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Abstract

Background: Clostridium difficile is the leading cause of hospital-borne infections occurring when the natural intestinal
flora is depleted following antibiotic treatment. Current treatments for Clostridium difficile infections present high relapse
rates and new hyper-virulent and multi-resistant strains are emerging, making the study of this nosocomial pathogen
necessary to find novel therapeutic targets.

Results: We present iMLTC806cdf, an extensively curated reconstructed metabolic network for the C. difficile pathogenic
strain 630. iMLTC806cdf contains 806 genes, 703 metabolites and 769 metabolic, 117 exchange and 145 transport
reactions. iMLTC806cdf is the most complete and accurate metabolic reconstruction of a gram-positive anaerobic
bacteria to date. We validate the model with simulated growth assays in different media and carbon sources and use it
to predict essential genes. We obtain 89.2% accuracy in the prediction of gene essentiality when compared to
experimental data for B. subtilis homologs (the closest organism for which such data exists). We predict the existence of
76 essential genes and 39 essential gene pairs, a number of which are unique to C. difficile and have non-existing or
predicted non-essential human homologs. For 29 of these potential therapeutic targets, we find 125 inhibitors of
homologous proteins including approved drugs with the potential for drug repositioning, that when validated
experimentally could serve as starting points in the development of new antibiotics.

Conclusions: We created a highly curated metabolic network model of C. difficile strain 630 and used it to predict
essential genes as potential new therapeutic targets in the fight against Clostridium difficile infections.

Keywords: Essential genes, Flux balance analysis, Manual curation, Reconstructed metabolic network, Synthetic
accessibility, Inhibitors, Cross-reactivity targets
Background
Clostridium difficile is an opportunistic, gram-positive
anaerobic spore-forming pathogen found in the environ-
ment and in the intestinal flora in up to 3% of healthy
adults. Toxigenic strains of C. difficile are resistant to a
wide variety of antibiotics and produce the enterotoxin
TcdA and the cytotoxin TcdB. These toxins are respon-
sible for the clinical symptoms of C. difficile infection
(CDI) [1,2]. CDI is the leading cause of hospital-borne
infections occurring when the natural intestinal flora is
depleted following antibiotic treatment. CDI is the
major cause of antibiotic-associated diarrhea and is re-
sponsible for pseudomembranous colitis, a form of se-
vere intestinal inflammation. For the most part, CDI
can still be treated with metronidazole or vancomycin
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for which resistance levels remain low or the recently
approved fidaxomicin. Single or multiple relapses after
initial treatment are common and bring about more se-
vere symptoms. A recent clinical study reports a relapse
rate of 24% and 13% with vancomycin or fidaxomicin
treatment respectively [3]. Between 50% and 80% of re-
currences are due to spore-mediated re-infection [2].
Unfortunately, patient-to-patient transmission and re-
lapses are difficult to prevent due to the production of
C. difficile spores that are resistant to antibiotics, heat,
radiation and various chemicals.
CDI is directly responsible for an average 4.6 per 1000

patients admitted in hospitals with a 5.7% mortality rate
after 30 days directly attributed to CDI [4]. In the US, over
250,000 cases are registered per year in hospitals alone
and many more cases in outpatient settings [5], costing
around USD$4,000 to USD$8,000 per case of primary
infection and USD$8,000 to USD$15,000 per relapsing
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infection [6] leading to a burden of over USD$500 mil-
lion [7]. More important than economic costs, CDI in
older patients, those with concurrent debilitating condi-
tions, and severely relapsing or fulminant cases may
result in death.
In recent years there has been an increase in the rate

of infections as well as the emergence of community-
associated, virulent and antibiotic-resistant strains [8,9].
Treatments of CDI that offer alternatives to the use of
small-molecules [10] involving phages [11] or intestinal
microbial flora transplants [12] are likely to meet resist-
ance from patients. Others involving antibodies [13] or
vaccines [14] are still under development.
The complexity inherent to preventing and treating CDI

requires the continuous search for new ways to target C.
difficile. In recent year, the growth of biological databases
led to the development of the field of systems biology
making it possible to build and analyze genomic-scale re-
constructed metabolic networks [15]. There is a large
number of highly curated reconstructed metabolic net-
works for a number of organisms, from E. coli [16] to hu-
man [17]. The prediction of essential genes is often used
to detect potential drug targets [18-20]. Two techniques,
Flux Balance Analysis (FBA) [21] and Synthetic Accessibil-
ity (SA) [22] are among those available to predict essential
genes at a genomic scale through in silico gene deletion
studies. The comparison of results obtained with either
FBA or SA and experimentally determined essential genes
shows equivalent levels of accuracy with either technique
around 94% for B. subtilis [23], 83% for S. cerevisiae and
60-70% for E. coli [22]. The success rates are likely reflect-
ing the quality of the metabolic network reconstructions.
The combination of systems pharmacology and meta-

bolic network analyses can help predict off-target effects
of drugs as well as open new opportunities with the repo-
sitioning of existing drugs [24]. In the present study we
create and validate a highly curated metabolic network re-
construction for the pathogenic C. difficile strain 630. We
then utilize it to predict essential genes or gene pairs. We
employ a combination of systems biology, bioinformatics
and structural computational biology methods to detect
potential human cross-reactivity targets for and detect
small-molecules, including existing approved drugs that
may bind a number of the predicted C. difficile targets.

Results
Creation of the network
The genome of C. difficile strain 630 is composed of a
circular chromosome of 4,290,252 bp coding for 3968
open reading frames (ORFs) as well as a plasmid of
7881 bp coding for 11 ORFs [25]. The C. difficile strain
630 draft reconstructed metabolic network presented
here covers 20.3% of the ORFs present in the chromo-
somal genome of the bacteria with 806 ORFs. These 806
genes code for proteins catalyzing 769 metabolic, 145
transport and 117 exchange reactions. A total of 592
unique metabolites (703 in total not considering extra-
cellular or intracellular state) are involved in the 1031
reactions in the network. The coverage of the genome is
similar to those of previously published reconstructed
metabolic networks such as B. subtilis with 20% [23] and
higher than the most recent network of C. acetobutyli-
cum with 13.0% [26]. Most reactions have at least one
gene association (77.9%). Reactions without any gene as-
sociation were added based on the existence of evidence
from the literature such as in the case of Stickland reac-
tions [27-30], presence in databases such as xanthine
amido hydrase or to fill functional gaps to obtain a func-
tional network as in the case of putative transporters for
end-products of fermentation.
The final version of the network is available in 3 differ-

ent formats: 1. An excel file that shows on different
spreadsheets the reactions, metabolites, genes, and com-
partments that comprise the network and the definitions
of the network based on the standard described in the
RAVEN toolbox [31]. This file is meant to be easily read-
able by humans; 2. A tab-separated format of the network
amenable to analysis in the R Statistical Computing envir-
onment (www.r-project.org) using Sybil [32]; and lastly, 3.
A SBML Level 2 formatted network [33] that can be used
with tools such as Matlab or other SBML compliant soft-
ware. While a naming convention has been suggested re-
cently for metabolic reconstructions [16], we feel that a
naming convention that does not allude to the name of
the organism is insufficient. Therefore, in the present
work, the C. difficile strain 630 metabolic network recon-
struction is called iMLTC806cdf as per the suggested con-
vention with the added cdf suffix denoting the KEGG [34]
three-letter organism ID representing C. difficile strain
630. The SBML version of the model has been deposited
to the BioModels database [35] and assigned the identifier
MODEL1409240004 .
Validation
Four types of growth media were simulated in silico via
modulation of the exchange reactions for the import of
metabolites present in the simulated growth media. All
four tested media (Table 1) produced biomass based on
FBA and SA analysis [22]. For SA, 4 proteins (oxidized
ferredoxin, oxidized thioredoxin, acyl and sulfur carrier
proteins) that cannot be produced due to the absence of
protein biosynthesis reactions in the network but at equi-
librium in FBA had to be supplemented to the media to
make all reactions possible in FBA also accessible in SA.
ATP and nicotinate were supplemented to the minimal
medium to allow biomass production in SA while ATP
was added to the complex medium.

