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The Hybrid Rat Diversity Panel (HRDP) is a stable and well-characterized set of

more than 90 inbred rat strains that can be leveraged for systems genetics

approaches to understanding the genetic and genomic variation associated

with complex disease. The HRDP exhibits substantial between-strain diversity

while retaining substantial within-strain isogenicity, allowing for the precise

mapping of genetic variation associated with complex phenotypes and

providing statistical power to identify associated variants. In order to robustly

identify associated genetic variants, it is important to account for the population

structure induced by inbreeding. To this end, we investigate the performance of

four plausible approaches towards modeling quantitative traits in the HRDP and

quantify their operating characteristics. In particular, we investigate three

approaches based on genome-wide mixed model analysis, and one

approach based on ordinary least squares linear regression. Towards

facilitating study planning and design, we conduct extensive simulations to

investigate the power of genetic association analyses in the HRDP, and

characterize the impressive attained power. In simulation of eQTL data in

the HRDP, we find that a mixed model approach that leverages leave-one-

chromosome-out kinship estimation attains the highest power while

controlling type I error.
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1 Introduction

The Hybrid Rat Diversity Panel (HRDP) is large panel of

99 inbred rat strains consisting of three subpopulations: the

HXB/BXH recombinant inbred (RI) panel (30 strains), the

FXLE/LEXF RI panel (34 strains), and a group of divergent

classic inbred strains (35 strains) (Tabakoff et al., 2019). The

HRDP was designed to maximize both power and mapping

resolution when examining genetic determinants of complex

traits, i.e., quantitative trait locus (QTL) analyses. High

resolution is facilitated by the inclusion of 35 classic

inbred strains, while power is provided by the two

recombinant inbred panels. Hybrid diversity panels are a

popular framework in model organism analysis; the Hybrid

Mouse Diversity Panel (HMDP) has been used in systems

genetics approaches to studying various genetic traits

including heart failure, plasma lipid levels, and insulin

resistance (Lusis et al., 2016). However, the usefulness of

panels of inbred mice is somewhat hampered by the similar

genetic origin of laboratory mouse strains (Reuveni, Birney,

and Gross 2010) and the difficulty of breeding “wild-type”

mouse strains with founder strains to derive recombinant

inbred strains (Odet et al., 2015). Additionally, rats are often

preferred to mice for behavioral and physiologic studies due

to their greater size and more distinguishable central nervous

system anatomy (Parker et al., 2014). These factors motivate

the development and the usage of the HRDP for systems

genetics applications, in particular those that integrate RNA

expression levels with DNA variation to understand the

genetic etiology of complex traits. For such applications, a

clear understanding of how DNA variation influences gene

expression is essential.

Despite the large number of SNPs statistically associated

with complex traits, the mechanism by which genetic

variation affects complex traits is often not well

understood. One mechanism for the genetic control of

complex traits is the modulation of gene expression by

SNPs (Zhang et al., 2015). A substantial proportion of

variants associated with complex traits are also associated

with variation in gene expression (Brænne et al., 2015). This

illustrates the importance of identifying genetic variants

associated with variation in transcript levels, as further

elucidating the interaction of genetic variation, gene

expression, and complex trait presentation is of substantial

importance for parsing the genetic etiology of disease. Gene

expression can be treated as a quantitative trait in a genome-

wide association scan; variants associated with gene

expression in such an analysis are termed expression

quantitative trait loci, or eQTLs. Whereas behavioral and

physiological phenotypes are often influenced by hundreds

of loci throughout the genome, variants associated with

transcript levels are often located in the coding sequence of

the gene or in nearby enhancer or promoter regions. Variants

that influence transcript levels that are in or near the coding

region of the gene are often called cis-eQTLs, although a true

cis mechanism of control would need to be validated with

additional studies. More distant variants are termed trans-

eQTLs. It is thought that the identification of cis-eQTLs can

illuminate a potential mediation mechanism for the effect of

genetic variants on behavioral and physiological phenotypes,

whereby variants influence gene expression which in turn

affects behavioral and physiological traits (Gusev et al., 2016).

Analyzing QTLs in a panel of inbred organisms with complex

relationships among individuals (such as the HRDP) requires

modeling considerations for the effect of population structure.

Initial analyses of the HMDP were substantially confounded by

failure to properly account for the effect of population structure,

resulting in poor type I error control (i.e., an inflated number of

false positive results) (Kang et al., 2008). Rigorous control of the

type I error rate at the nominal level is of particular importance in

SNP-trait association studies; given the multiplicity of

hypotheses tested, nominally significant associations cannot be

trusted unless type I error is strictly controlled. Linear mixed

models with random effect structure dictated by the estimated

genetic relationship matrix have demonstrated good

performance in the analysis of eQTLs in populations with

shared ancestry. A popular implementation of linear mixed

models of this type for the analysis of genetic data is

implemented in the software Genome-Wide Mixed Model

Analysis, i.e., GEMMA (Zhou and Stephens 2012).

This paper examines four methodological approaches

towards modeling eQTLs in the HRDP. In particular, we

analyze a 43-strain subset of the HRDP for which we have

both RNA expression levels and genotype information. This

43-strain subset consists of 30 strains from the HXB/BXH RI

panel as well as 13 classic inbred strains; the 43 strains

comprising this subset are listed in Supplementary Material

S4.1. The four methods we compare are ordinary least squares

linear regression, linear mixed modeling, linear mixed

modeling with leave-one-chromosome-out (LOCO) kinship

matrix calculation, and linear mixed modeling by

subpopulation followed by meta-analysis. All linear mixed

models described in this study were estimated via GEMMA.

