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The World Health Organization (WHO) recently added snakebite envenoming to the priority list of Neglected Tropical Diseases
(NTD). It is thought that ∼75% of mortality following snakebite occurs outside the hospital setting, making the temporal gap
between a bite and antivenom administration a major therapeutic challenge. Small molecule therapeutics (SMTs) have been
proposed as potential prereferral treatments for snakebite to help address this gap. Herein, we discuss the characteristics, potential
uses, and development of SMTs as potential treatments for snakebite envenomation. We focus on SMTs that are secretory
phospholipase A2 (sPLA

2
) inhibitors with brief exploration of other potential drug targets on venom molecules.

1. Introduction

Snakebite envenomation is a neglected tropical disease that
causes more than 100,000 deaths every year [1, 2]. Of the
snakebites that are ultimately fatal, it is estimated that about
50-75% occur before victims can reach the hospital for
antivenom treatment [3–6]. There is an urgent need for
novel interventions to address the therapeutic and temporal
gap between a bite and hospital-level care. Small molecule
therapeutics (SMTs) have been proposed for initiating the
treatment of snakebite in the prehospital environment and as
adjuncts to antivenom therapy [7, 8].

2. Small Molecule Therapeutics

SMTs represent a potentially useful adjunctive therapy to
antivenoms, the current mainstay of care for symptomatic
snakebite. As a group, most SMTs are naturally occur-
ring (e.g., alkaloid) or synthetic molecules that are usually

intended to act on specific targets. G-protein coupled recep-
tor systems comprise the largest group of targets for SMTs
[9, 10]. SMTs could be used in multiple ways to decrease
morbidity and mortality caused by snake envenomation
(Figure 1). Ideally, an SMT could be given orally in the
prereferral setting to diminish or delay venom toxicity. An
SMT could also be used in an in-patient setting, either
orally or intravenously, as an adjunct to antivenom and to
increase the breadth of treatment efficacy. These uses could
potentially reduce the required dosage of antivenom and
improve treatment costs by improving the performance of
imperfectly matched antivenoms. Finally, an SMT could be
administered posthospitalization to reduce the chances of
rebound effects from venom components not effectively or
durably covered by antivenom. With low toxicity and high
efficacy, SMTs could even be considered for prophylactic use
in high-envenomation risk situations.

The search for nonserotherapy antidotes to snakebite is
not new. Traditional healers have long used poultices and teas
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Figure 1: Potential uses of an SMT, via PO (oral), or IV (intravenous).
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Figure 2: Advantages and limitations of antivenom and SMTs. If proven effective, an SMTmight address some limitations of antivenom and
vice versa. (COGS = Cost of Goods).

derived from plants to attempt treatment. Plants and fungi
remain the basis for most active pharmaceutical ingredients
used in modern medicine today [11]. The spectrum of small
molecule inhibitor compounds for the treatment of snakebite
has been reviewed by Carvalho, Soares, Laustsen, Bastos,
and others [7, 12–16]. As a field, only a small number of
individuals and groups have directly addressed the question
of developing small molecules for the treatment of snakebite
and it remains largely unexplored [8, 17–20]. No SMT for
snakebite treatment has ever been approved for use in
humans or animals. The potential benefits of using SMTs as
an adjunctive therapy deserve further study.

SMTs have many characteristics that make them poten-
tially useful as an adjunctive therapy for snakebite treatment.
If proven effective, SMTs might address some of the most
significant limitations of antivenom (Figure 2) [21]. By their
nature, SMTs are at low risk for allergenicity or anaphylactic
shock as compared to most serum-based therapies [22]. In
addition, many snake venoms have in common active toxic
components that could be targeted by SMTs, including the
secreted phospholipase A2 (sPLA

2
) and metallo- and serine-

proteases (svMPs and SPs, respectively). If the inhibitory

targets are common among snake species, SMTs could
potentially have broad spectrum “venom agnostic” effects.
This would potentially decrease the importance of snake
identification and would increase the usefulness of SMTs
as first-line therapeutics. Venom agnostic SMTs could be
used in a broad range of geographical areas and potentially
eliminate the need of an expert to confirm snake species
prior to initializing treatment, though newly developed rapid
diagnostics could rapidly refine the specificity of treatment
and improve the clarity and powering of clinical studies
where more than one type of venomous snake is prevalent
[23, 24]. Finally, in theory, multiple SMTs developed against
various venom proteins could be combined to inhibit wider
varieties of toxins present across snake species.