http://www.r-project.org


Table 1 Definition of the different media used in this study

Medium name Componentse

Minimala Tryptophan, cysteine, isoleucine, leucine, methionine, proline, valine, R-pantothenate, Pyridoxine, biotin, glucose

BDMb Minimal plus thiamine, nicotinamide, Riboflavin, 4-aminobenzoate, folic acid, vitamin B12

CADMc BDM plus the 13 standard amino acids not listed in the minimal medium

Complexd All the components of the minimal medium, the remaining 13 standard amino acids, riboflavin,
folic acid, inosine, vitamin B12, chorismate, glucose, glycerol-3-phosphate, ribose, hypoxanthine,
deoxycytidine, uracil, uridine, dexoyadenosine, adenosine, thymidine

a[36].
b[37].
c[38,39].
d[23].
eThe following metabolites or proteins are added in SA analysis to permit the production of biomass: ATP, nicotinate, oxidized ferredoxin, oxidized thioredoxin,
acyl and sulfur carrier proteins and are present in unchanging equilibrium concentrations in FBA.
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Essential metabolites
In order to validate the network, experiments involving
the removal or addition of certain metabolites from the
media were reproduced in silico. Each essential amino
acid (cysteine, leucine, Isoleucine, proline, tryptophan
and valine) was confirmed essential in the network as
their removal prevented the production of biomass in
any medium. None of the three essential vitamins are es-
sential in the network (Additional file 1: Table S1). The es-
sentiality of two of these, biotin and pyridoxine, is due to
their implication in the regulation of processes which could
not be simulated in the metabolic network. Panthothenate
(which is important in lipid metabolism) was in the past
determined to be essential for a number of C. difficile
strains tested [37]. More recently, a new ketopantoate re-
ductase (KPR) gene panG was discovered in a number of
pathogenic bacteria and found to have a homolog in C. dif-
ficile strain 630 [40]. Therefore, whereas panthothenate is
commonly thought to be essential, this essentiality is strain
specific and absent in C. difficile strain 630. A ΔpanG mu-
tant in Francisella tularensis did not have any differences
compared to wild type infections in a mouse model for
pneumonic tularemia [40]. This is likely due to the fact that
panthothenate (vitamin B5) is widely available in food and
most bacteria are able to import panthothenate through a
sodium co-transport mechanism [40].

Non-essential metabolites
Removal of non-essential metabolites did not have an im-
portant effect on growth. The non-essential amino acid me-
thionine is known to enhance growth of the bacteria and is
used in the minimal medium to increase growth rate. Inter-
estingly, the removal of methionine from the minimal
medium leads to a slight reduction in biomass production
(less than 1%), a small but qualitatively correct effect. We
simulated the removal of arginine and histidine (both non-
essential amino acids) from the rich medium and in both
cases this lead to the qualitatively correct result of a de-
crease in biomass production in agreement with the experi-
mental evidence [36]. Most (8 out of 11) non-essential
amino acids that when removed from a complete media do
not affect growth rate experimentally also have no effect in
silico when removed from the complex medium. Further-
more, the addition of certain non-essential amino acids
(8 out of 13) or any nucleosides to the minimal medium
leads to an augmentation of biomass production in agree-
ment with experimental data (Additional file 1: Table S1).

Carbon sources
The utilisation of different carbon sources in the absence
of glucose in the network was simulated and compared
to experimental data. Such data is not always specific to
C. difficile strain 630 and small differences among strains
do exist [36] (Additional file 1: Table S2). The removal of
glucose produced the largest decrease in biomass pro-
duction (~33%) but had a smaller effect in the complex
medium (~6%). For 15 experimentally tested carbon
sources (out of 20 carbon sources tested in silico) we ob-
tain 100% agreement between the predicted utilization of
alternative carbon sources by C. difficile, including the im-
possibility to use lactose as a carbon source. Furthermore,
we predict that C. difficile strain 630 should not be able to
use rhamnose or myo-inositol (for which there is some
evidence of usage in other strains but no experimental in-
formation for strain 630) while malate, glycerol and chor-
ismate would lead to increased growth rates.

Comparison with existing metabolic network reconstructions
We compared iMLTC806cdf to the recently created
automatically-generated non-curated reconstructed meta-
bolic network of C. difficile [41]. The automated network
contains 3211 reactions, 1548 unique metabolites and
1337 genes resulting in over 2762 genes/reactions associa-
tions. One fundamental requirement for a reconstructed
metabolic network is its ability to produce biomass. As
noted by its creators, the automatic network cannot pro-
duce biomass. This is likely due to the numerous flaws
present in the automated network that are absent or
present in a lesser number in the curated iMLTC806cdf
reconstruction presented here. Among these: generic
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metabolites, incorrect reaction stoichiometry, repetitions,
unclear reactions, dead-end metabolites and non-metabolic
genes and reactions. For example, the automated network
contains 485 generic metabolites representing 31.3% of the
metabolome opposed to 23 in iMLTC806cdf (representing
3.9% of the metabolome). Curiously the automated network
reconstruction contains 29 reactions involving oxygen,
which should not be present in an anaerobic organism.
Other important flaws in the automatically generated
C. difficile network include the presence of 1562 export re-
actions and 648 dead-end metabolites. Overall, 532 reac-
tions (58.2% of the reactions in iMLTC806cdf) are common
to both reconstructions out of 3211 present in the automat-
ically generated network. A detailed comparison is pre-
sented in Table 2 (or in the form of a Venn diagram in
Table 2 Comparison between the automatic C. difficile, iMLTC

Characteristic Automatic network

Reactions 3211

With genes 1311 (40.8%)

With an EC number 1435 (44.7%)

With KEGG ID 1038 (32.3%)

Identified as unclear reaction 4 (0.4%)

Associated with multiple reactions 84 (8.1.6%)

Involving polymers 26 (0.8%)

Involving generic metabolites 548 (29.8%)

Non-metabolic reactions 138 (4.3%)

Involving oxygen 29 (0.9%)

Transport reactions 1576 (49.1%)

Export 1562 (99.1%)

Passive 14 (0.9%)

with genes 0

Unique reactions in common 530

Metabolites 3133

Unique 1551

With KEGG ID 1092 (70.4%)

Generic 485 (31.3%)

Duplicated 15 (1.0%)

Dead-end 648 (41.8%)

Unique metabolites in common 533

Genes 1336

Unique loci 788

With a homologa 788 (100%)

Non-metabolic loci 66 (8.4%)

Loci linked to multiple entries 382 (48.5%)

Unique loci in common 534
aThe values in the first and last columns represent the number of homologs with re
of homologs with respect to C. acetobutylicum.
bReactions involving oxygen are allowed in C. acetobutylicum thus were not quantif
Additional file 1: Figure S1) and clearly shows the vast dif-
ferences between the two models and that a large number
of problems associated to the automatically generated net-
work are absent in iMLTC806cdf.
We also compared iMLTC806cdf to a curated metabolic

network reconstruction of the closely related bacterium
Clostridium acetobutylicum. Three curated metabolic net-
works exist for this organism [26,42,43] all focusing on
metabolic engineering of the bacteria to maximize the
production of butanol. The latest network [26], called
iCAC490, was chosen for the comparative analysis as it
was the largest, the most recent and the only one available
in a commonly accepted usable format (SBML). The ana-
lysis of reactions shared between the two reconstructions
was possible due to the extensive use of KEGG identifiers
806cdf and C. acetobutylicum networks

iMLTC806cdf C. acetobutylicum iCAC490

914 740

706 (77.9%) 490 (66.2%)

750 (82.1%) 649 (87.7%)

703 (76.9%) 652 (88.4%)

0 2 (0.2%)

6 (0.7%) 0

0 0

31 (3.4%) 44 (5.9%)

2 (0.2%) 15 (2.0%)

0 -b

145 (15.9%) 66 (8.9%)