We compare the performance of these four methods in real

data application and in simulation with the goal of arriving at

a modeling recommendation for eQTL analyses of the HRDP

data. Our analysis indicates that linear mixed modeling via

GEMMA is appropriate for eQTL analysis of the HRDP data.

Implementing LOCO for kinship calculation increase power

but may also slightly inflate type I error (i.e., false positives).

We additionally conduct a simulation study with 92 HRDP

strains with genotype information and empirically relate QTL

heritability to power for the three component subpopulations

and the full HRDP. This empirical power analysis may inform

study design and sample size calculations for researchers

interested in using the HRDP.
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2 Materials and methods

2.1 Animals

The HRDP is large panel of 99 inbred rat strains consisting of

three subpopulations: the HXB/BXH recombinant inbred (RI)

panel, the FXLE/LEXF RI panel and a group of divergent classic

inbred strains (Tabakoff et al., 2019). We obtained brain tissue

from a subset of the HRDP (45 strains). Rats from HXB/BXH RI

panel (Pravenec et al., 1989) including its progenitor strains (BN-

Lx/Cub and SHR/OlaIpcv) used for RNA-Seq analyses were

maintained by Dr. Michal Pravenec at the Institute of

Physiology of the Czech Academy of Sciences. For this RI

panel, the University of Colorado Anschutz Medical Campus

received shipments of brain tissue from male rats (~70–90 days

old) stored in liquid nitrogen. The process of retrieving tissues

was performed in accordance with the Animal Protection Law of

the Czech Republic and approved by the Ethics Committee of the

Institute of Physiology, Czech Academy of Sciences, Prague. The

other 13 inbred strains from the group of divergent classic inbred

strains were received at the University of Colorado Anschutz

Medical Campus from either Charles River or Envigo. Like the

HXB/BXH RI panel, male rats (~70–90 days old) were sacrificed

via CO2 exposure and quickly decapitated. Brains were cut in half

sagittally, placed immediately in RNAlater, and stored in a −80°C

freezer.

2.2 DNA sequence variants

A genetic marker set (specifically SNPs) from the STAR

consortium (http://www.snp-star.eu/; STAR Consortium et al.

, 2008) was used for QTL analyses. Probe sequences from the

original arrays were aligned to the RN6 version of the rat

genome using BLAT (Kent 2002) (v2.7.6). SNPs were retained

if their probe sequence aligned both perfectly and uniquely to

the rat genome. Of the 99 strains in the HRDP, 92 strains had

genotype information (43 of the 45 with brain RNA

expression). Strains were matched by substrain (when an

established inbred strain genetically diverges into two

separate populations for reasons such as location of

maintenance and breeding) when possible. SNPs were

further eliminated if more than 10% of the 92 HRDP were

missing a genotype call. To identify potential genotype errors

or SNPs misplaced in the genome, genomic maps were

estimated separately for the HXB/BXH recombinant inbred

strains and for the FXLE/LEXF recombinant inbred strains

using the qtl package in R (Broman et al., 2003; version 1.50).

SNPs with “improbable recombination rates” were identified

by a distance of 20 cM or more between the SNP and both of

its adjacent SNPs in the estimated genomic maps. If a SNP was

the first or last SNP on a chromosome and had 20 cM between

it and the closest SNP on the same chromosome, it was also

eliminated. SNPs identified as having an improbable

recombination rate in either RI population were eliminated.

2.3 Brain RNA expression levels

Total RNA was isolated from whole brain tissue from three

biological replicates per strain for 45 strains of the HRDP using

QIAzol (Qiagen, Valencia, CA, United States). The brain was

split sagitally and half of the brain was used for RNA sequencing.

The RNAeasy Plus Universal Midi Kit (Qiagen) was used to

separate long (>200 nucleotides) and short (<200 nucleotides)

fractions. The long RNA fraction was purified using the RNeasy

Mini Kit (Qiagen). Sequencing libraries for the long RNA

fraction were constructed using the Illumina TruSeq Stranded

Total RNA Sample Preparation Kit with Ribo-Zero ribosomal

RNA reduction chemistry (Illumina) in accordance with the

manufacturer’s instructions with the exception that for later

batches multiple Ribo-Zero washes were used to reduce the

amount of rRNA sequenced. Samples were sequenced in eight

batches on an Illumina HiSeq2500 or HiSeq4000 (Illumina, San

Diego, CA, United States) in High Output mode to generate 2 ×

100 or 2 × 150 paired end reads.

Prior to alignment, reads were demultiplexed and read

fragments were trimmed for adaptors and for quality using

Cutadapt (Kechin et al., 2017) (version 1.9.1). Reads were

eliminated if the trimmed length of either read fragment was

less than 20 nucleotides. Reads aligned to ribosomal RNA from

the RepeatMasker database (Smit, Hubley, and Green 1996)

(accessed through the UCSC Genome Browser; https://

genome.ucsc.edu/) were also eliminated. This alignment was

done using Bowtie 2 (v.2.3.4.3) (Langmead and Salzberg

2012). The remaining reads were aligned to the RN6 version

of their respective strain-specific genomes containing only SNPs

derived from our DNA sequencing (Saba et al., 2015) using

HISAT2 (Kim, Langmead, and Salzberg 2015) (v.2.1.0) with the

default settings and samtools (v1.3) mpileup variant calls. A

genome- and transcriptome-guided reconstruction was executed

for each strain separately using the StringTie (Pertea et al., 2015)

algorithm and software (version 1.3.5). The Ensembl Rat

Transcriptome (version 96) was used to guide the

reconstruction process. The strain-specific reconstructed

transcriptomes were merged using the StringTie merge

function. The RNA-Seq by Expectation Maximization (RSEM)

algorithm (Li and Dewey 2011) (v1.2.31) was used to estimate the

read coverage of each isoform and each gene within the

reconstructed transcriptome. Within the reconstructed

transcriptome, high quality isoforms were identified using two

criteria: 1) detection above background (i.e., an estimated read

count of at least 1 in at least 2/3 of the samples) and 2) an effective

length greater than or equal to 200 nucleotides. Isoforms that did

not meet these criteria were eliminated and the entire

transcriptome was re-quantitated for each sample to allow for
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the redistribution of reads that aligned tomultiple isoforms in the

context of the reduced transcriptome.

