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Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) remain as one of the most global problematic
metabolic diseases with rapidly increasing prevalence and incidence. Epidemiological studies noted that T2DM patients have by
two-fold increase to develop NAFLD, and vice versa. This complex and intricate association is supported and mediated by
insulin resistance (IR). In this review, we discuss the NAFLD immunopathogenesis, connection with IR and T2DM, the role of
screening and noninvasive tools, and mostly the impact of the current antidiabetic drugs on steatosis liver and new potential
therapeutic targets.

1. Introduction

The liver is one of the main houses that control the metabolic
homeostasis. Metabolic diseases such as obesity, IR, T2DM,
dyslipidaemia, and NAFLD are connected through molecu-
lar-biochemical, and complex immune mechanism [1, 2].
Both diabetes and NAFLD are chronic diseases that usually
portray nonalarming changes that can lead to disability and
many other metabolic complications. They are all indepen-
dently mortality and morbidity risk promoters, and overall
global financial consumer disorders [3–5].

Currently, NAFLD remains one of the most frequent
liver diseases, affecting up to 25% of the general adult popu-
lation [6–8], and with reported increased incidence in chil-
dren [9]. Soon it may become the most common indication
for liver transplant [10]. This multifactorial condition can
derive from an unhealthy lifestyle, obesity, dyslipidaemia,
type2 diabetes mellitus, and/or other metabolic syndromes
[11, 12]. It is characterized by a wide spectrum of liver dis-
eases that vary from simple fat accumulation (benign steato-
sis), to inflammation (nonalcoholic steatohepatitis (NASH)),
fibrosis, cirrhosis, liver failure, and finally to hepatocellular
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carcinoma (HCC), in the absence of excessive alcohol con-
sumption, medications, or viral aetiology [13–16]. Researchers
found that individuals with diagnosed NAFLD have a two-
fold increased risk of T2DM [17], and higher risk to develop
oncologic [18], cardiovascular [19, 20], and renal disease
[21] especially when is associated with T2DM [22].

By now, TD2M is reported to affect 1 in 11 adults and up
to 463 million people worldwide [23]. Since the 90s, there is
an increased incidence and prevalence of prediabetes and
T2DM among the paediatric population which is linked to
a high-fat diet, sedentarism, obesity, and liver-related dis-
eases [24, 25]. As T2DM is defined by high serum glucose
levels, IR, and damaged islet cell function, it is possible that
patients with NAFLD have a higher risk of developing diabe-
tes as they usually express abnormal glucose metabolism
[26]. Interestingly, recent evidence shows that T2DM is an
independent risk factor for NAFLD [27], women with a his-
tory of Gestational Diabetes Mellitus (GDM) have a higher
risk of NAFLD, and vice versa [28, 29], and that hepatic stea-
tosis resolution can prevent T2DM onsets [30, 31].

Over the years, substantial efforts were made in order to
elucidate the immunopathogenic mechanism behind NAFLD
and its connections with T2DM. Even if they are still insuffi-
ciently known data, IR seems to be one of the key events that
appear in both disorders [32, 33]. The interplay between
T2DM, NAFLD, and IR could be considered a two-way street.
It is difficult to establish if IR is the cause or the consequence of
NAFLD and T2DM, and what is the full relationship with
other metabolic syndromes [34, 35]. Nonetheless, it is very
important to understand as much as possible this codepen-
dency relationship.

In this review, we aim at describing the immunopatho-
genesis behind NAFLD, how IR is the hallmark that coexist
in booth diseases, how we can prevent and assert hepatic
changes through noninvasive methods, what are the best
therapeutic approaches in T2DM subjects that have NAFLD,
and the new desirable possible therapeutic options, and fore-
most we hope to raise awareness among clinicians about how
we should look beyond one disease and the importance of
screening for better prevention, management, and outcomes.

2. Immunopathogenesis

The link between T2DM and NAFLD can be described by a
spectrum of metabolic changes represented by IR, defective
hepatic lipidic profile, and triglyceride (TG) metabolism
which lead to fat accumulation, immune responses, and/or
subsequently hyperinsulinemia determined by the β-cell dys-
function in T2DM [36]. Normally, there is a balanced scale
between lipid uptake (free fatty acids (FFAs) or “de novo
lipogenesis” (DNL), and esterification) and lipid disposal
(metabolism or β-oxidation, and elimination as very-low-
density lipoproteins (VLDL)). In NAFLD, VLDL removal
cannot keep up with the increased rate of TG uptake and
intrahepatic production [37]. Thus, NAFLD immunopatho-
genesis can be described by two hypotheses. One that
includes increased intake of dietary fats that lead to free fatty
acids (FFAs) surplus, increased DNL, and decreased hepatic
TG excretion, and one that encompasses oxidative stress,

lipid peroxidation, mitochondrial dysfunction, and release
of inflammatory mediators [29, 38, 39].