16 (11.0%) 3 (4.5%)

15 (10.3%) 11 (16.7%)

95 (65.5%) 43 (65.15%)

416

705 709

592 654

563 (94.9%) 613 (93.7%)

23 (3.9%) 50 (7.6%)

0 0

8 (1.2%) 186 (28.4%)

389

806 490

806 490

658 (81.8%) 417 (85.1%)

3 (0.4%) 11 (2.2%)

0 0

350

spect to iMLTC806cdf. The values in the middle column represent the number

ied.
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in both networks. In the case of transport reactions, two
transporters were considered similar if they transported
the same molecule with one transporter from one network
potentially matching multiple transporters in the other
network. We did not differentiate between phosphoenol-
pyruvate (PEP):carbohydrate phosphotransferase system
(PTS) [44], ion channels [45] or ATP driven transporters
[46] as long as the transported molecules were the same
in the two networks. iMLTC806cdf contains 174 more re-
actions than the reconstructed network of C. acetobutyli-
cum and 416 in common with it (representing 45.5% of
our reactions). iMLTC806cdf has 62 less unique metabo-
lites and 389 metabolites in common (representing 66% of
our unique metabolites). The presence of 186 (28% of the
metabolome) dead-end metabolites (a complete list can be
found in Additional file 1: Table S3) suggests that the
C. acetobutylicum network still has incomplete pathways
and gaps that could affect biomass production. A detailed
comparison is presented in Table 2 or in the form of a
Venn diagram in Additional file 1: Figure S2.

Single gene deletions
We performed an in silico gene deletion study using
both Synthetic Accessibility (SA) and Flux Balance Ana-
lysis (FBA) on iMLTC806cdf in order to identify poten-
tial essential genes that may lead to the discovery of
novel therapeutic targets. This analysis removed reac-
tions that were catalyzed by each gene alone (or in pairs,
next section) or by a complex that involved that gene
product and then measured the capacity of the network
to produce biomass (either a flux in biomass production
for FBA or Snet for SA, see Methods). The complex
medium (as describe in Table 1) was the one used for
the gene deletion studies since it reproduces the high
concentration and diversity of nutriments found in the
intestinal tract. Furthermore, the medium used is the
same as the simulation of the Bacillus subtilis metabolic
network [23], which in turn is an approximation of the
one used to perform the experimental validation of le-
thality of single gene deletions in that organism [47].
A total of 66 out of 806 genes deletions were identified

via FBA analysis as deleterious based on a 5% variation
threshold [48]. An additional 10 genes were found by SA
to increase the number of reactions necessary to pro-
duce biomass and deemed essential based on this criter-
ion. Overall, 50 of the 76 predicted essentials genes are
essential according to both FBA and SA (see Table 3).
We observe an agreement rate of 96.8% between the two
techniques in terms of the prediction of both lethal and
non-lethal genes, which is similar to what was found
when comparing both techniques on E. coli and S. cere-
visiae [22]. Since the two techniques provide different
insights on the metabolism and characteristics of the
network (see Discussion), we consider genes identified
as essential by either of these techniques as relevant as
those identified by both.
Essential genes were compared to experimental results

for the gram-positive bacteria Bacillus subtilis [47],
which is the closest relative of Clostridium difficile with
experimental essentiality data for all of its genes. Since
the simulation involved the deletion of genes via deletion
of metabolic reactions, functional homologs (genes re-
sponsible for reactions that share the same EC number
and catalyze similar reactions) were used for the com-
parison. Among the 76 genes with a predicted effect on
biomass production in C. difficile, 46 have homologs that
are essential in B. subtilis, 8 did not have any functional
homolog and 22 had a homolog that was not essential in
B. subtilis (Table 3). We were able to compare 618 C.
difficile genes (76.8% of the genes in iMLTC806cdf) for
which we could detect a B. subtilis functional homolog
with an overall prediction accuracy of 89.2% (Additional
file 1: Table S4). A similar rate of 89.0% was obtained based
on the comparison of 525 genes using sequence homology
(E value <1e−5, sequence identity above 30% and align-
ment overlap over 80% of the C. difficile sequence,
Additional file 1: Table S4). While an accuracy of around
89% is extremely high, it is important to keep in mind that
despite being closely related, differences are expected be-
tween the B. subtilis and C. difficile.
We utilized iCAC490 to perform the prediction of es-

sential genes in C. acetobutylicum and compared the re-
sults to those above for C. difficile. Essential genes in the
C. acetobutylicum network were identified in a similar
manner than in iMLTC806cdf, using Sybil [32] within
the R environment for statistical computing. Of the 658
C. difficile proteins with C. acetobutylicum sequence ho-
mologs, 368 are present in iCAC490. Based on these
368 proteins, we obtain an agreement of 72.3% between
iMLTC806cdf iCAC490 (Additional file 1: Table S5). It
is interesting to note that we obtain a higher agreement
between our computational results for C. difficile and
experimental results for B. subtilis than with computa-
tional results for iCAC490 representing a more closely
related species.
The difficulty of performing genetic manipulations in

C. difficile is notorious and severely restricts our ability to
compare our results with experimental information. Des-
pite the lack of extensive information on experimentally
verified essential genes, the little evidence that exists, sup-
ports our predicted essential roles for a number of genes:
metK [49], guaA [50] and ntpA-B-C-D-E-F-K [51]. Other
known essential genes such as secA1-A2 [52], metG and
gyrA-B [53], trpS [49] and gldA [54] are not present in the
network and are involved in non-metabolic processes.
Lastly, the gene prdF has been mutated and was shown to
be non-essential [55], in agreement with its predicted
non-essential role in iMLTC806cdf.



Table 3 List of 76 predicted C. difficile essential gene and essentiality of their B. subtilis homologs

Essentiality of B. subtilis homolog Predicted C. difficile essential genesa

Essential (46)

accA3, accB3, accC3, accD3, acpS2↓, adk2↓, asd3, cdsA3, cmk2, coaE3↓, dapF3, dapH3, ddl3, dxr3, dxs3, fabD3↑,
fabF3↑, glmU3, gmk3, guaB2, ispD3, ispE3, ispF3, ispG3, ispH3, metK2, mnaA3, murA3↓, murB3, murC3, murD3,
murE3↓, murF3, murG3, nadD3, nadE3, pgsA3↓, plsX3, prs3, CD01193, CD02443*, CD10493, CD24393, CD35432,
CD35503*, pgk1 (15.48%)

Non-essential (22)
coaBC3, coaD3, crt13↓, fabH3, fabZ3, guaA3, ispA3, metF1*, pdp3*, ribC3↓, CD05572↓, CD19663*, CD22562*,
CD25412*, CD25492*↑, CD35553, CD35961, pykF1 (15.51%), CD09941*↑ (15.08%), serA1↑ (15.08%),
ackA1 (14.74%), asnA1↑ (5.76%)

No B. subtilis homolog (8)
cat11*, ntpA1* (10.31%), ntpB1 (10.31%), ntpC1 (10.31%), ntpD1* (10.31%), ntpE1* (10.31%),
ntpF1* (10.31%), ntpK1* (10.31%)

Number in parenthesis represent the loss of biomass according to FBA. Those without number prevent the production of biomass or were identified only by SA.
Genes in bold (25 in total) do not have a human functional homolog. The 4 genes in italics have a human homolog shown to be essential when their associated
reactions are removed from RECON2.
1Genes predicted as essential exclusively by FBA analysis (16 in total).
2Genes predicted as essentials by the SA analysis (10 in total).
3Genes predicted as essentials by both FBA and SA (50 in total).
↓Genes shown to be down-regulated in vivo (9 in total) [57].
↑Genes shown to be up-regulated in vivo (6 in total) [57].
*Genes not present in the Database of Essential Genes (DEG) (15 in total) [56].
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We compared the list of 76 genes predicted to be essen-
tial in C. difficile using iMLTC806cdf to the genes in the
Database of Essential Genes (DEG) [56]. Interestingly, and
serving as further validation of iMLTC806cdf, a total of 61
of these genes are present in DEG, i.e., these genes have
homologs known to be essential in other species. The
remaining 15 predicted essential genes that are not
present in DEG (Table 3) include ntpA,D,E,F,K (all sub-
units V-type ATP synthase) as well as metF (involved in
amino acid synthesis) and xpt (guanine synthesis) among
others (Additional file 1: Table S6).
The inhibition of the product of essential genes that

are upregulated during CDI may require a smaller drug
dose to generate an effective response, thus decreasing
side effects. We utilized transcriptomics data associated
to the differential expression of genes during infection
[57] to annotate predicted essential genes in view of
their potential use as therapeutic targets. Eight predicted
essential genes are downregulated in vivo while 6 are up-
regulated during infection. Some of the genes that are up-
regulated during infection and predicted to be essential
such as fabD, serA or CD2549, are of additional interest as
they could not only affect growth, but also colonisation
and pathogenesis processes [57] (Table 3).