After the second quantitation, the final count matrix used for

eQTL analyses was generated by: 1) eliminating the few isoforms

that were not detected above background, as defined above, after

re-quantitation, 2) eliminating individual samples with low

sequencing efficiency (i.e., <10 million estimated read counts

from RSEM), 3) eliminating individual samples when a few

transcripts dominate the read count (i.e., one fourth or more

of a sample’s isoforms had an estimated read count of zero), and

4) eliminating extreme outliers. Extreme outliers were

systematically identified by examining all pairwise correlations

among a sample and all other samples using read counts that had

been transformed using a regularized log(rlog) (Love, Huber, and

Anders 2014). If more than 50 of the correlation coefficients

estimated for a single sample were less than 0.90, that sample was

removed.

The final count matrix was adjusted for batch effects and

other technical effects using the first factor from an RUV

(Removing Unwanted Variance) (Risso et al., 2014) analysis

based empirical negative control isoforms. Negative control

isoforms were identified in a differential expression analysis

using DESeq2 (Love, Huber, and Anders 2014) to test for

association between isoform expression and strain. Negative

control isoforms were within the least significant quartile of

the data and also had an average counts per million value greater

than 0. The “adjusted” read counts were transformed using the

regularized log function (Love, Huber, and Anders 2014). This

final transformed data was used in all subsequent statistical

analyses.

2.4 Quantitative trait locus analyses

This paper compares four methods for the analysis of QTLs.

These models are as follows: 1) a linear regression model, 2) a

linear mixed model, 3) a linear mixed model with leave one

chromosome out kinship matrix calculation, and 4) a linear

mixed model stratified by subpopulation followed by meta-

analysis.

Linear regression, where each SNP is pairwise associated with

the expression levels of each isoform, is often used for eQTL

analyses (Michaelson, Loguercio, and Beyer 2009) (Veyrieras

et al., 2008) when samples are equally related to one another

(i.e., are independent and identically distributed). This model

entails ordinary least squares regression with a single SNP as the

independent variable and a single RNA expression phenotype as

the dependent variable. The ordinary least squares model makes

several strong assumptions about the structure of the residual

error, some of whichmay be violated in our context. For example,

it may be that the relatedness between strains in the HRDP data

violates the sphericity assumption of the model, which assumes

that the error terms are uncorrelated with one another. If this

assumption is violated, the linear regression model may

experience type I error inflation (Kang et al., 2008) (Cervino

et al., 2007). Linear regression analyses were conducted in R

version 3.6.1 using the R package “qtl” version 1.46-2 (Broman

et al., 2003).

Linear mixed models are a popular tool for conducting eQTL

analyses in the presence of confounding by shared ancestry

(Zhou and Stephens 2012) (Kang et al., 2008). The linear

mixed model allows for the presence of correlation between

the RNA expression phenotypes of related strains by

introducing a random effect into the model. The distribution

of this random effect is assumed to be normal, with error variance

proportional to the kinship matrix. The kinship matrix, which

can be estimated from genetic data, approximates the degree of

genetic relatedness between strains in the study. Our

implementation of the linear mixed model is via Genome-

wide Efficient Mixed Model Association (GEMMA) (Zhou

and Stephens 2012). All GEMMA models were fit using

GEMMA version 0.98.1 for Linux.

An adjustment to the linear mixed model as described above

is the linear mixed model with leave-one-chromosome-out

(LOCO) kinship matrix calculation, henceforth GEMMA

LOCO. This approach has some theoretical benefits as

compared to the standard GEMMA approach (Yang et al.,

2014). An assumption of the linear mixed model is that fixed

effects, which in our context is the SNP effect of interest, are

uncorrelated with the random effect. By excluding SNPs that are

on the same chromosome as the fixed effect SNP from the

calculation of the kinship matrix, we ensure that there is no

correlation between the fixed and random effects in the model.

This approach increases the likelihood that the assumptions of

the linear mixed model are met.

Given that the HRDP sample in our study is a heterogeneous

sample of two distinct subpopulations, it may be appropriate to

conduct a meta-analysis of the two subpopulations. This would

entail estimating linear mixed models for the two subpopulations

separately and combining results (i.e., p-values) through a meta-

analysis approach. For this strategy, we estimate separate

GEMMA models for the recombinant inbred population and

the classic inbred population and combine the results using

Stouffer’s method (Stouffer et al., 1949). The progenitors of

the HXB/BXH RI panel were included with the classic inbred

population rather than the RI population.

All p-values from linear mixed models were calculated via

likelihood ratio statistics.

The kinship matrix was estimated using all 18,342 SNPs in

the HRDP data. Kinship coefficients are equal to the proportion

of shared alleles. Because the set of 18,342 SNPs contains some

SNPs with missing observations, the kinship coefficient between

two strains is equal to the proportion of shared alleles among all

SNPs with non-missing entries for both strains. SNPs were only

included as fixed effects in one of the above four models if they

passed quality control, which required SNPs to have minor allele
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frequency >0.1% and <5% missingness among the strains

included in the eQTL analysis. If a meta-analysis was

performed on subpopulations, only SNPs that passed quality

control in both subpopulations were included in the analysis.