2.1. Lipotoxicity. To maintain strict control of the hepatic
lipid homeostasis, compound interactions are made between
hormones, nuclear receptors, and transcription factors [40].
As known, carbohydrate excess contributes to steatosis via
DNL that produces lipogenic molecules such as acetyl-CoA
carboxylase (ACC), fatty acid synthesis (FAS), and stearoyl
CoA-desaturase-1 (SCD-1). DNL plays a very substantial
role in the development of NAFLD and is characterized by
a series of enzymatic transformations. First, glucose is con-
verted to acetyl CoA by glycolysis and pyruvate oxidation.
Acetyl-CoA is then converted to malonyl-CoA by ACC.
FAS catalyse the formation of palmitic acid from malonyl-
CoA and acetyl-CoA. Palmitic acid is then desaturated by
long-chain fatty acid elongase 6 and SCD1 to generate satu-
rated fatty monoacids, which are the main constituents of tri-
glyceride fatty acids. Glycerol-3-phosphate acyltransferase
(GPAT) then catalyses the esterification of glycerol-3-
phosphate from glycolysis with newly synthesized fatty acid
to phosphatidic acids. The phosphatidic acids are then proc-
essed into diacylglycerols (DAG) by lipin, followed by the
formation of triglycerides by acyl-CoA: diacylglycerol acyl-
transferase [41–43]. Glucose and insulin promote lipogenesis
through activation of the carbohydrate response element-
binding protein (ChREBP) and the sterol regulating element-
binding protein 1c (SREBP1c) [38, 44]. Fructose increases
the expression and induction of CD36 lipogenic pathways,
including uniquely regulation of ChREBP and SREBP1c,
increased steatosis, and reduced hepatic insulin signalling
[45, 46]. SREBPs are the most skilled regulators of lipid
uptake and cholesterol biosynthesis, and can induce liver
steatosis by enhancing TG expression. Deletion of SREBP-1a
promotes toll-like receptor-4 (TLR4) stimulation, increased
inflammatory gene expression via reprogramming the fatty
acid production [47], systemic IR, and reduction of the glucose
transport [48]. Transcriptional regulation of DNL is primarily
orchestrated by SREBP1c. This process connects DNL to cho-
lesterol metabolism and indirectly to IR, mainly because
SREBP1c can enhance the generation of harmful lipid mole-
cules such as DAG and ceramides which further enhance IR,
resulting in a positive feedback loop, in which hepatic DNL
help IR and IR stimulate hepatic DNL [49]. Ceramides are
an additional class that combines cellular toxicity with proin-
flammatory actions. Ceramides contribute to inflammation
through interaction with TNFα, are involved in oxidative
stress, and cell death [50]. They damage the mitochondria
and the endoplasmic reticulum (ER) function, elicit oxidative
stress, promote apoptosis, and histologic dysmorphic liver
lesions like ballooning and Mallory-Denk bodies [45, 51]. In
addition, lipid overload in the pancreatic β-cells impels
insulin secretion and changes the expression of peroxisome
proliferator-activated receptor- (PPAR-) α, glucokinase, glu-
cose transporter 2, preproinsulin, and of pancreatic duode-
nal homeobox, which enhance IR as a result of apoptosis
[52]. The PPAR-γ is a transcriptional regulator of adipose
metabolism that binds to SREBPs. Experimental data shows
that in obese models PPAR-γ and SREBP1 expression are
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elevated [53] and that SREBP-1c/PPARα ratio can be used
as an index of hepatic steatosis [54].

2.2. Oxidative Stress. As seen, lipid excess leads to fat storage
accumulation, abnormal lipid peroxidation, the release of the
proinflammatory cytokine, high reactive oxygen species
(ROS), and reactive nitrogen species (RNS). Lipid peroxida-
tion then promotes stellate cell proliferation, which contrib-
utes to fibrogenesis. The nuclear erythroid 2-related factor
2/antioxidant response element (NRF2/ARE) pathway which
modulates the antioxidant effect of ROS and RNS is flawed in
subjects with obesity and IR [55]. ROS induce the release of
cytokines from hepatocytes, trigger TLR-4 synthesis, and
promotes inflammatory liver macrophage activation [56].