Detection of potential human cross-reactivity targets
Sequence and functional similarities
One of the main goals in detecting essential genes is to as-
sess their potential as therapeutic targets. One factor
weighting in favour of a potential therapeutic target is the
lack of a human homolog, as this decreases the chances of
side effects of a potential drug off-targeting the gene prod-
uct of the human homolog. We again utilize here two defi-
nitions of homology, the standard sequence homology
that relates two genes through evolution and functional
homology, which relates two genes via common function
of their gene products, specifically the same E.C. number.
Functional homology is stricter than sequence homology
as it is not based on any level of similarity between the
two proteins, only based on the fact that the two enzymes
catalyze the same reaction. Fifty-four genes have no se-
quence homologs in H. sapiens. Thirty of these have func-
tional homologs, while 24 genes identified as potential
targets do not have any human functional or sequence
homolog (Additional file 1: Table S6).

Local structural similarities
There is a possibility that potential cross-reactivity tar-
gets may perform different functions (EC numbers) and
have little sequence similarity yet still have sufficient 3D
atomic binding-site similarities to be inhibited by a drug
developed against a C. difficile target. We proceeded to
analyse binding-site similarities to detect potential cross-
reactivity targets for the 24 C. difficile proteins where se-
quence or functional similarity search did not detect
any human homolog. Binding-site similarities are mea-
sured in terms of detected geometrically and chemically
equivalent atoms in common between two binding-sites
[58,59]. We found an average of 36 atoms in common
between binding-sites (average p-value 0.038 and z-
score 3.05) for 21 out of 24 models with members of
Pfam families [60] that include human proteins. In three
cases, ispF, CD2549 and dapH, no significant level of
binding-site similarity was found to a Pfam family that
contains human homologs (Additional file 1: Table S7).
It is hard to judge if the found matches are significant or

not considering that no threshold for binding-site similar-
ity can be uniquely defined above which cross-reactivity is
certain [59]. However, in 17 cases out of 24 cases, the top-
scoring detected binding-site similarities for each case rep-
resent binding-sites in proteins that bind ligands that are
similar to at least one of the substrates of the reaction
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catalyzed by the modelled C. difficile protein. In seven of
those cases, the top matching Pfam family that contains
human homologs binds a similar ligand (Additional file 1:
Table S6). Taking as an example the case of the enzyme
encoded by the asd gene, we detect 39 atoms (Z-score 3.92,
p-value 0.012) in common to a glyceraldehyde-phosphate
dehydrogenase from spinach (PDB ID 2PKQ) bound to
NADPH, a member of Pfam family PF00044 that has hu-
man homologs (Figure 1). Five out of the top 7 most simi-
lar binding-sites also bind NADPH or NADP, all from
different Pfam families. The superimposition of these di-
verse binding-sites based on their similarities to the asd
gene product binding-site leads to an extremely good
superposition of their respective bound-ligands (Inset
Figure 1). This suggests that the detected similarities
are biologically significant. The quality of the resulting
superimpositions together with the detection of similar-
ities across families that bind similar ligands to those
that bind the C. difficile targets reinforces the confi-
dence in the biological significance of our predictions.
The quality of the alignment of the NADP molecules
across different families via the detected similarities
suggests that these capture the molecular determinants
responsible for binding. As such determinants are con-
served across protein families, there is a possibility that
Figure 1 Example of biding site similarities between the modelled as
phosphate dehydrogenase bound to NADP. The two binding-sites shar
space (Z-score 3.92, p-value 0.012). This protein from spinach (PDB ID 2PKQ
inset shows the superimposition of the bound NADP molecules found amo
protein families.
these are also conserved within families and thus
present in the human homolog. In most cases, the simi-
larities that were detected actually represent commonly
used cofactors or other ubiquitously used ligands, such
as NADP above or ATP. These results do not necessar-
ily mean that a drug targeting the C. difficile protein will
bind the human homolog belonging to the detected
Pfam families, but these should be used as potential
cross-reactivity targets in the rational design of inhibi-
tors against the C. difficile protein in question. Further-
more, given that the detected similarities focus on
common cofactors and ubiquitous molecules such as
ATP, the results also suggest that targeting the sub-
pockets of less ubiquitously used substrates may reduce
the chance of cross-reactivity.

Metabolic essentiality
The inhibition of potential human cross-reactivity targets
detected by sequence, functional or 3D binding-site simi-
larities may not necessarily lead to any serious side effects.
As a result of the differences between human and C. diffi-
cile metabolism, a protein may be essential in the former
but non-essential in the later. We sought to use FBA to
determine if inhibition of human homologs of predicted
essential C. difficile proteins could have any effect on the
d gene product and the photosynthetic a2b2-glyceraldehyde-
e 39 atoms of equivalent atom types in corresponding positions in
) belongs to Pfam family PF00044 that contain human homologs. The
ng 5 of the top 7 most similar binding-sites belonging to different



Figure 2 Effect of the deletion of essential genes and deletion
of essential pairs of genes in term of biomass lost. Essential
genes removal identified by SA were considered to give a null biomass
if one of the component of the biomass was impossible to produce
otherwise they were arbitrary attributed an effect of 5-10% since the
number of reaction required to produce biomass augmented by less
than 10% in every cases. The number of cases in the unlabelled
sections of the pie chart is in clockwise order 1, 1, 3 and 1.
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human cell. To do so, we performed a gene deletion FBA
analysis on the latest draft of the human reconstructed
metabolic network RECON2 [17]. In the case of functional
homologs all reactions associated to the human homolog
of the C. difficile target were removed for the FBA analysis
from the human network. Likewise, in the case of the 21
C. difficile potential targets without human functional ho-
mologs but with detected binding-site similarities, we
identified all human proteins from the Pfam families
where similarities were detected and deleted all RECON2
reactions associated (from 1 to 121 reactions at once de-
pending on the C. difficile protein). We opted for this con-
servative approach to simulate a situation in which a
potential drug would inhibit all potential cross-reactivity
targets. Only 4 predicted essential C. difficile genes have
predicted essential human cross-reactivity targets (under-
lined in Table 3). For all others, the presence of a human
potential cross-reactivity target may not be sufficient to
discard it as a potential target.