For SMTs to be potentially useful as an adjunctive
therapy for snakebite, they should be heat stable and easily
administered, allowing point-of-care treatments in the field.
Also, the manufacturing cost-of-goods (COGS) of SMT
should be comparatively low. Consideration of repositioned
(repurposed) compounds with a history of use in humans,
a strategy discussed in detail below, could further decrease
costs of development [8, 25]. Also, venom distributes outside
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Table 1: Desirable preclinical characteristics of an SMT for snakebite.

Safe
(i) Minimize off-target toxicity [66]
(ii) Without adverse interactions with antivenom
(iii) Broad therapeutic index

Efficacy (in vitro)
(i) Nano- or subsnanomolar in vitro potency (IC

50
) for scalability [66, 77, 80]

(ii) Determination of affinity, minimum active concentrations, physical characteristics, stability, mechanisms of
action, dose-response, and drug effects [8, 31, 32, 54, 69, 77, 80–87]

Efficacy (in vivo)

(i) Tested with both:
(a) Minimum acceptable: Pre-mixing of venom and antidote prior to injection (ED

50
determination) [32]

(b) Ideal: Venom administration prior to administration of antidote [8, 31, 88]
(ii) Compatible with standard assessments of coagulation [89]

Broad Spectrum (i) Wide target selection (ubiquity and medical importance of inhibitory target amon snake species) [34, 35]

Heat Stable (i) Real-time stability studies up to 37∘C (±2∘C) and relative humidity of 75% (±5%) (WHO “Climatic Zone IVb”)
[90]

Ease of
Administration

(i) Oral solution, rectal or nasal formulations
(ii) Auto-Injectable [54]

Bioavailability (i) For oral formulations, adequate bioavailability in fed state

Half-life (i) For field antidotes, half-life of at least 5 to 7 hours [78, 91, 92]
(ii) Potential for re-dosing

the blood, with an average volume of distribution in animals
of 0.054-0.070 L/Kg, where antivenom cannot distribute
[26]. Given their small molecular weight and charge, SMTs
will generally have much higher volumes of distribution
and tissue penetration than antivenom, allowing them to
distribute within vulnerable tissues [26–30]. The addition of
tissue penetrating molecules could expand the time during
which severe neurotoxicity could be reversed. This would
be an advance in the field because of antivenom’s limited
access to synaptic junctions and inability to reverse critical
impairments such as respiratory paralysis.

WHO has provided a detailed preclinical assessment
for antivenom development for snakebite treatment and
has recently been reviewed in detail by Gutierrez et al.
[31, 32]. However, none exists for SMT development for
snakebite. Based on the WHO guidelines, previous studies
on antivenom development, and our experience in the
development of SMTs, the preclinical assessment of SMTs for
snakebite treatment can be envisioned (Table 1).

3. Pathway for Development of an SMT

3.1. Venom Target Selection. A toxin-centric approach might
be the basis of next-generation snakebite treatment [33].
As described by Laustsen, snake venom is likely to be the
“most complex pharmaceutical target” known, composed of
a multitude of toxin components and complex biochem-
ical interactions [34]. Thus, venom targets for inhibition
should be, ideally, abundant across as many of the medi-
cally important snake species as possible. For understanding
venom properties and targeting, proteomic analysis of snake
venom has been crucial to reveal species variation in venom
composition and toxicity [35–37]. Proteomic analysis has
revealed a wide array of active toxic ingredients from at
least 26 protein families, but the most common medically

Table 2: Generic pathogenesis of major toxins in snake venom:
secreted phospholipase A2 (sPLA

2
), metallo- and serine-proteases

(svMP and SP), and the nonenzymatic three-finger toxins (3-FTX).