2.3. Hepatic Cell Activation. In major metabolic diseases, the
onset is characterized by alteration of peripheral macrophage
number and functional phenotype, especially in the hepatic
and obese tissue [57]. In increased adipose tissue, researchers
found high levels of macrophages, mainly resident adipose
tissue macrophages (ATMs), which were detected in clusters
named crown-like structures (CLS) [58, 59]. These ATMs are
fundamental for tissue homeostasis, are involved in tissue
remodelling, clearance of cellular debris, inflammation, and
fibrosis [60–62]. In human lean adipose tissue, ATMs are
represented by CD14+/CD16− and express markers like
CD11c+ and CD206 that are associated with IR [63]. The ele-
ments that activate ATMs into metabolically activated mac-
rophage are the lipoproteins, FFAs, glucose, and insulin.
Liver macrophages (LM) are transformed from an anti-
inflammatory (M2) to a proinflammatory cell function
(M1) [64, 65]. M1 enhances the production of chemokines
such as chemokine ligand 2 (CCL2) that induces the synthe-
sis of tumor necrosis factor-alpha (TNF-α), IL-1 β, and
interleukin-6 (IL-6) which can alter the insulin sensitivity
in the adipose tissue [66, 67]. Importantly, TNF-α activates
two major proinflammatory signaling pathways: the c-Jun
N terminal kinase (JNK) a mitogen-activated protein kinase
family member and the nuclear-kappa B (NF-κB) pathway,
both linked to IR and NAFLD. Under normal conditions,
NF-κB is sequestered in the cytoplasm and binds to the
inhibitor of kappa B (IκB) proteins, which then inhibit the
nuclear localization of NF-κB. The NF-κB kinase of nuclear
factor kappa-B kinase (IKK-β) inhibitor plays an important
role in the activation of NF-κB. It seems that the deletion of
IKK-β improves glucose tolerance and insulin sensitivity
and suppresses the NF-κB pathway which can limit the lipo-
genesis and inflammation processes [64, 68]. Also, TNF-α
reduces AMP-activated protein kinase (AMPK) activity
which has a role in NAFLD development [69]. The JNK
pathways constant activation is maintained by stimuli-like
oxidative stress or various drug via a feedback loop mecha-
nism. Subsequently, JNK phosphorylates insulin receptor
substrate (IRS) which instigates the inhibition of the insulin
signaling [70, 71].

Kupffer cells (KCs) are the most flourishing population of
resident macrophages that inhabit the liver. Among the
immune homeostasis regulation, KCs coordinate the metab-
olism of bilirubin, cholesterol, iron [72, 73], and can recruit

neutrophils and natural killer T cells (NKT-cells) into the
liver [74]. This recruitment is modulated by chemotactic fac-
tors, such as monocyte chemotactic protein-1 (MCP-1).
MCP-1 production is initiated by hepatocytes during simple
steatosis and is supported by the infiltrating macrophages.
Blocking or absence of MCP-1 or C-C Motif Chemokine
Receptor2 (CCR2) the receptor for MCP-1 reduces the influx
of monocytes and macrophages into the liver, effectively
stopping the development and evolution of inflammation
and fibrosis [75–77]. Studies show that CCR2+ macrophage
is a pioneer in the hepatic monocyte uptake; it can induce
lipolysis through regulation of epinephrine and norepineph-
rine levels and promote liver injury [78]. In T2DM-NAFLD
subjects, authors found increased levels of Fatty acid-
binding protein 1 (FABP1), a protein that facilitates the stor-
age of FFAs and urges liver damage [79, 80]. Some suggested
that this protein may be used as a biomarker to detect liver
injury [81]. Another key protein is the Fatty acid transport
protein 1 (FATP1) which along with FATP4/5 contributes
to the inflammatory macrophages function. Deletion of
FATP1 causes glucose intolerance, whereas inhibition/dele-
tion of FATP4/FATP5 has beneficial metabolic effects [82].
An indispensable component of the amino acid metabolism
that provides macrophage activation and polarization is glu-
tamine. Glutamine attenuates inflammasome activation,
macrophage cell death and has overall beneficial effects. In
M1 macrophages, glutamine intensify their proinflammatory
effects via succinate in response to LPS, enhances lipotoxicity
which promotes inflammation in adipose tissue and trigger
IR. Subjects with diabetes or obesity usually have decreased
glutamine and increased succinate concentrations [83, 84].
Notably, oral supplementation with glutamine ameliorated
diet-induced NASH progression in C57BL/6J mice models
[85]. This vicious loop of inflammatory events that are con-
nected and influenced by IR may provide new tools for detec-
tion, or new therapeutic targets that can stop the onset and
progression of NAFLD.

2.4. Adipokines.Obesity is a major risk factor for diseases like
T2DM, hyperlipidemia, and NAFLD. This metabolic disease
emerges from an imbalance in energy input, energy con-
sumption, and fat accumulation [86]. Adipose tissue is a well
endocrine organ that secretes hormones and cytokines
known as adipokines. The development of IR in NAFLD is
also likely related to the imbalance between proinsulin (adi-
ponectin, leptin) and anti-insulin (i.e., TNFα) cytokines
[87–89]. Adiponectin is a specific secretory adipokine that
regulates of fatty acid oxidation (FAO), inhibits the accumu-
lation of FFAs, maintains the glucose homeostasis throughout
the body, and the sensitivity to hepatic insulin. Hypoadiponec-
tinemia affects the metabolism of fatty acids and promotes a
chronic state of inflammation in the liver [90]. On the other
hand, leptin can impel the hepatic stellate cell activation and
liver fibrosis, control the energy balance, and suppress appetite
[91]. Increased levels of leptin were found in subjects with
increased body fat and cardiometabolic disorders [92]. Authors
noted in a cross-sectional study that NAFLD patients have
lower adiponectin levels, higher serum leptin levels, and higher
leptin-to-adiponectin (L/A) ratio [93]. Adiponectin and leptin
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can independently predict the onset of NAFLD that is why they
may be taken into consideration as potential predictive bio-
markers for NAFLD [94]. Recently, researchers found that
novel adipokine Gremlin 1 can antagonize insulin signaling,
is positively correlated with the percentage of body fat and IR
in T2DM and NAFLD/NASH subjects, and also could repre-
sent a potential biomarker or therapeutic target [95].