Double gene deletions
We performed double gene deletions to identify potential
polypharmacological targets and to target reactions that
are catalyzed by isoenzymes. Based on FBA analysis, 203
gene pairs involving 69 unique genes that had small or no
effect in single gene deletion were deleterious when re-
moved in pairs. An additional 3 essential gene pairs in-
volving 6 new unique genes were found using SA. Eight
gene pairs were considered essential in both SA and FBA
(Additional file 1: Table S8).
Some double mutants show a synergistic effect, de-

fined as an effect greater that an additional 1% reduction
in biomass production in the double mutant than the
sum of effects of each single mutant. The 39 synergistic
double mutants were analysed in more detail (Additional
file 1: Table S9). Thirteen of these synergistic gene com-
binations resulted in total abolition of biomass produc-
tion in FBA or prevented the biosynthesis of at least one
element of the biomass in SA, 11 had an effect between
10% and 20% and the remaining 15 had a small effect on
biomass production (between 5 and 10%). Twelve of the
essential pairs of genes are isoenzymes that catalyze the
same reactions. Sixteen gene pairs represent enzymes in-
volved in pathways with the same functional category
while the remaining 11 gene pairs affect different path-
ways (Figure 2). All essential pairs identified by both SA
and FBA are isoenzymes whose removal results in a total
arrest of biomass production.
Isoenzymes usually result in a higher biomass loss than

relatively distant pairs (Figure 2). For the 12 isoenzymes,
the deletion of the two genes in a pair is required to remove
a reaction that is catalysed by both. For the remaining es-
sential gene pairs, the reactions associated with both genes
are used in parallel in the wild type, a case of metabolic
plasticity [61], or the reactions from only one of the genes
is used while the reaction from the other member of the
pair can act as a backup, a case of metabolic redundancy
[61]. Depending on the category in which an essential gene
pair falls, different strategies may be required in order to
target the pair [61]. From the 39 essential genes pairs, 23
represent cases of plasticity of the network and 4 cases of
redundancy in the network (Additional file 1: Table S9).

Distribution of predicted essential genes across pathways
In order to see which parts of metabolism are more
enriched with essential genes, we classified reactions into
8 functional pathway classifications (Additional file 1:
Table S10). A hypergeometric test [62] for over and
under-representation was performed to identify pathways
enrichment in essential genes. This analysis confirmed
that linear pathways, like lipid synthesis, tend to have
more essential genes (25 out of 71 single gene deletions,
overrepresentation p-value 1.81e−10) due to the lack of al-
ternative ways leading to the production of biomass me-
tabolites (Figure 3, Additional file 1: Table S11).

Potential compounds binding predicted essential targets
Molecules potentially binding the proteins encoded by
the 123 genes identified as potential targets on their own



Figure 3 Distribution of genes (A), deleterious genes (B) and genes involved in deleterious pair (C) in the different metabolic
pathways. If one gene was present in more than one reaction that did not share the same metabolic function the most relevant function was
manually chosen based on gene description.
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(76 genes) or as part of pairs (47 unique genes, forming
39 different pairs with synergetic deleterious effect when
both genes are removed) were identified based on se-
quence homology (E-value < 1.0e−5, sequence identity
above 30%, and overlap over 80%) between predicted es-
sential proteins and entries in the DrugBank database
Version 4 beta [63] (Table 4). A total of 125 molecules
bind 41 protein entries from DrugBank with homologs
among 29 predicted essential C. difficile targets. While the
list includes cofactors, binders, inhibitors and activators,
all such molecules bind the homologs of the predicted es-
sential C. difficile targets. Most of these molecules are still
experimental. Interestingly, 22 molecules are approved
drugs based on DrugBank annotation. Among these we
have Celurelin predicted to bind to the product of two dis-
tinct predicted essential genes in the same pathway: fabF
and fabH (with the potential for polypharmacology). My-
cophenolic acid and Ribavirin are predicted to bind the
predicted essential product of guaB and, TCL a potential
inhibitor of the product of CD2577 which is essential only
as part of double mutant with fabG. The double inhibition
could be achieved with the use of the experimental mole-
cules linked with fabG such as EMO, MAX or TDB.
Lastly, pyridoxal phosphate is a potential binder of two
proteins that are part of a pair whose double mutation is
predicted to be lethal (glyA and CD2834). The identifica-
tion of any potential binding small-molecules (based on
target homology) is useful since there is a chance that
these molecules may also bind the predicted essential C.
difficile homolog protein and this information could be
used as a basis for the development of more potent and
selective inhibitors. This analysis also helps elucidate the
role of pyridoxine, an essential vitamin that has no direct
effect on biomass, since pyridoxal phosphate is a cofactor
that binds two genes (glyA and CD2834) part of the same
essential pair. In a similar way, we can elucidate one of the
reasons for biotin essentiality via its identification as a co-
factor for accC, a predicted essential gene as single mu-
tant. This list remains to be experimentally validated but
is meant as a starting point in targeting any one of the
genes predicted as being essential in the network.

Discussion
In this work we present iMLTC806cdf, a highly curated
metabolic network of the nosocomial pathogen Clostridium
difficile strain 630. This metabolic network is functional in
the sense of being amenable to simulations using Flux Bal-
ance Analysis to measure biomass production in diverse
types of media. iMLTC806cdf is available in SBML, TSV
and Excel formats. The network is based on the aggregation
of metabolic data present in databases, augmented with in-
formation from various sources of experimental data from
the literature and manually curated in order to ensure a
high quality of the resulting network.
Metabolic networks bring together information from

various databases. Due to inaccuracies, contradictions and



Table 4 List of 29 potential targets associated with 125 potential binders based on sequence identity

Target (pair)a Sequence identityb DrugBank potential inhibitorsc

E.coli Human

accC P24182 [53%] Q96RQ3 [48%] LZJ, LZK, LZL, OA1, OA2, OA3, OA4, OA5, L21, L22, L23 (P24182 [53%]);
BTI (Q99UY8 [48%]); BTN (P11498 [45%]); D1L, H1L (O00763 [32%])

adk P69441 [52%] P54819-2 [45%] IPE (P30085 [32%])

crt1 M9BEQ1 [37%] P30084 [44%] QUE (Q6NVY1 [30%])

fabF P0A6Q6 [49%] Q9NWU1 [45%] CER, P9A, PMN (P0AAI5 [50%]); TL5, TL6, P4T (P0A953 [38%]); TLM (P63454 [37%])

fabH P0ACC7 [42%] - CER, 669, OCS (P0A6R0 [45%]); B82 (820 T1 [43%]); DCC, UDT,
VZZ, D1T, DFD, MDX (P0A574 [37%])

fabZ P0ADG7 [36%] P20839 [35%] QUE, 2BC, 2BE, 2RB, 3BE, 4BB, 4BE, AGI, EMO, SAK (Q5G940 [41%]);
BDE (O25928 [41%])

glmU P62617 [55%] - P21 (P43889 [42%])

guaB P14900 [32%] P20839 [35%] MOA, RBV, CPR, VX-148 (P20839 [35%])

ispA B1J028 [42%] Q5T2R2 [31%] IPR (Q83M58 [41%])

ispH M8X9N5 [30%] - DMA, IPE (P62624 [30%])

ispF P0AD61 [51%] P14618-2 [44%] FPP (Q8EBR3 [62%]); GPP (P62617 [55%]); IPP (A0R559 [34%])

murD P0A858 [44%] P60174-1 [44%] LK1, LK2, LK3, LK4, LKM (P14900 [32%]);

ntpA - P38606 [51%] ADH, 911, Tiludronate, BafilomycinA1, Bafilomycin B1
(P38606, [51%]); QUE, APP, AUR, PIT, TLX (P06576 [30%])

ntpB - P21281 [53%] Gallium nitrate, AES (P21281 [53%]); QUE, APP, AUR, PIT, TLX (P06576 [30%])

pykF A0A029KL96 [52%] P14618-2 [44%] D8G, DYY, DZG, PGA (P14618 [44%])

deoD (deoB, deoC) L3ICZ2 [46%] P00491 [48%] IMH, 2DI, AZG, 9PP, IMG, GU7, BC3, 9DI (P00491 [48%])

fabG (CD2577) P33898 [61%] P04406 [44%] EMO (P16544 [37%]); TAQ, CB3, DVP, FE1 (P0CG22 [34%]);
MAX (Q6PKH6 [33%]); TDB (Q16698 [31%])