The four methods were characterized by their type I error

rate (i.e., false positives) and by the number of significant eQTL

identified. We cannot directly characterize the type I error rate in

the real data application as in this case the true causal SNPs are

unknowable. Thus, we instead use the genomic inflation factor to

assess the type I error rate. The genomic inflation factor is defined

as the ratio of the median observed χ2statistic across all SNPs in a

GWAS to the median of the χ21distribution. When interpreting

the genomic inflation factor, we assume that only a few SNPs

make a substantial contribution to difference in the RNA

expression levels of a transcript. We compare the number of

cis-SNPs identified as significant by the four methods and use

these results in conjunction with the results of the genomic

inflation factor analysis to evaluate the performance of the

four approaches.

2.5 Heritability and modality

The coefficient of determination (R2) from a one-way

ANOVA with strain as the predictor and transformed isoform

expression as the outcome was used to estimate broad-sense

heritability for each isoform. To derive a null distribution of the

broad-sense heritability, strain labels were permuted and a

distribution of resulting heritabilities were compared to

observed distribution. In addition to a broad-sense heritability

that does not include information about population structure,

SNP-based heritability was estimated to be the proportion of

variance explained (PVE) estimated via GEMMA (Zhu and Zhou

2020).

To further understand the genetic architecture of RNA

expression traits in the HRDP data, we analyzed the

distribution of the RNA expression phenotypes. Motivating

this analysis is the idea that highly heritable RNA expression

phenotypes may be driven primarily by one or a few strong SNP

effects, and these strong SNP effects may induce bi- or multi-

modality in the distribution of the RNA expression phenotype,

i.e., it may resemble a mixture of two or more normal

distributions. Alternatively, RNA expression phenotypes may

have many small contributing SNP effects from across the

genome, or they may be primarily driven by environmental

effects or random variance. In either of these cases, we would

expect the distribution of the phenotype to be unimodal.

Modality was assessed by fitting univariate normal mixtures

to the RNA expression estimates from 43 strains for a single

isoform using the ‘mclust’R package (Scrucca et al., 2016) version

5.4.7. Three separate models were fit to each isoform that assume

that the expression levels are generated from a normal

distribution, a mixture of two normal distributions, or a

mixture of three normal distributions (i.e., one, two, or three

clusters) assuming equal within-cluster variances. The optimal

number of clusters (also referred to as “modality”) from among

one, two and three was selected by choosing the model with the

minimum Bayesian information criterion statistic. The

relationship between modality and SNP-based heritability was

assessed graphically and via ANOVA.

2.6 Simulation study

In conjunction with real data analysis, we conduct a

simulation study to assess the type I error and the power of

our eQTL analysis approaches. An outline of the simulation

setup is detailed here; full details are in Supplementary Material

S1. Simulated data was generated using R version 3.6.3. Broadly,

simulations were conducted for distinct populations: those

43 HRDP strains for which we currently have RNA

expression phenotypes and genotype information and which

comprised the real data analysis, and the full set of 92 HRDP

strains for which we have genotype data. These will be referred to

as the “43 strain simulations” and the “subpopulation

simulations”. For the 43 strain simulations, we compare the

performance of standard GEMMA, GEMMA LOCO, and the

subpopulation meta-analysis. For the subpopulation simulations,

we only consider GEMMA LOCO.

The simulation was designed such that the simulated data

mimics the real data as closely as possible. To this end, we

conduct the simulation as follows. We used real genotype data

from the HRDP and simulated continuous RNA expression

phenotype data. The phenotype data is generated as a linear

combination of SNP effects plus a normally distributed random

error term. SNP effects are simulated from a point-normal

distribution. The heritability of each simulated RNA

expression phenotype is defined as the heritability of the RNA

expression phenotype in the real data, where the heritability of

the RNA expression phenotype in real data is estimated by the

GEMMA PVE. Our simulation structure reproduces the desired

heritability accurately and without bias, as shown in

Supplementary Figures S1, S3, S5. The SNP effects and

random error are simulated under three distinct simulation

settings, described in detail in Supplementary Materials S1.1,

S1.2, S1.3, and described briefly below.

The modality of the RNA expression phenotype in the real

data informs the simulation as well. RNA expression phenotypes

estimated to be unimodal in real data were simulated to have a

unimodal distribution in the following way. SNP effects from

across the genome were simulated from a point-normal

distribution. This simulation structure does not prescribe a

larger effect size for cis-SNPs than trans-SNPs, thus making it

improbable that a single simulated SNP effect would be large

enough to induce bimodality. This simulation setup is referred to

as “no cis effect”. All SNPs are causal with 10% probability.
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Further details on the simulation setup are located in

Supplementary Material S1.1. Note that, throughout the paper,

we define “cis-SNPs” as those SNPs within 1 Mb of the coding

region of the gene. Alternatively, RNA expression phenotypes

that were estimated to be bimodal in the real data were simulated

to be bi (or multi) modal. This was done by simulating cis-SNP

effects from a distribution with larger variance than SNP trans

effects; that is, cis-SNPs and trans-SNPs were simulated from

separate point-normal distributions with different parameters.

Additionally, the proportion of heritability attributable to cis-

SNPs (defined as SNPs within 1 Mb of the coding region) for a

simulated bimodal RNA expression phenotype was fixed to be

between 0.7 and 0.9 of the total SNP-based heritability. This

simulation structure was likely to generate one (or few) SNPs

with large effect size, which are more likely to induce bimodality

in the eQTL phenotype. Simulations were conducted with exactly

one nonzero SNP effect per cis region (“one cis effect”) and a

random number of nonzero SNP effects per cis region, with a

mean of two nonzero effects (“multiple cis effects”). In both

simulations, 10% of trans-SNPs are causal. However, given the

large proportion of heritability attributed to cis effects in

simulation as described above, trans-SNPs have much smaller

effects than cis-SNPs. Simulation details regarding “one cis

effect” are located in Supplementary Material S1.2, whereas

simulation details regarding the “multiple cis effects”

simulation are located in Supplementary Material S1.3.