2.5. Gut Microbiota. Another theory suggest that gut micro-
biome alteration and dietary habits are another mechanism
that induce and maintain T2DM and/or NAFLD [96, 97].
Indeed, data shows that gut dysbiosis enhances bacteria pro-
duction that can regulate KCs inflammatory activation, pro-
motes short-chain fatty acids (SCFAs) production, changes
the enterohepatic circulation of bile acid, and can lead to
inflammation and finally hepatic steatosis [98, 99]. Gut-
derived metabolites such as tryptophan modulate inflamma-
tory responses in the macrophages and in hepatocytes [100].
Inflammasome key protein complexes when activated induce
cell apoptosis and proinflammatory cells release and are
essential in host defences mechanism. NLRP3 inflammasome
contributes through gut microbiota to control the NAFLD/o-
besity progression via overproduction of leptin, downregula-
tion of adiponectin generation, and promotion of fibrosis
[101]. Circulating microbiota-derived metabolites could be
used for NAFLD diagnosis [102].

2.6. Insulin Resistance. Insulin is an anabolic hormone that
can mediate the fluid homeostasis, ionic transport, storage
of TG in the adipose tissue, can promote esterification and
storage of fatty acids in lipid droplets, and can inhibit the
lipolysis. Under normal conditions, the pancreatic β-cells
are secreting insulin after a meal or after hormone release
(i.e., catecholamine, glucagon). Insulin suppresses the pro-
duction of hepatic glucose and stimulates peripheral glucose
uptake, while hormones such as glucagon-like peptide-
1(GLP-1) stimulates gluconeogenesis, glycogenolysis, and
hepatic glucose production. Insulin mediates the glucose
metabolism not only by promoting glucose uptake by the adi-
pose tissue and by the hepatic tissue but also by suppressing
the hepatic glucose production [103]. Hepatic insulin clear-
ance is dampened in T2DM subjects and is correlated with
the metabolic syndrome severity. In fact, insulin exhibits
both anti-inflammatory and proinflammatory properties
[104]. The term “insulin resistance” is generally used to
describe insulin-mediated glucose uptake in the skeletal mus-
cle. IR is defined by suboptimal cellular response to physio-
logical levels of insulin in diverse tissues. This is the pioneer
that in critical conditions, increases glycolysis, and release
of FFAS for peripheral needs, as most of the glucose, is
directed to the brain [40, 105]. Subsequently, hyperinsuline-
mia results from the beta cells effort to overcome IR by
enhancing insulin release. High caloric intake damages the
insulin receptor signaling resulting in a flawed suppression
of FFAs release from the adipose cells and also flawed nitric
oxide (NO) release [106]. Hence, IR and inflammation form
a vicious circle, each condition promoting the other and
accelerating the development of NAFLD and other metabolic
disorders in the presence of lipotoxicity [107]. In both obese

and lean subjects, high IR was found to be the most signifi-
cant predictive factor for NAFLD [108], and research
showed that serum insulin levels are firmly associated with
ballooning and hepatic lobular inflammation [109]. The
intricate relationship between IR, NAFLD, and T2DM is
based on a vicious circle. Obesity induced by a high-fat diet
is the main precursors that trigger the lipotoxicity and the
glucotoxicity pathways which are both mediated by insulin
through IR (Figure 1.).