CD2577 (fabG) N3Z8L0 [36%] Q92506 [33%] TCL, IDN, AYM, BGC, 654, ZAM, 826, NDT, (P0AEK4 [39%]); NAP, TDB (Q16698 [30%])

gapA (gapB) P0A9B2 [52%] O14556 [47%] BRZ, NMD, TND (O14556 [44%]); AES (P04406 [49%])

gapB (gapA) P25526 [35%] P00352 [35%] APR, SND, AES (P04406 [49%]); BRZ, NMD, TND (O14556 [47%])

uppS (CD2762) P0A825 [56%] P34897-3 [45%] B08, B28, B29, B76, FPP, FPS, IPE (P60472 [44%]); GPP (P60379 [43%])

glyA (CD2834) P0A825 [48%] P34897-3 [41%] PLP, THL (P34897 [45%]); Mimosine (P34896 [44%])

CD2834 (glyA) - B7ZLW7 [31%] PLP, THL (P34897 [41%]); Mimosine (Pr4896 [40%])

CD0727 (folD | fhs | fchA)d P24182 [53%] Q96RQ3 [48%] CNC, THL, I2A (Q99707 [31%])

scoB (folD | fhs | fchA)d E9YQ86 [56%] B7Z609 [51%] SIN, EMT (P55809 [52%])

scoA (folD | fhs | fchA)d G1YD51 [53%] Q6IAV5 [42%] SIN, EMT (P55809 [42%])

CD3231 (hpt) W1H7G6 [47%] Q9NRG1 [33%] DX4, PPO, PM6, PRP, XMP, 9DG (P00492 [34%])

hpt (CD3231) W1H7G6 [55%] P00492 [34%] DX4, PPO, PM6, PRP, XMP, 9DG (P00492 [34%])

aldh (CD2733) - P51648 [43%] RLT, 1O8, DTT (P00352 [30%]);
aGenes that are essential as part of a double mutant pair have the name of the partner gene identified in parenthesis.
bUniprot ID of the closest sequence homolog.
c3-letter PDB code of ligand that is a known inhibitor or binder of a sequence homolog with the Uniprot ID and the level of sequence identity given in parenthesis.
Approved drugs are in italics.
dThe target gene is part of more than one essential pairs, one with each of the proteins in parenthesis.
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missing information in each database [64-66], the non-
curated network resulting from the simple aggregation of
all these sources of information is often incomplete and
includes a large number of errors, missing data and repeti-
tions, which make the generated networks unusable [41].
Different databases will often have multiple identifiers for
highly similar entries, which cause duplications. Surpris-
ingly, this is true not only for reactions and metabolites
where curation is more difficult but also for genes. Manual
curation is essential to correct inaccuracies present in
metabolic databases and particularly to fill gaps (missing
reactions) necessary to remove dead-end metabolites to
create a functional network. Manual curation is a time
consuming, expensive and non-scalable process. Unfortu-
nately, it is also indispensable at this time as can be
attested by the 14 predicted essential genes (alone or as
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part of a double mutant) that do not even appear in the
automatically generated C. difficile network. It is clear that
the automated generation of functional metabolic net-
works is a worthwhile goal. However, at present automat-
ically generated networks are not functional. At this time,
such networks can only be used at best as a starting point
prior to intensive manual curation. Their use as starting
points however subtracts very little to the manual work re-
quired to produce a functional network.
In some sense, metabolic networks serve as a tool to ag-

gregate all existing knowledge about the metabolism of an
organism. Clearly, the more well studied an organism is,
the more information exists to build and validate such a
network. C. difficile is an organism that is not well studied
due to a number of factors. First, being a pathogen severely
restricts the number of active researchers studying it given
the experimental requirements in terms of biosafety. Sec-
ond, C. difficile presents particular challenges that make
genetic manipulations notoriously difficult. Until recently,
genetic studies in C. difficile were restrained by the lack of
efficient tools to inactivate specific genes. The recent devel-
opment of a universal gene knockout system in clostridia
has opened new possibilities and it is now somewhat easier
to disrupt genes in a very specific and directed manner
[67,68]. This system called ClosTron is based on retarget-
ing of the Lactococcus lactis Ll.LTRB group II intron so
that upon transfer into C. difficile by conjugation, the in-
tron integrates at a specific user-defined chromosomal site.
With the advent of ClosTron our knowledge of the biology
of C. difficile and the identification of essential genes is
bound to increase but at the moment, there is a lack of C.
difficile specific literature and that limits the completeness
and validation of the network. Some information such as
biomass constituents and protein-protein interactions had
to be extrapolated from other closely related species. The
metabolic pathways involved in linking dead-end metabo-
lites to the rest of the network also sometimes had to be
extrapolated due to lack of experimental data. No in-depth
studies exist of the directionality of reactions as it was done
in E. coli [69], or association between biomass production
and predicted growth rate as it was done in B. subtilis [23],
due to the absence of metabolomics data and precise
growth rate experiments for C. difficile. While informa-
tion can be extrapolated from closely related organisms,
fundamental differences still exist and may be a source of
potential errors. Notwithstanding the existing limitations
in creating and validating a C. difficile specific network,
iMLTC806cdf is as complete or more than existing cu-
rated networks and accounts for all existing relevant ex-
perimental information. We hope that in addition to being
a tool to aggregate existing knowledge, iMLTC806cdf will
prove to be valuable as a nucleation point in developing
our understanding of this important human pathogen
driving the generation of new experimental hypotheses.
The analysis of a metabolic network in isolation in the
absence of other relevant processes present in the organism
poses its own problems. For example, the effect of metabo-
lites (such as pyridoxine and biotin) [37] involved in non-
metabolic processes could not be simulated. Likewise, me-
thionine added to minimal media greatly increases growth
in vitro [36] but the addition of methionine to the minimal
media in iMLTC806cdf increases biomass by less than 1%.
Methionine is mostly used in the bacteria as S-adenosyl me-
thionine involved in the biosynthesis of cofactors and vita-
mins which are not directly involved in biomass synthesis
and have an effect that cannot be simulated in the metabolic
network [70]. While the removal of methionine produced a
qualitatively correct outcome, the loss of biomass in the net-
work when removing methionine from the minimal medium
is only due to the additional reactions required to produce
enough methionine as required for biomass production.
The case of pantothenate, the only essential vitamin

with a clear metabolic effect is unique, as its essentiality is
strain-dependant. A biosynthesis pathway for panthothe-
nate was recently identified in C. difficile strain 630 [40]
and is present in some other strains based on MetaCyc.
As a result, this vitamin is a non-essential component of
the growth medium based on our in silico analysis. This
vitamin is however essential in a number of strains previ-
ously tested [37], which did not include either strain 630
or the others containing this pathway in MetaCyc.
The comparison with C. acetobutylicum network [26]

indicates that both bacteria share the same metabolic core.
Existing differences in reactions and associated genes may
explain the differences obtained while comparing the ef-
fects of deleted genes and reactions. The different media
utilized for both bacteria may also cause some differences.
The comparison with experimental results for B. subtil-

lis [47] was used as validation due to the absence of ex-
perimental results for the gene essentiality in C. difficile.
While essential differences exist between the two organ-
isms, a large degree of conservation is also present. There-
fore one should expect that a large number of genes
conserve their essentiality across these two species. The
high level of accuracy (according to functional or sequence
homology) between the experimental results and our pre-
dictions serves as a validation of iMLTC806cdf as a ma-
ture draft metabolic network and increases our confidence
in the list of predicted essential genes. One important dif-
ference between the metabolism of C. difficile and B. sub-
tilis is that the later can use oxygen to produce energy
while the former cannot. Therefore, predicted essential
C. difficile genes involved in fermentation such as pykF or
ackA are not essential in B. subtilis. Other genes such as
fabH, CD1966 and ribC are only present in one copy in
C. difficile while more than one gene catalyses the same
reactions in B. subtilis [71], explaining why such genes are
non-essential in the latter.
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Some genes whose inactivation is deleterious in vitro are
not identified in silico due to their implication in non-
metabolic processes. Both iMLTC806cdf and the network
of Bacillus subtilis [23] fail to identify the essentiality of
CD1536 (yumC in B. subtilis) due to its implication in
regulatory processes. In addition, the toxicity of a mol-
ecule cannot be simulated in silico either. Therefore, the
essentiality of genes involved in detoxification or whose
deletion leads to the accumulation of toxic molecules can-
not be simulated. For example, the removal of CD3543
would lead to an accumulation of nicotinate that could be
toxic. This effect cannot be simulated in the network,
therefore CD3543 is not considered essential in the net-
work but is essential in vivo in B. subtilis [47].
The combined use of FBA and SA allowed us to detect