In all simulation settings, the effect of trans SNPs on the

simulated expression is considered so small as to be undetectable.

The existence of small SNP effects throughout the genome

coheres to Fisher’s polygenic model and is central to the

application of the linear mixed model for SNP-trait

association testing in related samples (Kang et al., 2010). In

practice, mapping trans-eQTLs is quite difficult, and as such

many systems genetics applications focus exclusively on cis

determinants of gene expression. Thus, in our analysis of the

simulated data, we test only cis-eQTLs, and do not attempt to

identify trans-eQTLs. For this reason, we define power and type I

error with respect to only cis-eQTLs, and do not consider trans-

eQTLs in these definitions. Further details are described in the

Results section (3.6).

3 Results

3.1 Genetic marker set

Of the original 20,283 array probes from STAR Consortium

SNP dataset (STAR Consortium et al., 2008), 19,391 had a probe

sequence that perfectly and uniquely aligned to the RN6 genome

with no mismatches. There were 18,342 SNPs in this marker set

after eliminating SNPs with more than 10% of genotypes missing

among the 92 strains and SNPs with improbable recombination

rates. This set of SNPs was used to estimate the kinship matrices

for the standard GEMMA and GEMMA LOCO analyses. Only

SNPs with minor allele frequency >0.1 and missingness rate <5%
were included as fixed effects in the QTL mapping methods. For

the standard GEMMA, GEMMA LOCO, and linear regression

approaches, 13,455 SNPs were retained. For the subpopulation

meta-analysis approach, 5,797 SNPs were used. There are fewer

SNPs in the subpopulation meta-analysis because SNPs were

required to pass the MAF and missingness thresholds in both

subpopulations, which was a more stringent criterion.

3.2 RNA expression values

The original reconstruction of brain transcripts produced

568,269 putative transcripts (i.e., isoforms) from 175 RNA-Seq

libraries. Sixteen libraries were eliminated due to poor quality.

After limiting to only transcripts that were greater than

200 nucleotides in length and transcripts that had an

estimated read count of at least 1 in at least 2/3 of the

samples, 170,595 transcripts remained and were requantitated

using RSEM. After this requantitation, 99,376 genes (all reads

aligned to isoforms of this gene are summed) met the criteria of

expression above background (estimated read count of at least

1 in at least 2/3 of the samples) and 135 samples met our quality

control standards both prior to and after normalization,

transformation, and batch correction.

3.3 Kinship

Observed kinship values ranged from 0.33 to 0.99 (Figure 1).

Of the lowest five kinship values, BN-Lx/Cub is one of the strains

involved, which resembles the results of the STAR Consortium

(STAR Consortium et al., 2008) and the results from full genome

sequences of several of the inbred strains (Hermsen et al., 2015).

Some very high kinship values were observed, with the highest

being 0.9997 between substrains LEW/Crl and LEW/SsNHsd.

The pair of strains SHR/OlaIpcv and SHRSP/Crl, which is known

to be highly related based on breeding history, has a kinship value

of 0.92 (Supplementary Figure S1).

3.4 Heritability and modality

We compare the distribution of the observed broad-sense

heritability (i.e., 1-way ANOVA R2) to the distribution of the

permuted R2 to investigate the genetic effects on the

transcriptome. The center of the distribution of the broad-

sense heritabilities from the brain transcriptome is

significantly higher than the heritabilities based on permuted

values (Figure 2). The true median broad sense heritability is

0.42, while the median of the heritabilities based on permuted

values is 0.31. Likewise, many of the heritabilities estimated on
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the true values are higher than 0.50 (23.6%), whereas very few are

greater than 0.50 when the data have been permuted (0.1%).

SNP-based heritability for RNA expression phenotypes from

brain tissue was assessed via GEMMA (Figure 3). The reader will

note a discrepancy between the heritability estimate and

displayed in Figure 2 and the heritability estimate displayed in

Figure 3, which is due to the following. The GEMMA heritability

estimation described in Figure 3 represents the narrow-sense

heritability, which is defined as the fraction of phenotypic

variance explained by additive SNP effects (Rawlik et al.,

2020). Note that narrow-sense heritability estimation is

naturally specific to the set of genotyped SNPs. The ANOVA

heritability estimation described in Figure 2 is an estimation of

the broad-sense heritability, encompasses additive SNP-based

heritability and additionally includes the effect of dominance,

epistasis, and other heritable trait-determining factors. The

majority of transcripts have an estimated narrow-sense

heritability for this chip that is relatively small (54.0% with a

SNP-based heritability of less than 25%), but a large number of

transcripts have a substantial SNP-based heritability.

FIGURE 1
Kinship coefficients for each pairwise genetic relationship between strains in the Hybrid Rat Diversity Panel (HRDP). The upper right block
corresponds to the HXB/BXH recombinant inbred panel, while the lower left block corresponds to the FXLE/LEXF recombinant inbred panel and the
middle to the classic inbred strains. Brighter colors represent strains that are more closely related as evaluated through SNP information from the
STAR Consortium.
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Most RNA expression phenotypes (81,992; 82.5%) have a

unimodal distribution consistent withmany SNPs or non-genetic

factors individually contributing a small portion of the variation

in expression. A much smaller proportion (15,776; 15.9%) have a

bimodal distribution indicative of a single genetic variant with a

large effect. A still smaller proportion (1,608; 1.6%) have a

trimodal distribution. Modality of the RNA expression levels

of a transcript was associated with the SNP-based heritability

(omnibus p-value < 1 × 10−15, all pairwise comparisons

significant). Transcripts with evidence for a bimodal or

trimodal distribution of expression values tended to have

higher SNP-based heritabilities (Figure 4).

