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Abstract: A systematic study has been conducted of all available reports in PubMed and OMIM (Online Mendelian In-

heritance in Man) to examine the genetic and molecular basis of quantitative genetic loci (QTL) of diabetes with the main 

focus on genes and polymorphisms. The major question is, What can the QTL tell us? Specifically, we want to know 

whether those genome regions differ from other regions in terms of genes relevant to diabetes. Which genes are within 

those QTL regions, and, among them, which genes have already been linked to diabetes? whether more polymorphisms 

have been associated with diabetes in the QTL regions than in the non-QTL regions. 

Our search revealed a total of 9038 genes from 26 type 1 diabetes QTL, which cover 667,096,006 bp of the mouse ge-

nomic sequence. On one hand, a large number of candidate genes are in each of these QTL; on the other hand, we found 

that some obvious candidate genes of QTL have not yet been investigated. Thus, the comprehensive search of candidate 

genes for known QTL may provide unexpected benefit for identifying QTL genes for diabetes.  
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INTRODUCTION 

 Type 1 diabetes (T1D) is an autoimmune disease present-
ing with hypoinsulinemia, hyperglycemia, and ketoacidosis. 
It is also called insulin-dependent diabetes mellitus (IDDM) 
and juvenile-onset diabetes. Treating diabetes and its com-
plications is a major drain on health care resources. Patients 
with T1D make up 5% to 10% of all cases of diabetes. In 
T1D patients, their own immune system damages the pan-
creatic ß cells in the islets of Langerhans, thereby abolishing 
endogenous insulin production. The exact causes of T1D are 
not well understood, although it is clear that genetic suscep-
tibility plays a major role. There are more than 20 IDDM 
quantitative genetic loci (QTL) characterized so far. 

 Animal models have been widely used to study the genet-
ics of human diseases. One of important uses of animal 
models is the mapping of quantitative trait loci. The term 
“QTL” is used for multiple genetic loci that control the same 
complex trait. A large number of QTL for type 1 diabetes 
have been identified in the NOD mouse model. However, the 
specific genes in those QTL that regulate the disease process 
have largely remained unknown. Because of the completion 
of mouse genome sequences, a relatively accurate list of all 
the genes within a chromosomal region defining a QTL can 
be obtained. In addition, recent rapid progress in gene ex-
pression profiles may provide clues to the relevance of many  
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genes to type 1 diabetes. We decided to pursue potential 
candidate genes for QTL based on current genome resources 
and mapping information.  

 We conducted a whole-genome search by using the En-
sembl database (http://www.ensembl.org/index.html) and 
reports in PubMed. The candidacy of every gene in the re-
gion of each known QTL was evaluated based on published 
literature. The connection between a gene and type 1 diabe-
tes was first established by searching for co-appearance of 
the name of a gene and specific key words in the literature. 
We first conducted a literature search in PubMed http://www. 
ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed for potential 
candidate genes for each known QTL. For every potential 
candidate gene, up to 10 abstracts were read to confirm the 
relationship between this particular gene and T1D. Although 
some genes may play a role in autoimmunity, except for 
those IDDM loci without well characterized candidate genes, 
they were excluded if there was no supportive evidence for 
their role in T1D or ß cell function. 

 We examined 9038 genes from 26 QTL of type 1 diabe-
tes. A total of 138 genes are considered to be candidate 
genes for those QTL. We produced a list of candidate genes 
for each of the known QTL, including several new and inter-
esting genes that deserve further investigation.  

THE INFORMATION OF CURRENT QTL 

Information on QTL for Diabetes 

 A literature search was conducted with key words “dia-
betes” and “QTL” in PubMed for every publication through 
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December 2007. Several QTL have been fine mapped with 
congenic breeding. Theoretically, the smallest genomic size 
should be the best for a candidate search of a QTL. We chose 
to provide candidate genes for every known locus, allowing 
investigators to make their own decision in choosing candi-
date genes for their studies and possibly to discover a closely 
linked gene with subtle interactive effects. Finally, we are 
aware that we may not have located every relevant publica-
tion or QTL by our search method. 

Information on Genes in QTL Regions 

  Genes within a QTL region were obtained from the En-
sembl database. For fine-mapped and well-defined QTL, 
markers that flank the QTL were used for gene searching. 
For other QTL, a molecular marker at the peak region of the 
QTL was used as the middle point of the QTL. A genomic 
region of 10 megabase pairs (Mbp) around the peak marker 
was searched for candidate genes. 

Identification of Candidate Genes 

 For every known gene in a QTL, its potential connection 
with T1D was evaluated by searching information from the 
Online Mendelian Inheritance in Man (OMIM) (http://www. 
ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) and PubMed 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed). 
Search terms were a combination of the gene symbol with 
any of these seven key words: Type 1 diabetes, diabetes mel-
litus 1, beta cell, islets of Langerhans, insulin, autoimmune, 
or autoimmunity. These key words covered the disease, the 
target tissue of the pathogenic process, and the process itself. 
For any potential candidate, at least the abstract of one refer-
ence was read to determine the link between the gene and 
T1D. It is possible that the search terms could turn up other 
diabetes-related genes but not those with independent regula-
tion of T1D. Nevertheless, because direct effects on T1D  
regulation may not yet be recognized for many genes, we 
chose to assemble a comprehensive list of potential candi-
date genes for consideration by interested scientists. 