3. Screening and Assessment

Steatosis liver is defined when liver fat exceeds 5% of hepato-
cytes in absence of other secondary causes for lipid hepatic
accumulation or by >5.6% of proton density fat fraction mea-
sured by MRI/spectroscopy [110]. Even if usually NAFLD is
detected by chance through noninvasive imaging, the gold
standard for NAFLD diagnosis remains the liver biopsy.
However, this procedure is invasive has many serious side
effects and is expensive. Thus, it is imperative to develop
new systems and guidelines that include, screening, serolog-
ical, and noninvasive imaging methods to help prevent and
diagnose NAFLD in TD2M patients. Recently Bertot et al.
[111] reported that noninvasive scoring systems are less
accurate at liver outcome prediction in individuals with
NAFLD and diabetes. Further data is needed so that we can
underline a robust and firm conclusion regarding the practi-
cal use of scoring systems. As seen, individuals with T2DM
have an increased risk of developing moderate-severe liver
damage and have a higher chance to develop HCC [112]. In
patients with prediabetes or T2DM serial liver biopsies
revealed progressive fibrosis [113]. Scientific research found
that Liver Index (FLI) and GGT correlate with peripheral
IR and the risk of prediabetes, diabetes, and hypertension
development [114, 115]. IR remains one of the key patho-
genic tools that onset and maintains the progression of
NAFLD to NASH. Homeostasis Model Assessment of Insu-
lin Resistance (HOMA-IR) and liver stiffness measurement
(LSM) using acoustic radiation force impulse (ARFI) elasto-
graphy correlated with the liver fibrosis grade in obese-
NAFLD patients [116]. These results can be attributed to
the fact that obese subjects have higher peripheral insulin
and lower hepatic insulin clearance. Histological alterations
are positively correlated with parameters of IR and authors
suggest that in the near future 2-hour oral glucose tolerance
test (OGTT) may be used to assess NAFLD severity [117].
Along with the OGTT, authors recommend that Impaired
Fasting Glycemia (IFG) should be used in the young popula-
tion for screening at-risk of metabolic syndrome develop-
ment [118]. Also, the Hepatic steatosis index (HSI) may be
a useful tool in the primary screening of NAFLD [119]. So
far, a proper screening for NAFLD in TD2M patients is cur-
rently unavailable because of the limits of the noninvasive
diagnostic tools and the lack of therapeutic options. None-
theless, every T2DM subject has one or more risk factors to
develop liver damage and should be periodically checked
[120]. The newly ADA (American Diabetes Association)
guidelines updates recommend that individuals with predia-
betes or T2DM that have elevated hepatic enzymes or
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steatosis liver should be investigated for fibrosis/NASH
through noninvasive techniques [121].

The most known techniques approved by the European
Association for the Study of Diabetes (EASD) [122] include
NAFLD liver fat score (NLFS) and the fatty liver index (FLI)
for NAFLD diagnosis [123], and fibrosis-4 index (FIB-4) and
NAFLD fibrosis score (NFS) for fibrosis assessment [124].
Also, known the SteatoTest, NashTest, ActiTest, FibroTest,
and FibroScan are handy tools in quantifying liver impairment
[125]. FibroScan® is a reliable instrument in detecting and
staging fibrosis in NAFLD/NASH that can also identify
macrovascular and microvascular complications of diabetes
[126, 127]. Experts propose as the gold standard for detection
and grading of the hepatic steatosis, using the intrahepatic TG
measurement with the magnetic resonance imaging derived
proton density fat fraction (MRI-PDFF) [128, 129]. Subjects
with intermediate or high risk of severe fibrosis may benefit
from FibroMeter that performs better than the simple FIB4
and NFS tests, and can measure the hepatic extracellular
matrix components [130]. Also, Ampuero et al. [131] devel-
oped and validated recently the Hepamet fibrosis scoring sys-
tem, a noninvasive scoring test with 97.2% specificity and 74%
sensitivity that uses clinical and laboratory information from
NAFLD subjects and can identify fibrosis stage with better
accuracy than NFS and FIB-4.

4. Therapeutic Options

Since NAFLD has a complex immunopathogenesis, is
dependable by numerous exogenous and endogenous factors,
and has tight associations with other metabolic disease, a few
therapeutic strategies are available. Efforts are currently in
progress to find new promising treatment options to combat
NAFLD [122]. In lack of a concrete pharmacotherapy, the

current guidelines recommendation for NAFLD mainly
emphasize revisions of lifestyle [108, 132].

4.1. Dietary and Lifestyle Revisions. We know that genetics,
heritability, and gender type are major factors that raise the
susceptibility to develop T2DM, IR, NAFLD, obesity, and/or
other metabolic syndromes [133, 134]. While these cannot be
changed, factors such as the circadian rhythm that interest-
ingly promotes metabolic disruptions [135, 136], lifestyle
(exercise, weight loss), and dietary changes can improve clin-
ical and paraclinical outcomes of NAFLD and T2DM on long
term [137, 138]. More than that, continuous exposure to
environmental factors like endocrine-disrupting chemicals
such as the ubiquitous phthalates and heavy metals adversely
affect human health. These synthetic phthalate esters are
found anywhere around us from air, to industrial products,
and industrial food [139]. They act like hormones and inter-
fere with different receptors such as PPAR-α, as well as
androgen receptors (AR), thyroid hormone receptors (TRα,
TRβ) which interrupt the normal lipid and glucose homeo-
stasis. There is sufficient evidence that links metabolic disor-
ders development through phthalates exposure [140]. This
shows that not only personal habits are important but also
the overall living condition. Recently, The Diabetes Remis-
sion Clinical Trial (DiRECT) noted that weight loss in
TDM patients led to liver fat loss and recovery of the β-cell
function [141]. Also, in a recent systematic review and
meta-analysis, authors observed that caloric deficient diet
and periodic exercise ameliorated hepatic functions [142].
Low intake of fibres, vitamins, and mineral nutrients support
NAFLD progression [143], whereas dietary habits rich in
fruits and vegetables have antioxidant, anti-inflammatory
effects, and can improve IR [144]. Protein diets in subjects
with T2DM and NAFLD promotes loss of hepatic fat