Family sPLA2 svMP SP 3-FTX
Neurotoxic Yes - - Yes
Hemotoxic Yes Yes Yes -
Myotoxic Yes Yes - -
Cytotoxic Yes Yes - Yes

relevant components are found within four families in
varying proportions [38–40]. These proteins are secreted
phospholipase A2 (sPLA

2
), metallo- and serine-proteases

(svMP and SP), and the nonenzymatic three-finger toxins
(3-FTX) [35, 39–41]. Not all snake venoms, however, have
unique toxins that are in this group of four, includingmambas
with dendrotoxins and some rattlesnakes with lowmolecular
mass cationic myotoxins [42–44]. Continued research into
the proteomic and toxicovenomic characterization of the
most medically relevant venoms is crucial in order to have a
more comprehensive understanding of drug and antivenom
targeting in these species, as well as to understand the nature
of therapeutic failures when they occur.The use of tools, such
as the newly developed Toxicity Score, which combines the
medical importance and the relative abundance of a specific
toxin, can aid the identification of a target [34, 35].

Because of its ubiquity and clinically significant effects,
we focus on sPLA

2
as a candidate for inhibition by SMTs

[31, 40]. Snake venom sPLA
2
play roles in early- and late-

onset symptomology, as well as synergistic and regulatory
roles for other coexisting snake venom components [45–
52]. sPLA

2
are also some of the most pharmacologically

active,multieffect (neuro-myo-cyto-hemotoxic) venomcom-
ponents (Table 2) [45–53].



4 Journal of Tropical Medicine

SP

svMP svMP

PLA2PLA2PLA2

(a)

SMT

Biological
o Antivenom
o Aptamer
o Humanized Antibody
o Nanoparticles

(b)

Figure 3: Hypothetical pipeline of SMTs for snakebite treatment. (a) Targeted inhibition of major snake venom enzymatic toxins, secreted
phospholipase A2 (sPLA

2
), andmetallo- and serine-proteases (svMP and SP), through a combination of multiple inhibitory small molecules.

(b) In combination with biologicals or others as adjuncts to antivenom for hospital administration (e.g., for targeting non-enzymatic toxins,
such as 3-FTX).

svMPs represent another important target for inhibition
because of their systemic and local toxicity, caused by
fibrinolytic and hemorrhagic activity among others [1, 49].
Recent studies suggest that small molecules, in particular
anticancer metalloprotease inhibitors and, possibly, metal
chelators related to EDTA, have inhibitory effects on svMPs
[18, 54–57]. SP inhibitors will be amongst the most challeng-
ing to develop because of their complex role in coagulation
and short half-life of molecules that have made it to clinical
use thus far, such as gabexate [58]. The most active work
in this area has come from Vaiyapuri [59, 60]. 3-FTX toxin
lacks enzymatic activity and presents a challenging target
for an SMT. In addition, there is potential for single toxin
inhibitors to affect synergistic effects of toxins, for example,
sPLA
2
potentiation of svMP in Bothrops alternatus venom

[34, 61].
While sPLA

2
inhibition might prove sufficient as a

“bridge-to-survival” for many types of venoms when admin-
istered in a prereferral setting and, at times, be sufficient for
treatment, future SMTs might be mixtures of other SMTs
(Figure 3(a)). Some targets could also be inhibited indirectly
by SMTs, such as 3-FTX, whose effects might sometimes be
mitigated by acetylcholinesterase inhibitors, though the use
of these inhibitors remains controversial despite decades of
use for this purpose [41, 50, 62–64]. In addition, SMTs might
be used to slow the spread of venom by paralyzing lymphatic
smooth muscles (e.g., with lidocaine) [65]. SMTs could also
be paired with antibodies or other biologicals to increase the
range of efficacy or extend their paraspecificity (Figure 3(b)).

3.2. Strategies for Discovery of Lead Compounds. Several
strategies to discover new SMTs are commonly used and
illustrated in Figure 4. Some strategies involve the screening
of entire compound libraries against the selected target,
such as High Throughput Screening (HTS). HTS requires
no previous knowledge of potentially successful chemotypes,
but it does require a venom-relevant assay. Compounds
that show a predetermined percentage of inhibition, for
example, more than 50% inhibition at 10𝜇M, are advanced

to the Confirmation of Hits stage. Confirmation of Hits
would test the screened compounds with a dose-response
curve, utilizing multiple concentrations, to determine the
IC
50

(half-maximal Inhibitory Concentration) and, there-
fore, the effectiveness of the compound at inhibiting the
active components of snake venom. Other methods, such as
focused screening, are less time consuming but require more
knowledge. Focused screening involves screening a small
amount of existing developed drugs for potential repurposing
for snakebite. While the strategy chosen to discover a lead
snakebite SMT depends on the resources and knowledge
available to the investigator, it is important that the correct
assay for screening is used. If the assay does not reflect the
relevant venom toxicity, it could be either worthless or a very
useful molecule could remain undiscovered.

