and the OD
value at 620 nm was determined [1,40]. (2) The activities of antioxidant enzymes in WT
and transgenic plants were measured after salt stress. The corresponding kits purchased
from Suzhou Keming Biotechnology Co., Ltd. (Suzhou, China), were used to determine
hydrogen peroxide (H2O2) and superoxide anion (OFR) contents, superoxide dismutase
(SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, and glutathione reductase
(GR) activity.
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4.6. Analysis of Na+ and K+ Ion Contents in Transgenic Plants

Wild-type and transgenic alfalfa roots were dried to a stable weight at 80 ◦C. A certain
amount of nitrification solution was added. Then, 0.05 g of the material was ground into
dry powder, extracted, and filtered in a water bath at 90 ◦C; then, it was measured using
flame atomic absorption spectroscopy. Next, 0, 2, 5, 10, 20, and 40 mL of the mixed standard
solution were pipetted into 50 mL volumetric flasks, and equal amounts of K and Na
standards were added. Then, the nitrification solution was diluted with deionized water to
obtain mixed standard solutions containing K at 0, 2, 5, 10, 20, and 40 µg mL−1 and Na at 0,
5, 12.5, 25, 50, and 100 µg mL−1. For each strain and time point, three biological replicates
were performed after making a standard curve with the prepared mixed standard solution.

4.7. Analysis of the Expression Patterns of Related Genes in Transgenic Alfalfa Hairy Roots after
Salt Treatment

The analysis of the difference in the expression of related genes in transgenic hairy
roots was divided into three parts: (1) Changes in the expression of genes, including
Cu/Zn-SOD, CAT, GS, and GR1 genes, related to antioxidant enzymes were detected.
(2) To verify the regulatory relationship between MsRCI2s and membrane ion channel
transporters, the differences in the expression of H+-ATPase, SOS1, NHX1, and HKT1 genes
were determined between transgenic and wild-type roots. (3) To determine the regulation
between the MsRCI2 family genes, the differential expression of the MsRCI2A-F genes in
transgenic and wild-type roots was determined using qPCR. Total RNA extraction and
first-strand cDNA synthesis were performed as described above. The expression levels of
each gene after 6 h and 12 h of salt treatment were compared with that at 0 h. The primers
used are listed in Supplementary Table S1.

4.8. Statistical Analysis

Three biological replicates were used in all the experiments. All data were organized
using Microsoft Excel, 2010; GraphPad Prism version 9.01 (www.graphpad.com/) was
used to plot the data; and the one-way ANOVA was used to analyze the data. (p < 0.01
represented extremely significant differences, indicated by **; p < 0.05 indicated significant
differences, indicated by *.)

5. Conclusions

MsRCI2D and MsRCI2E were different in their responses to abiotic stress because of
their different subcellular localization and expression after salt, alkali, and ABA treatment.
The overexpression of the MsRCI2D,-E genes improved the salt tolerance of alfalfa, mani-
fested as improved stability of the membrane and activity of antioxidant enzymes, reduced
contents of reactive oxygen species and malondialdehyde, and continued ion homeostasis
via the regulation of H+-ATPase, SOS1, NHX1, HKT, and MsRCI2 gene expression.
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