3.5 Quantitative trait locus results

For each of the four analysis approaches, we calculated

genomic inflation factors (GIFs) for each of the 99,376 brain

RNA expression phenotypes (Figure 5A). Thus, each method

corresponds to a set of 99,376 genomic inflation factors. The

linear model generated genomic inflation factors well above the

expected value of 1 for all RNA expression phenotypes (Devlin

FIGURE 2
Distribution of broad sense heritabilities for rat brain transcripts compared to permuted expression. The R2 coefficients estimated via 1-way
ANOVA for 99,376 brain transcripts using the true strain labels is compared to permuted expression values. The blue bars represent the distribution of
R2coefficients for the data when permuted to assume no genetic influence, and the distribution of the true brain transcriptome in red represents the
broad-sense heritability of RNA expression levels for brain transcripts.

FIGURE 3
Distribution of SNP-based heritability for 99,376 rat brain RNA
transcripts. SNP-based heritability was estimated via the
proportion of variance explained from the standard GEMMA
modeling using strain means.
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and Roeder 1999); the minimum observed GIF was 1.94. This

indicates that every single eQTL phenotype has substantially

inflated type I error under the linear regression model. This

inflation is likely due to the correlation between RNA expression

phenotypes induced by the relatedness among the HRDP strains.

The three other methods had similar GIF values (Figure 5B). The

subpopulation meta-analysis approach generated a median GIF

closest to one (1.09 vs. 1.13 and 1.22 in GEMMA and GEMMA

LOCO respectively), but this approach had a bigger spread of

values compared to the other two methods (Supplementary

Table S1).

The number of significant cis-SNPs identified by each of the

four approaches was compared. The linear regression model has

been invalidated by its inability to control type I error, but we

include its results here for completeness. A SNP was determined

to be significant if it had a p-value less than .05
/qcis

, where qcis is

the number of SNPs in the cis-region of the gene (i.e., within

1 Mb of the transcription start or stop site). In this way, we only

accounted for the multiplicity among cis-SNPs when

determining the multiple testing correction. RNA expression

phenotypes without any corresponding cis-SNPs were

excluded from the analysis. The number of transcripts with at

least 1 significant cis-SNP is similar for the standard GEMMA

and GEMMA LOCO approaches, whereas the subpopulation

meta-analysis approach identified fewer transcripts with a

significant cis-eQTL (Table 1). The dramatic reduction in the

number of transcripts with a significant eQTL in the

subpopulation meta-analysis approach was mainly due to the

reduction in the number of transcripts with a cis-SNP regardless

of significance. For the subpopulation meta-analysis approach, a

SNP had to have a minor allele frequency greater than 10% in

both the recombinant inbred panel and in the panel of classic

inbred strains. However, when the proportion of transcripts with

a cis-eQTL was calculated based on the number of transcripts

with a cis-SNP, the subpopulation meta-analysis still produced a

small proportion of cis-eQTL (16.9%) compared to standard

GEMMA (18.0%) and GEMMA LOCO (18.9%).

The above results, coupled with the reasonable type I error

control of the standard GEMMA and GEMMA LOCO methods,

is evidence that the subpopulation meta-analysis approach may

be underpowered. However, given that we do not know the true

causal structure in application to real data, this apparent

difference in power must be confirmed in simulation.

Supplementary Figures S2–S4 depict the relationship between

genes identified by the three approaches. The standard GEMMA

and GEMMA LOCO generate fairly similar results, and both

FIGURE 4
Distribution of SNP-based heritability for 99,376 rat brain RNA transcripts stratified by estimatedmodality. The SNP-based heritability estimated
from strain means and the standard GEMMAmodel are stratified by the number of modes identified by fitting univariate normal mixtures to the RNA
expression estimates. The embedded boxplots display the median and interquartile range.
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agree to a moderate degree with the subpopulation meta-analysis

approach.

3.6 Simulation results

The simulation study facilitates the empirical determination

of the type I error rate and the power of the methodological

approaches in eQTL analysis of the HRDP. Because the linear

model was ruled out by the real data analysis, our simulation

study only compared the performance of standard GEMMA,

GEMMA LOCO and the subpopulation meta-analysis. We

assessed the ability of these methods to detect cis-eQTLs, as

our approaches do not have power to detect trans-eQTLs in this

simulation. Recall that the two simulation settings with cis effects

assume that some large proportion of the variance is attributable

to cis effects; thus, power differs for cis and trans effects in this

simulation.We considered results at the transcript level, as we are

not investigating fine mapping approaches that account for the

effect of linkage disequilibrium. That is, if at least 1 significant

cis-SNP is identified in a gene that has at least 1 truly nonzero cis

effect, we count that as a true positive. That is the case even if the

associated SNP is not identical to the truly nonzero SNP.

Defining other events (false positive, false negative, true

negative) follows from this logic. For example, a false positive

occurs when we identify one or more associated cis-SNPs with

FIGURE 5
Genomic inflation factors for brain RNA transcripts calculated from p-values derived from different methods of QTLmapping. (A) Fourmapping
methods including linear model, GEMMA, GEMMA LOCO, and subpopulation meta-analysis. (B) Three mapping methods with similar ranges
(GEMMA LOCO, and subpopulation meta-analysis). The embedded boxplots display the median and the interquartile range.