3.3. Repurposing as a Strategy for Discovery and Development.
To achieve a lower-cost SMT product that can be commer-
cialized and priced sustainably, its development costs need
to be lowered. The development of a new drug from lead
discovery to launch can take many years and cost more than
one billion USD [66]. Repurposing, a strategy for accelerated
drug development by reviving or expanding indications of
existing drugs, might be beneficial to the development of a
potential SMT for snakebite. Repurposing, or repositioning,
is a powerful way to reduce the cost of drug development,
particularly for neglected tropical diseases that do not offer
sufficiently alluring markets to larger pharmaceutical com-
panies, such as snakebite [25, 67]. Repurposing compounds
already in development can accelerate entry to clinical trials
and result in significant savings. Repurposing can also revive
the potential of drugs that never reached commercialization
or expand the purpose of existing drugs by applying them
to new indications [68]. Examples of successfully repurposed
drugs include Thalomid (Thalidomide) for treatment of
leprosy and Viagra (Sildenafil) for pulmonary hypertension
[25, 68]. In 1972, Banerjee et al. presented an early example
of repurposing an SMT for snakebite when neostigmine
was used to treat the paralytic effects of an elapid bite [41].
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Figure 5: Scheme of a potential SMT development pathway. “Sections” correspond to paragraphs that follow. The repurposing pathway
accelerates development and lowers costs by starting at a more advanced stage of development than a new chemical entity.

Multiple groups have since investigated the use of this class
of acetylcholinesterase inhibitors in the clinical or laboratory
setting with variable results [41, 50, 63, 64]. Development of
a hypothetical SMT using a repurposing pathway is shown in
Figure 5.

Drug repurposing does not generally require further
optimization or structural modification of an FDA-approved
drug or lead compound, unless formulations were altered
from original studies, which may require extra characteri-
zation and testing [25]. Therefore, data from efficacy, safety,
pharmacokinetics/dynamics studies, and others conducted
for the initial indication of the compound can be reused
for the new indication if the originators donate, license, or
sell access to their data [69]. In regards to safety, Klug et al.
note that “the most common side effects of the repurposed
drugs are minor in comparison to those of many existing
NTD therapeutics” [25]. Repurposing can be a cost-effective,
lower-risk strategy to rapidly develop new SMTs for snakebite
treatment.

4. Repurposed Drugs and Model SMT
Candidates for Enzymatic Inhibition of
Snake Venom

We recently identified a previously studied sPLA
2
inhibitor,

varespladib (syn LY315920, S-920), and its orally bioavailable
prodrug, methyl-varespladib (syn LY333013, A-002), as a
candidate treatment for snake envenomation [8]. Varespladib
appears to be a potent sPLA

2
inhibitor against a broad

spectrum of snake venom sPLA
2
s. As mentioned above, the

ubiquity and clinically significant effects of snake venom
sPLA
2
s across venom types make it a plausible candidate for

inhibition by an SMT with potential for broad spectrum of
efficacy.

Varespladib, for the indication snakebite, is an example
of a potentially repurposed compound. In recent decades,
several large pharmaceutical industry endeavors focused on
sPLA
2
inhibition for potential anti-inflammatory and cardio-

vascular drugs but, to date, none came to market [70, 71].
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Figure 6: Structure of candidate SMTs for repurposing: varespladib (top left), its orally bioavailable pro-drug, methyl-varespladib (top right),
prinomastat (bottom left), and marimatsat (bottom right). Marimastat and prinomastat are both orally bioavailable and could be combined
(mixed or copackaged) for more extensive coverage as field antidotes [1, 54].

sPLA
2
enzymes are present throughout the animal kingdom

and are involved in multiple key processes, such as synaptic
transmission and inflammation. sPLA

2
are implicated as

having roles in various important diseases such as sepsis,
cardiovascular disease, neurological disease, rheumatological
disease, and cancer [72]. In attempts to treat these diseases,
several companies devoted extensive resources to developing
sPLA
2
inhibitors as targets for drug development. These

inhibitors could be considered for repurposing as SMTs for
snakebite treatment.