Dietary fat

Adipose tissue lipolysis

Insulin resistance

TD2M

B-cell
dysfunction

Hyper glycaemiaGlucotoxicityOxidative stress
Mitochondrial dysfunction

NASH Cirrhosis HCC

NAFLD

Figure 1: NAFLD, IR, and T2DM complex immunopathogenesis. T2DM: type 2 diabetes mellitus; NAFLD: nonalcoholic fatty liver disease;
NASH: nonalcoholic steatohepatitis; HCC: hepatocellular carcinoma; IR: insulin resistance; FFAs: free fatty acids; TG: triglyceride; ChREBP:
carbohydrate response element-binding protein; SREBP1c: sterol regulating element-binding protein 1c; DAG: diacylglycerols; ROS: high
reactive oxygen species;
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associated with better IR and decreased hepatic cytolytic pro-
file [145], and can improve the glycated haemoglobin A1c
(HbA1c) levels [146]. Contrary, others showed that a high
protein diet may have negative effects on insulin sensitivity,
and its beneficial effects are linked to the amount and quality
of the products [147]. Additionally, fructose is commonly
added into artificially-sweetened beverages and other sweet
solid products. High fructose intake is associated with
increased risk of steatosis, liver fibrosis, obesity, and IR
[148]. Long-term sucrose ingestion led to increased fat accu-
mulation, glucose intolerance and hyperinsulinemia, and
histological damage like increased hepatocyte size and bal-
looning [149]. Dietary intake of monosaturated FAs found
in foods like olive oil and avocado has been shown to improve
insulin sensitivity and hepatic fat in prediabetic [150] and in
paediatric patients with NAFLD [151]. Those who followed
a Mediterranean diet showed a better decrease of liver trans-
aminase, body mass index (BMI) changes, and improvement
in IR [152, 153]. Enormous scientific data shows that diet
and exercise are first and highly beneficial in metabolic syn-
dromes, and any physician should recommend to their
patients additionally to therapeutic medication.

4.2. T2DM Medication and NAFLD. The current guidelines
endorse that for the HbA1C and serum glycaemic control
in T2DM, patients should use one of the seven drug classes
approved by the American Diabetes Association (ADA).
These classes include metformin, sulfonylureas, thiazolidi-
nediones, dipeptidyl peptidase 4 inhibitors, glucagon-like
peptide-1 receptor agonists, sodium-glucose cotransporter
2 inhibitors, and insulin [154]. Substantial research has been
made over the last years in order to find among the existing
antidiabetic drugs other potential tools that can be used in
T2DM-NAFLD patients [155].

4.2.1. Metformin. Metformin also known as Glucophage is
the first-line medication for the treatment of type 2 diabetes
[156]. This drug lowers both basal and postprandial plasma
glucose levels by suppressing the liver gluconeogenesis via
phosphorylation of cAMP-response element-binding protein
(CREBBP or CBP), decreases intestinal absorption of glu-
cose, and improves insulin sensitivity by increasing periph-
eral glucose uptake and utilization [157]. It was thought
that it could be beneficial along with hypocaloric diet and
weight control in nondiabetic patients with NAFLD. How-
ever, in many clinical trials that included nondiabetic and
diabetic patients, even if metformin administration improved
at some degree the serum aminotransferase levels, histologi-
cal outcomes on long-term failed to show significant differ-
ences [158–160]. Nonetheless, metformin has proven to
impediment the risk of HCC development and cardiovascu-
lar complications related to NAFLD and T2DM [161].

4.2.2. Thiazolidinediones. Thiazolidinediones bind to a tran-
scription factor identified as PPAR-γ that enhances the tran-
scription of various genes in the adipose tissue; they induce
preadipocyte differentiation into adipocytes, raise adiponec-
tin levels, and help with insulin sensitivity [162]. In a 3-year
clinical trial, patients with NAFLD who received Rosiglita-