TABLE 1 The number of genes with at least one significant cis-SNP for each of the fourmethods. The percentages of genes with at least 1 cis-SNP that
have a significant cis-eQTL (p-value < 0.05 with a cis-only multiplicity correction) are displayed in column 5. The number of transcripts with at
least one cis-SNP (column 4) varies due to more SNPs failing to pass the minor allele frequency cutoff in the subpopulation meta-analysis approach.

QTL mapping
method

Transcripts with at
least 1 significant cis-eQTL
(p-value < 0.05 with a
cis-only multiplicity
correction)

Transcripts with at
least 1 significant cis-
eQTL
(unadjusted threshold of
10−5)

Number of
transcripts
with at least
1 cis-SNP

Percent of transcripts
with at least
1 significant cis-eQTL
out
of those transcripts
with at least
on cis-SNP (%)

Standard GEMMA 14,618 3,627 81,184 18.0

GEMMA LOCO 15,186 4,035 81,184 18.7

Subpopulation Meta 10,886 2,506 64,542 16.9

Linear Model 24,749 6,965 81,184 30.5
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our approach, but there is no truly associated cis-SNP. As

previously, a SNP is identified as significant if its association

test p-value is less than .05
/qcis

.

Power and type I error (i.e., false positive rate) for the three

analysis methods are assessed in the 43-strain setting. These

results indicate that standard GEMMA and GEMMA LOCO are

appropriate methods for the analysis of the HRDP data, while the

subpopulation meta-analysis approach is substantially

underpowered and thus suboptimal. First, we detail type I

error and power results from the 43-strain simulation, then

discuss the power of GEMMA LOCO applied to the

subpopulation simulation since it was the method with the

highest power in general. In eQTL studies, statistical power

varies between transcript because of cis-heritability therefore,

power is estimated separately for different ranges of cis-

heritability.

The no cis effect simulation, in which cis and trans SNPs are

simulated from the same distribution, is used to calculate the

empirical type I error rate. Note that type I error is only assessed

for the no cis effect simulation in the case where no cis-SNP has a

simulated nonzero effect size. Due to the potentially high degree

of correlation among cis-SNPs and the fact that we do not

employ a fine mapping approach, it is not feasible to assess

type I error except for the “global null” case where all cis-SNPs

are non-causal. In the 43-strain setting, each of the three methods

has a type I error rate less than 0.015 (Supplementary Table S2).

This is evidence that the type I error rate is well controlled by all

of the methods; indeed, this indicates that the methods are

somewhat conservative. This may be because we account for

multiplicity in the cis region assuming that association tests for

SNPs are independent, when in truth they are correlated due to

linkage disequilibrium.

The one and multiple cis effect simulations in the 43-

strain setting are used to assess the power of the analysis

methods. The 43-strain HRDP has greater than 80% power to

detect cis effects via the standard GEMMA and GEMMA

LOCO approaches when the cis heritability exceeds 0.4, and

reasonable power to detect cis effects when the cis

heritability is between 0.1 and 0.4 (Figure 6). In the one

cis-effect simulation, 73.4% of genes have cis-heritability

larger than 0.1 and 43.5% of genes have cis-heritability

larger than 0.4. In the multiple cis-effect simulation,

73.7% of genes have cis-heritability larger than 0.1 and

43.6% of genes have cis-heritability larger than 0.4. The

standard GEMMA and GEMMA LOCO approaches have

similar power, although GEMMA LOCO has slightly

better power. The subpopulation meta-analysis approach

has substantially less power to detect cis effects (Table 2).

This may be because the quality control process for the

subpopulation meta-analysis is more stringent, thus

reducing the number of SNPs analyzed. This result

FIGURE 6
Predicted power in cis-eQTL studies based on cis-heritability of the transcript and QTL mapping method. The number of genes in each
heritability strata is represented by the size of the bubble. Standard GEMMA is in green, GEMMA LOCO is in red, and subpopulation meta is in blue.
Two simulation approaches were used that were based on either (A) a single cis-SNP effect or (B) multiple cis-SNP effects.

TABLE 2 Power for standard GEMMA, GEMMA LOCO, and
subpopulation meta-analysis applied to the two simulation
settings with cis effects in the 43 strain simulations. Power is the
proportion of genes with at least one nonzero cis-SNP effect that had
at least one cis-SNP with a significant association identified by the
corresponding model.

Method Power:
One cis effect

Power:
Multiple cis effects

Standard GEMMA 0.67 0.63

GEMMA LOCO 0.68 0.64

Subpop Meta 0.50 0.47
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indicates that the subpopulation meta-analysis approach is

likely not optimal for analysis of the HRDP data.

The 43-strain setting results indicate that standard GEMMA,

GEMMA LOCO, and subpopulation meta-analysis are all

appropriate for the analysis of the HRDP data, although the

subpopulation meta-analysis is underpowered in comparison.

Next, we applied GEMMA LOCO to four populations: the FXLE/

LEXF recombinant inbred population, the HXB/BXH

recombinant inbred population, the classic inbred population,

and 92 strains of the HRDP. These results may inform study

design decisions and how to select subpopulations from the

HRDP for an eQTL study.