Figure 6 shows the structures of the sPLA
2
inhibitor,

varespladib, and other SMT candidates that could be repur-
posed, the anti-svMP peptidomimetic SMTs, prinomastat,
and marimastat [17, 18, 54]. Varespladib is a sPLA

2
inhibitor

originally developed by Shionogi and Lilly, for treatment of
pancreatitis and sepsis and, later, licensed to Anthera, for
treatment of acute chest syndrome and heart disease [73, 74].
This makes it an inviting candidate for repurposing because
of the known safety profile and, thus, potentially reduced
development costs [8, 75, 76]. Similarly, MP inhibitors that
have previously been developed for cancer treatment such
as batimastat, marimastat, and prinomostat could also be
considered [11, 12, 77, 78].

In vitro, varespladib was observed to be a surprisingly
potent inhibitor of snake venom sPLA

2
.The observed consis-

tent potency (nano- and subnanomolar range) against a range
of sPLA

2
from more than 25 medically important snakes

from six continents suggests that these could be scaled for
human use at reasonable dose volumes and dosage forms [8].
In vivo, rescue studies using lethal doses of coral snake (M.
fulvius) and commonadder (V. berus) venomwere performed

on mice to whom venom was administered subcutaneously
followed by intravenous varespladib in the lateral tail vein,
and all survived for at least 24 h, while those receiving only
venom died in a matter of minutes or hours. Similarly, mice
subjected to intraperitoneal administration of venoms were
rescued by intravenous, intramuscular, and oral routes of
drug administration against venoms from snakes such as D.
russelli, E. carinatus sochureki, O. scutellatus, C. scutulatus,
and C. durissus terrificus (unpublished data). In addition,
recent results by Wang et al. (2018) showed the inhibitory
effect of varespladib treatment on D. acutus, A. halys, N.
atra, and B. multicinctus in vitro and in vivo [79]. The results
of these experiments have led to several new questions,
including the exactmechanismbywhich survival is enhanced
by these experimental drugs.

For a repurposed compound, attention should be given
to the safety signals seen in prior trials. Consideration of
the difference in use of an SMT between previous indication
and snakebite might mitigate safety risks: for example, an
SMT for snakebite would be used acutely, with one or few
doses, rather than chronically. If use of SMTs includes early
administration in the field, potentially before appearance of
signs of envenomation, safety of the drug for individuals
bit by nonvenomous snakes or individuals exposed to “dry”
bites must be considered. In terms of efficacy, the risk that
inhibition of one toxin (e.g., sPLA

2
or svMP) might not

be sufficient and can be mitigated by addressing additional
targets and having backup molecules potentially more suit-
able for different geographic regions [54]. Lastly, means for
commercialization should be evaluated early on to determine
real world feasibility of implementing an SMT.
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5. Conclusions

SMTs are potentially useful tools and could meet key devel-
opment criteria as initial field treatment for snakebite and as
adjuncts to antivenom with unrealized potential.

The rational development of an SMT commences with
selecting an inhibitory target and determination of the
breadth of efficacy across snake species. The breadth of effect
helps determine the applicability to specific geographical
regions and snake types. Aiding the discovery step is the
availability of SMTs already developed by the pharmaceu-
tical industry for other indications, which, if repurposed,
could substantially lower development costs and increase
the potential for accelerated approvals. Preclinical studies to
evaluate the safety and efficacy of the SMT follow similar
assays used in antivenom testing, but other assays to test
heat stability, ease of administration, and bioavailability are
likely to be additionally performed. A careful, systematic, and
multidisciplinary approach will be required to determine the
most appropriate next steps in the development and deploy-
ment of new therapeutic classes for the initial treatment and
overall management of snakebite.
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