zone had reduced liver enzymes and better insulin sensitivity
after 1 year of treatment [163]. However, the two-year period
following the FILTR-2 extension trial revealed no further
improvements or changes in the fibrosis or liver ballooning
[164]. Interestingly, a 13 years cross-sectional retrospective
analysis noted that pioglitazone use in US patients decreased
significantly over the years; however, NAFLD prevalence and
incidence increased in T2DM patients which can imply that
pioglitazone could have ameliorated this raise [165]. Using
long term treatment with pioglitazone along with a hypocalo-
ric diet in prediabetic and T2DM subjects with NAFLD
resulted in histological and circulating liver enzymes improve-
ment which persisted over 3 years [166]. Others showed that
this drug can improve histologic features but not the mean
fibrosis score [167]. In experimental NASH-induced models,
pioglitazone administration reduced ceramides andDAG levels
and improved the hepatic mitochondria function [168]. These
results suggest that this therapy is effective and quite feasible
for NAFLD [169]. Currently, there is the ongoing random-
ized open-label pilot (ToPiND) study that tries to investigate
the effects of tofogliflozin 20mg/day or/and pioglitazone 15–
30mg/day administration. At 6 months and at 1 year of ther-
apy, the hepatic steatosis grade will be measured by MRI-
PDFF and collective serum data would be assessed [170]. It
remains to be seen whether monotherapy or combination
therapy would have the most beneficial effects in NAFLD-
T2DM. Many other robust studies are desired however,
authors should take into consideration that pioglitazone has
many serious side effects such as weight gain, worsening heart
failure, osteoporosis, and raised risk of bladder cancer [171].

4.2.3. Glucagon-Like Peptide-1 (GLP-1) Analogues. GLP-1
analogue can promote glucose-mediated insulin secretion,
decrease glucagon synthesis, and suppress appetite, which is
why it can be a potential medication for NAFLD. Liraglutide
administration in NASH subjects resulted in raised insulin
sensitivity, decrease of DNL, reduced BMI, cholesterol-LDL,
and suppression of lipolysis especially within the subcutane-
ous adipose tissue [172, 173]. An experimental in vivo and
vitro study noted that Liraglutide administration promoted
expression of autophagy markers via the AMPK/mTOR
pathways leading to antilipotoxic effects [174]. Its ingestion
for half a year reduces the subcutaneous body fat (from 361
± 142 cm2 to 339 ± 131 cm2) but not visceral, hepatic, or epi-
cardial fat [175]. Also, an open-label, active-controlled par-
allel-group, multicentre trial showed that liraglutide and
sitagliptin added to metformin but not insulin glargine
reduced body weight, visceral adipose tissue, and intrahepa-
tic lipid levels in individuals with T2DM and NAFLD [176].
Evidence from clinical trials presents the quality of GLP-1
analogues to become disease-modifying tools in NAFLD
[177–179]. The glucose-dependent insulinotropic polypep-
tide (GIP)/GLP-1 agonist could be used not only for glucose
metabolism control but also for NAFLD treatment, as this
combination has synergic effects, promotes lipogenesis and
weight loss [180]. The physiological effects, the therapeutic
implication of GIP antagonism, and agonism in T2DM-
NAFLD patients need further exploration in larger human
trials.
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4.2.4. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors.
The newly T2DM therapy SGLT-2 inhibitors increase gluca-
gon levels, diminish renal reabsorption of glucose, and
increases its excretion. SGLT2 inhibitors could benefit the
hepatic function because it promotes glucagon secretion,
DNL, and urinary caloric losses with subsequently weight loss
[181]. The main SGLT2 representants are composed by cana-
gliflozin, dapagliflozin, and empagliflozin, used as second-line
treatment in association with metformin as well as third-line
treatment. Molecules such as luseogliflozin and tofogliflozin
are only approved in Japan, while ipragliflozin was also
approved last year in Russia [154]. A recent systematic review
described 8 studies that evaluated the role of SGLT-2 inhibi-
tors on NAFLD. The results illustrated that in most of these
studies, patients with SGLT-2 therapy had AST and GGT
levels decrease, 5 studies noted reduction in hepatic fat, and
2 studies found improvement in liver fibrosis [182]. Many tri-
als involving canagliflozin [183–186] noted comprehensive
results regarding SGLT-2 inhibitors inNAFLD. Also, empagli-
flozin [187, 188] and dapagliflozin [189, 190] administration
showed similar beneficial results. A combination of exenatide
once weekly plus dapagliflozin once a day reduced biomarkers
of liver steatosis and fibrosis in patients with T2DM uncon-
trolled by metformin monotherapy [191]. The DURATION-
8 (NCT02229396) phase 3 trial displayed similar effects when
exenatide once weekly plus dapagliflozin once daily, improved
glycemic control and body weight [192–194]. Also, long term
use of luseogliflozins led to the improvement of steatosis,
fibrosis, and histological activity score [195–197]. Recently,
authors demonstrated that the use of the novel SGLT2 inhib-
itor, NGI001 in high fat diet-induced mice instigates suppres-
sion of lipid accumulation, inflammation, upregulation of β-
oxidation, and they suggest that this inhibitor may be as a
new therapeutic approach that can delay the onset of NAFLD
[198]. Robust evidence supports the idea that antidiabetic
drugs are quite feasible for NAFLD treatment (Table 1), and
so far, pioglitazone and liraglutide noted the most promising
results. We await further larger clinical trials that can prove
better histological outcomes in T2DM-NAFLD patients.