more essential genes than using either technique alone.
Their joint use increases our confidence on the predic-
tions for those genes where the two techniques agree. At
the same time, the two techniques complement each
other. For example, the gene acpS catalyses the only re-
action that leads to the production of a holo-acyl-carrier
protein from the apo version of the protein. This reac-
tion is essential since the holo form of the protein is re-
quired to perform the elongation of lipids. The presence
of a cycle that allows for the reutilisation of the released
holo-acyl-carrier protein at the end of lipid elongation
prevents FBA to identify the deletion of acpS as deleteri-
ous. The analysis by SA uses the apo version of the acyl-
carrier protein and predicts acpS as essential since without
it, the holo form cannot be produced. New targets were
also found when using SA for double mutants. Targets
identified by SA are mostly isoenzymes that lead to dele-
tion of new reactions in the shortest possible pathway
leading to the production of essential biomass metabolites.
The gene deletion analysis identified interesting poten-

tial therapeutic targets. Targets such as the aspartate-
semialdehyde dehydrogenase (E.C. 1.2.1.11) asd (UniProt
ID Q17ZW9) or the diaminopimelate epimerase (E.C.
5.1.1.7) dapF (UniProt ID Q182T1, also known to be
essential in B. subtilis) that do not have human func-
tional homologs, decrease the chance of side effects
due to cross-reactivity. Another predicted essential
gene, the aspartate-ammonia ligase (E.C. 6.3.1.1) asnA
(UniProt ID Q183C9) is up-regulated in vivo and could
be important for the pathogenesis of the bacteria [57].
Most targets like CD2549, dxr and ispF have more than
one of these characteristics and would be interesting for
more than one reason.
As a result of the conservation of local binding site envi-

ronments [58,59,72], drugs often targets proteins in a way
that might not be sequence-dependent. To account for
that effect, we used functional homologs to identify poten-
tial human cross-reactivity targets for predicted essential
C. difficile proteins. This made for a more stringent
analysis since the number of potential human functional
homologs is almost twice as large as those based on se-
quence similarity alone. The absence of a human homolog
is often used as a criteria for identification of potential
drug target [73]. If no homolog is present, there is a
smaller probability that a drug targeting this specific pro-
tein have an effect in humans.
For those cases where sequence or functional hom-

ology did not detect potential human cross-reactivity tar-
gets, we utilized the detection of local binding site
similarities. This analysis identified protein families with
human representatives that harbour large binding-site
similarities to the C. difficile targets in the absence of se-
quence or functional similarities. The detected similarities
are primarily localized to binding-sites of cofactors and
ubiquitously used ligands such as NADP or ATP. It is im-
portant to keep in mind that it is not possible to deter-
mine a minimum similarity threshold other than 100%
above which one can be certain that the detected human
proteins will act as cross-reactivity targets as small differ-
ences can bring about drastic effects [59].
The presence of a human potential cross-reactivity tar-

get (a homolog or a protein with sufficient binding-site
similarities) is not sufficient to evaluate whether or not
targeting a particular target might have important side ef-
fects since the human protein might not be essential. The
use of predicted essentiality of human functional homo-
logs or those with detected binding-site similarities in
RECON2 [17] in conjunction with their essentiality in C.
difficile represents a more consistent analysis of targets
across hosts and pathogens. To our knowledge this use
metabolic networks across species to determine the poten-
tial of a target to have cross-reactivity targets leading to
side effects is novel.
A “perfect” predicted essential target would be one with-

out (or with non-essential) potential cross-reactivity tar-
gets in human and E. coli (as a proxy for gram-negative
and gut flora in general), with essential homologs in B.
subtilis and up-regulated in vivo. Although no C. difficile
target could be found fulfilling all properties at once, the
123 potentially essential targets identified (as single or
double mutants) fulfil several of these properties and
could, once validated experimentally serve as a target for
the development of new antibiotics.
The list of active molecules that potentially bind pre-

dicted essential targets includes many molecules that
could help in the validation of the targets in C. difficile
and the development of novel drugs [74]. Experimental
validation is required to determine if the identified small-
molecules do bind the C. difficile homologs. Some of these
small-molecules, such as the approved anti-viral Ribavirin,
could speed the approval of C. difficile specific inhibitors
through drug repositioning. In the case of Ribavirin, the
molecule is a rapidly absorbed guanosine analog currently
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used in the treatment of Influenza [75] and hepatitis C [76].
Cerulenin has anti-fungal and anti-bacterial activity target-
ing FabF in B. subtilis [77], thus very likely targeting the
same protein in C. difficile as we predicted. In all cases, the
multiple small molecules predicted to bind the predicted
essential C. difficile proteins could be used to bias library
selection for the rational development of new inhibitors.

Conclusions
In the current work we present the first extensively cu-
rated metabolic network reconstruction for C. difficile
(strain 630) iMLTC806cdf and validate it with experi-
mental data on essential metabolites and carbon sources.
We compare iMLTC806cdf to existing networks show-
ing the importance of manual curation and use the net-
work to predict essential genes. The predictions agree
with experimental data for B. subtilis (the closest organ-
ism for which such data is available). We detect potential
cross-reactivity targets for each of these genes using a
variety of methods combining systems and structural
computational biology and determine that for only 4 out
of 76 predicted essential genes, if exiting, the potential hu-
man cross-reactivity targets are themselves essential in the
human metabolic network reconstruction RECON2. For a
number of essential genes we find potential binding small
molecules, including approved drugs such as Ribavirin,
which may inhibit the respective gene products. We hope
that iMLTC806cdf will find further use in the community
and the results here lead to the development of novel anti-
biotics against C. difficile infections.

Methods
Creation and curation of the draft metabolic network
We created a collection of metabolic and transport reac-
tions associated with C. difficile strain 630 from the KEGG
[34], MetaCyc [78] and TransportDB [79] databases. Reac-
tions involving polymers (glycogen, peptides and others)
were ignored to avoid the spontaneous creation of matter
due to the presence of molecules of undefined length.
Also, some of these polymers, like glycogen, are only used
for energy storage [80] and would not have any impact in
simulations that optimize biomass production. Reactions
involved in spore formation, the conjugation process,
RNA, peptide or DNA modification, cell repair, and other
non-metabolic enzymatic reactions were not added to the
network since these reactions are not directly contributing
to the production of biomass constituents. Finally, the re-
constructed network concentrates solely on metabolism
without including signalling, gene regulation and post-
translational modification of proteins even if these can
clearly affect metabolism.
The initial draft network is little more than a collec-

tion of reactions. In that state it cannot be used for any
sensible application such as the simulation of biomass
production. This is due to the numerous inaccuracies
present in the databases. These inaccuracies consist of, but
are not limited to, the presence of generic and dead-end
metabolites, missing or erroneous pathways, missing genes
and unbalanced reactions (Additional file 1: Table S12).
Two cases exemplify some of these inaccuracies. First, not-
ing that aerobic pathways should not be present at all in
the C. difficile, the inclusion of incomplete versions of both
aerobic and anaerobic pathways for the biosynthesis of vita-
min B12 is problematic (Additional file 1: Figure S3). Sec-
ond, the omission of most reactions in the Stickland and
amino acid fermentation pathways (Additional file 1: Figure
S4), important sources of energy for the bacteria, which
had to be completed based on literature. Both of these cor-
rections a numerous others in of the same nature were ne-
cessary to create a functional network (Figure 4).
Most transport reactions were based on TransportDB