GEMMA LOCO has adequate type I error control when

applied to all four populations, as shown in Supplementary

Table S3. Figure 7 plots the empirical power of GEMMA

LOCO applied to the four populations against the cis-

heritability of the gene for the two simulation settings with

cis-SNP effects. These results indicate that we have greater

than 80% power to detect a cis-SNP effect using the 92 strains

of the HRDP when the cis-heritability exceeds 0.25. GEMMA

LOCO has similar power when applied to the classic inbred

and HXB/BXH populations, although there is no cutoff point

for cis-heritability after which we are guaranteed to exceed

80% power in both simulations. The power is notably worse

for the FXLE/LEXF population despite its largest sample size

among the three subpopulations (Table 3). As demonstrated

by the kinship matrix in Figure 1, the FXLE/LEXF

recombinant inbred panel is comprised of highly related

strains, which reduces the effective sample size.

4 Discussion

This paper discusses several feasible methods for eQTL

analyses in the Hybrid Rat Diversity Panel. In particular, we

rigorously investigate the performance of four approaches to

QTL analysis: linear regression, linear mixed model, linear mixed

model with leave one chromosome out kinship matrix

calculation, and linear mixed model by subpopulation

followed by meta-analysis. We apply these methods to brain

RNA expression levels in 99,376 transcripts in the HRDP and

characterize the performance of these methods via genomic

inflation and the number of associated cis-SNPs. We further

explore the type I error and power of these methods via

simulation. Finally, we characterize the power of QTL

analyses in subpopulations of the HRDP data, and empirically

relate the power to the phenotypic heritability. We conduct the

power analyses by subpopulation and for the entire set of

FIGURE 7
Predicted power in cis-eQTL studies based on cis-heritability of the transcript and rat population used for QTL mapping. The number of genes
in each heritability strata is represented by the size of the bubble. The HXB/BXH RI population is in purple, the FXLE/LEXF RI population is in green, the
classic inbred population is in red, and the full HRDP is in blue. Two simulation approaches were used that were based on either (A) a single cis-SNP
effect or (B) multiple cis-SNP effects.

TABLE 3 Power for GEMMA LOCO applied to the two simulation
settings with cis effects in the subpopulation simulations. Power is
the proportion of genes with at least one nonzero cis-SNP effect that
had at least one cis-SNP with a significant association identified via
GEMMA LOCO analysis of the corresponding subpopulation.

Subpopulation Power:
One cis effect

Power:
Multiple cis effects

FXLE/LEXF (33 strains) 0.25 0.30

HXB/BXH (30 strains) 0.53 0.52

Classic Inbred (29 strains) 0.51 0.52

HRDP (92 strains) 0.74 0.74
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92 strains to facilitate study design decisions regarding the

HRDP data.

From this analysis, we conclude that the standard GEMMA and

GEMMALOCOapproaches both control type I error sufficiently and

maximize power. Therefore, both are feasible choices for eQTL

analyses of the HRDP data. GEMMA LOCO identifies the most

significant cis-SNPs in the real data application andhas the best power

in simulation while maintaining the nominal level of type I error

control in simulation. The genomic inflation incurred by the

GEMMA LOCO analysis of the real data is some evidence that it

may have weaker type I error control than the other approaches. For

applications where controlling type I error is of great emphasis, we

believe that it is also appropriate to use the standard GEMMA

approach, as this approach is only marginally less powerful than

GEMMA LOCO.

Figures 6, 7 display the power of the analysis methods applied to

different subpopulations within the HRDP. These plots may be useful

for future study design, in particular for determining sample size and

deciding which subpopulation of the HRDP data to use. For

researchers interested in using only one of the three

subpopulations within the HRDP, it appears that the FXLE/LEXF

recombinant inbred subpopulationwill yield the least power, while the

HXB/BXH recombinant inbred panel and the set of classic inbred

strains have similar power. Applying GEMMA LOCO to a set of

92HRDP strains is quite powerful; per our simulation, we have >80%
power to detect an association when the cis-heritability of a candidate

gene exceeds 0.15.

The simulations were conducted under the assumption that

data can be easily pooled across the three subpanels, i.e., the HXB/

BXH RI subpanel, the FXLE/LEXF RI subpanel, and the divergent

classic inbred strain subpanel. In certain situations, this may not be

possible, for a variety of reasons (such as technical effects, data

heterogeneity, etc.,). We would caution that investigators should

carefully assess whether data can be pooled prior to and during

analysis. In occasions where data cannot be pooled, meta-analysis

may be the desired approach, given its robust type I error control

and modest decrease in power.

Powerful and parsimonious eQTLmapping is relevant to systems

genetics approaches towards studying complex traits. We will

enumerate a few such applications here. The transcriptome-wide

association study framework (Gusev et al., 2016) uses genetic variation

to make causal-type claims about the effect of transcript variation on

complex traits. The framework relies substantially on powerful

predictive modeling of the relationship between genetic variation

and transcript variation, and power improvements in this stage benefit

the power and interpretability of the framework as a whole. The so-

called “genetical genomics/phenomics” approach searches for overlap

between eQTL and phenotypic QTL to improve the power and

interpretability of association analyses, e.g., in application to the

genetic etiology of alcohol metabolism (Lusk et al., 2018).

Additionally, powerful eQTL modeling improves the ability to

identify relevant genomic traits in Bayesian directed network

modeling, e.g., in application to the identification of SNP-trait

mediating miRNA networks in alcohol use endophenotypes

(Rudra et al., 2018).

These results establish a baseline of modeling recommendations

and study design considerations for eQTL analyses of the HRDP.

Given the central role transcript variation plays in the regulation of

complex disease and the substantial effect of genetic variation on

transcript variation, characterizing the genetic control of transcript

variation is of great interest. Transcriptome analysis in human subjects

with complex disease is often confounded by substantial

environmental variation, making model organism analysis an

attractive alternative for further parsing genetic control of the

transcriptome. We hope this study will facilitate rigorous statistical

analyses of well-powered studies involving the HRDP, thus furthering

systems genetics applications towards the understanding of complex

disease.
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