4.3. New Potential Therapeutic Targets.New promising treat-
ment options emerged over the years to combat NAFLD
[199]. Interestingly, micronutrients like choline and polyphe-
nols also interfere with the liver-gut axis and contribute to
several pathways that are crucial for diabetes or the NAFLD
development. For example, low choline intake has been asso-
ciated with worsening liver fibrosis and a higher risk of
NAFLD development [200]. The polyphenol family encom-
passes a wide spectrum of molecules such as curcumin, res-
veratrol, or quercetin that can be found in vegetables, fruit,
and coffee. Recently, researches showed that polyphenol
can reduce TG accumulation through antioxidant, and anti-
inflammatory effects, and by blockage of lipogenesis via
SREBP1c downregulation [201]. Resveratrol administration
can regulate PPAR expression, IL-1β, and TNF-α, and have
antisteatosis effects with secondary increase of body weight
[202]. Histopathological improvement in NASH models
was observed after the administration of a dual PPARα/γ
agonist named Saroglitazar [203]. Another dual agonist

named Elafibranor (GFT505) had similar results in murine
models of NAFLD and NASH [204]. (PEGylated) FGF21
analogue marked as Pegbelfermin is also under investigation
to see if it can be a feasible tool for NAFLD/NASH treatment
[205]. A new potential target that may be used in T2DM
treatment is the protein tyrosine phosphatase 1B (PTPIB)
that was shown to inhibit insulin signaling and can normalize
plasma glucose levels [206]. Considering the rise incidence of
NAFLD in men and postmenopausal woman, authors dem-
onstrated in vitro and in vivo study that 17β-estradiol (E2)
therapy improves IR and fatty acid accumulation by interfer-
ing with the JNK activation pathway [207]. Recently, in an
open-label prospective studies and trials administration of
GS-0976 (Firsocostat), a small molecule inhibitor of acetyl-
CoA carboxylase in NASH patients reduced de novo lipogen-
esis, intrahepatic TG levels, markers of liver injury and steato-
sis, and may soon be approved by FDA for NASH treatment
[208, 209]. Another approach is the inhibition of certain
inflammatory pathways involved in NAFLD. Animal studies
showed that the inhibition of CCR2 or the ligand CCL2-IR
with cenicriviroc may diminish fibrosis especially after 1-
year treatment [210]. In a phase 2 randomized, placebo-
controlled trial, phase II study, the use of Hepatic thyroid hor-
mone receptor beta (THR-β) agonist VK2809 elicited dose
dependent improvement on liver fat reduction and liver func-
tion [211]. Similar results were obtained when using a similar
agent THR-β agonist named MGL-3196. However, more
studies are needed to mark the side effects of these molecules
and their interaction with metabolic systems [212]. A number
of drugs that target steatosis and/or fibrosis are currently
investigated in Phase II and Phase III clinical trials [213]. More
than that, potential therapies that target the gut-liver axis
could represent in the future a key strategy in the management
of TD2M and NAFLD [214]. For example, the administra-
tion of probiotic and synbiotics may reduce histologically-
confirmed liver fat and improve liver function [215, 216].
There are many therapeutic possibilities for NAFLD discov-
ered by research teams that we did not discuss here. From
the inflammatory, immune, metabolic, oxidative stress, hor-
monal, and gut-axis pathways to other T2DM therapeutic
ways, NAFLD onset and progression should be modulated
not just by one single therapeutic approach. Further trials
and investigations in this matter are needed.

5. Conclusions

Formany years, robust evidence tried to demonstrate the asso-
ciation between NAFLD, TD2M, IR, obesity, and other meta-
bolic syndromes. Unfortunately, this is a vast and complex
territory and so far, there is no clear evidence that links the
glucose metabolism and IR with diabetes and NAFLD mani-
festations. Many countries lack exhaustive public health
response to NAFLD, screening for NAFLD in diabetes
patients, awareness campaigns, early validation of risk factors,
large scale educational programs, guidelines/algorithms, and
long-term strategies for these patients. With the high chance
that a steatosis liver advances to NASH especially when mul-
tiple comorbidities are associated, early assessment and
management of NAFLD in T2DM subjects are imperative.
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Therapeutic inertia continues to remain a general problem
in diabetes; that is why it is crucial that a physician early
recognises patients at risk. Clinicians must know what are
the best noninvasive tools and therapeutic approaches to
prevent and delay NAFLD, and also how to maintain an
open collaboration with other specialities. Currently, there
is no proper approved pharmaceutical treatment for
NAFLD. Multitarget agents or combination of agents
should have twice the beneficial effect compared to mono-
therapy. Numerous trials are currently under development
that investigate new promising pharmacological agents for
NAFLD and test the effect of antidiabetic drugs on liver
function. We hope that in the future, larger clinical trials
can assess and approve new therapeutic drugs for NAFLD
that can be used safely in T2DM patients.
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