[79] although putative transporters not present in the data-
bases had to be added for molecules known to be exported
or imported by the bacteria. An exchange reaction (reaction
that simulates interaction with the media via the appear-
ance or disappearance of the given metabolites in the net-
work) was created for each metabolite with an extracellular
version. These exchange reactions are set to allow the ex-
port of a metabolite unless it is part of the tested growth
medium in which case import is also possible.
The curation not only involved the addition and sup-

pression of reactions from the initial draft, many charac-
teristics of each reaction such as the directionality, the
presence of complexes or the assignment of gene-reaction
associations and their inclusion as part of a pathway had
to be analyzed manually. The directionality of reactions
was based on information obtained from the MetaCyc
database when available. Reactions found exclusively in
KEGG were kept bidirectional unless leafing to the pro-
duction of a highly energetic compounds (ATP, NAD+,
NADP+, etc.) that were not known to be produced in such
a manner. Examples of reactions producing highly ener-
getic compounds are ATP synthases, amino acid fermen-
tation and glycolysis.
Protein-protein interactions are highly important in the

network since they can modify the essentiality of a gene
based on knowledge of the involvement of its protein prod-
uct as part of a protein complex. The possibility that a pro-
tein complex is responsible for catalysis was investigated for
every reaction that had more than one gene associated to
the reaction and for any gene whose protein is identified as
a subunit of a complex. We used information from Trans-
portDB, UniProt, Brenda and literature data (either for the
C. difficile protein of interests or a homolog of same func-
tion that could indicate a similar interaction between genes
products). In every case the STRING version 9.1 [81] score
was calculated to evaluate the confidence score attributed
to each complex (Additional file 1: Table S13).



Figure 4 Flow chart representing the main steps of reconstruction of a metabolic network. The creation of the network begins by the
building of a draft by extracting data from various databases. The draft will then enter an iterative cycle between curation and validation, each
steps of validation bringing a new step of curation if it fails. The final version of the network can then be used to perform various analyses
(growth tests, in silico gene deletion, etc.).
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We used KEGG pathway identifiers since they are gen-
eric and allow maintaining a small number of pathways
in the network. Pathways containing less than five reac-
tions were manually merged to the closest relevant path-
way. Reactions that were not associated to any pathway
in KEGG (32% of the reactions in KEGG) were linked to
existing pathways. The pathway assigned to the reaction
was the one in which the less linked metabolite of the re-
action was most often present in the network (Additional
file 1: Table S10).

Lipid biosynthesis and cell membrane composition
A problem with lipid biosynthesis in metabolic networks
is the fact that a variety of different fatty acids exist in
cells with different lengths and saturation states and can
be used in numerous cellular processes, both metabolic
and non-metabolic. Also, the lipid composition of the
cellular membrane is a mix of various phospholipids and
glycerolipids of varying lengths and composition and this
composition varies depending on the growth conditions
[82]. A complete definition of lipid metabolism is likely
impossible to define at this moment given the lack of ex-
perimental information specific to C. difficile membranes.
Furthermore, the resulting network would be dominated
by lipid reactions with the same few genes repeated for
every possible length and saturation state for every lipid
type. Therefore, having an exhaustive definition of lipid
metabolism would not bring any additional relevant infor-
mation on metabolism. In most reconstructed metabolic
networks, lipids are used almost exclusively in membrane
formation. Following [42], in order to reduce the complex-
ity of lipid metabolism while keeping it as close to the real
bacteria as possible, the fatty acid composition of all lipids
is held at a constant 16:0 (carbon chain length: number of
double bonds), which is the most abundant fatty acid ob-
served in C. acetobutylicum [83]. The last step in simplify-
ing lipid biosynthesis was to combine the elongation of
fatty acids from acetyl (2:0) to palmitate (16:0) into a single
reaction and beta-oxidation of the palmitate back into
acetyl as another single reaction.

Biomass
In order to simulate bacterial growth, the biomass (en-
semble of macromolecules necessary for cellular growth
and division) composed of DNA, RNA, cell wall, pro-
teins, solute pool and lipids was defined based on the
following elements. Nucleic acid composition of DNA
used in the network was calculated based on the nucleo-
tide content of the genome and plasmid of Clostridium
difficile strain 630, RNA composition is based on the
content of the transcriptome using the UCSD genome
browser [84] and protein composition using the proteome.
Lipid, cell wall and solute pool composition as well as the
overall biomass composition were taken from the C. aceto-
butylicum network [42] due to a lack of literature specific
to C. difficile. A detailed composition of the biomass is
available in supplementary Additional file 1: Table S14.

Simulation of growth and gene essentiality
Two methods were used to simulate bacterial growth
and determine gene essentiality: flux balance analysis
(FBA) [21] and synthetic availability (SA) [22].

Flux Balance Analysis (FBA)
Flux balance analysis [21] is a constraint-based modeling
method commonly used in the study of genome-scale
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metabolic networks. FBA firsts creates a stoichiometry
matrix (S) from the network where each row represents a
metabolite and each column a reaction. The values in this
matrix correspond to the stoichiometry of the metabolite in
the reaction with a negative number representing con-
sumption and a positive number representing production
of the metabolite. A system of linear equations is produced
by multiplying S with a column vector v representing the
fluxes through each reaction. FBA creates a steady-state
distribution of fluxes where the product of the previous
multiplication must equal zero S ⋅ v = 0. Since the resulting
system of linear equations is undetermined, FBA uses linear
programming to maximize a particular objective function
Z, in our case biomass as the representation of growth, by
maximizing the multiplication of a row vector c containing
the weight of each reaction on Z with the column vector v
used previously (maximize Z = c ⋅ v). Values in v are con-
strained by lower and upper bounds representing various
factors like enzyme directionality of the reaction, capacity,
uptake, secretion rates, etc. FBA finds a distribution of fluxes
in the network respecting the constraints on v and maximiz-
ing Z at the same time. In our studies, the Sybil package ver-
sion 1.1.11 [32] available for the free R environment for
statistical computing (version 2.15.2) was used in order to
run FBA simulations. Other tools also exist that can use FBA
with different interfaces like the COBRA package [85] that
runs on the proprietary Matlab computing environment.

Synthetic Accessibility (SA)
Synthetic accessibility [22] is a parameter-free method to
predict the essentiality of genes through their deletions in
metabolic networks. SA uses network topology to calculate
the number of reaction steps needed to produce the out-
puts (biomass) of the network from the inputs metabolites
available in the growth medium. SA works by examining all
reactions that use only input metabolites and marks those
reactions and their products as ‘accessible’. In an iterative
manner, successive iterations search for new reactions that
have all required substrates marked as accessible until no
new reaction can be added. Each metabolite j have a syn-
thetic accessibility value Sj representing the number of iter-
ations before this metabolite became accessible and the
Synthetic Accessibility of the network as a whole, Snet, is
the sum of Sj of each of the output metabolites. Increases
in Snet resulting from gene deletions are predicted as being
deleterious. Synthetic accessibility is a simpler method than
FBA and gives comparable results on the prediction of es-
sential genes demonstrating that the topology of the net-
work is the principal factor influencing essentiality. We use
our own implementation of the algorithm.

Local structure similarity
The identification of local structure similarities is sepa-
rated into three steps: the creation of a three dimensional
model of the protein, the identification of the probable
binding site, the comparison of the binding site to a data-
set of known binding sites. The models used where cre-
ated using I-Tasser [86], a tool which builds 3D models
based on multiple-threading alignment and iterative frag-
ment based simulations. Detailed methodology for I-
Tasser can be found elsewhere [86]. We used the Isocleft
Finder (Kurbatova et al., [58]) web-interface to compare
the largest cavity of each of the models (representing the
binding site in 83% of cases [87]), identified using their
own implementation of the SURFNET algorithm [88], to a
non-redundant dataset of 7339 binding-sites of unique
combinations of protein families bound to distinct ligands
[58] using Isocleft [58,59]. IsoCleft is a graph-matching
based method for the detection of structural and chemical
similarities between pairs of protein cavities. In each case,
we selected the most similar match found to a protein in
the IsoCleft Finder non-redundant dataset that contains
human homologs. It is important to note however that
the representative of such family in the non-redundant
dataset may itself not be necessarily a human protein.
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