CANDIDATE GENES FOR EVERY KNOWN QTL OF 

TYPE 1 DIABETES 

Candidate Genes for QTL of T1D on Chromosome 1 

 Chromosome 1 contains two QTL: Idd26 and Idd5. We 
listed four QTL for chromosome 1 in Table 1, however, 
Idd5.1 and Idd5.2 are two different versions of Idd5. Those 
two loci cover a total of 56,624,948 bp. Within those se-
quences there are 499 genes, from which we identified 13 as 
candidate genes using our search method. 

 The locus of Idd26 contains 146 genes, among which 
zeta chain-associated protein kinase, Zap70, was the only 
candidate gene. It has been reported that in NOD mice, T 
cells are hyporesponsive to TCR-mediated stimulation be-
cause the PKC/Ras/MAPK pathway is blocked, which may 
be associated with targeting the Grb2/pp36-38/ZAP70 com-
plex to the plasma membrane and cytoskeleton [1].  

 The other locus, Idd5, contains 353 genes from which 
cytotoxic T lymphocyte-associated 4, ctla4, has been re-
ported in several studies [2-8] as the causal gene for this lo-
cus. In the mouse model of T1D, susceptibility was associ-

ated with a variation in ctla4 gene splicing with reduced pro-
duction of a spliced form lacking the CD80/CD86 ligand-
binding domain [2]. A single nucleotide polymorphism 
(SNP) in ctla4 exon 2 has been suggested as the genetic 
variation causing the biological effects of Idd5.1 [3]. ctla4 
RNA interference (RNAi) mice have a disease focused on 
primarily the pancreas, with rapid progression to diabetes, 
and the phenotype is major histocompatibility complex 
(MHC) dependent [4]. Optimal Ctla expression is controlled 
by a locus (ctex) telomere on chromosome 1 together with 
the Idd3 (interleukin-2) gene upon CD3 activation of T cells 
[5].  

 While Ctla4 appears to be the real causal gene, other 
genes such as CD28, icos, slc11a1, irs1, and casp8 may also 
play roles in this important QTL, depending on different 
populations and genome backgrounds. Other studies reported 
several additional potential candidate genes. Dimorphism in 
intron 3 of CD28 was associated with T1D in early-onset 
patients [6]. Disruption of the CD28-B7 pathway and subse-
quent Treg deletion restored autoimmunity, especially with 
increased incidence of diabetes in NOD-CD40L

-/-
 mice [7]. 

The in vivo costimulation by CD28 for inducing autoimmune
 

disease strictly requires an intact C-terminal proline motif
 

that promotes lymphocyte-specific protein-tyrosine kinase 
(LCK)

 
binding to the CD28 cytosolic tail [8, 9]. But CD28 

was excluded by fine mapping of the locus [3].  

 Another candidate in this region is icos. CD4
+
CD25

+ 

CD69
-
 Treg operate directly in the autoimmune lesion and are 

dependent on inducible T cell costimulator (icos) to keep it 
in a nondestructive state [10]. Higher icos expression corre-
lates with more IL-10 production by NOD-derived T cells, 
and this may be responsible for the less severe experimental 
autoimmune encephalitis (EAE) in NOD mice [11]. Again, 
no association with the microsatellite polymorphisms in the 
icos gene was found [6]. A polymorphism of sclc11a1(solute 
carrier family 11 member 1) influences the susceptibility to 
T1D in Japanese subjects [12] but not in European ancestry 
populations [44]. RNAi of scl11a1 in NOD mice reduced the 
frequency of T1D, mimicking the protective Idd5.2 region 
[13]. The G972R variant of IRS1 (insulin receptor substrate 
1) was found to be associated with T1D, possibly because of 
its interaction with an unidentified locus on chromosome 8 
[14], but this finding is unconfirmed [15]. NOD CD4

+
 T 

cells expressed higher levels of cell surface DAF/CD55 
compared with NOD.Idd3/5 CD4

+
 T cells following activa-

tion with anti-CD3 and -CD28 [16]. Casp8 (caspase 8) is 
essential for ß cell apoptosis in type 1 and type 2 diabetes 
models and in regulating ß cell mass and insulin secretion 
under physiological conditions [17].  

 There are also several genes in this region related to pan-
creas development. Ligands of the ErbB-4 (v-erb-a erythro-
blastic leukemia viral oncogene homolog 4) receptors regu-
late the lineage determination of islet cells during pancreatic 
development along with EGF-R/erbB-1 signal [18]. Hh sig-
naling, including Ihh (Indian hedgehog), is critical to both 
patterning in early pancreas development and in regulating 
insulin production in differentiated  cells [19]. HES6 (hairy 
and enhancer of split 6) can reverse nuclear reprogramming 
of insulin-producing cells following cell fusion [20].  



326    Current Genomics, 2008, Vol. 9, No. 5 Gao et al. 

Candidate Genes for QTL of T1D on Chromosome 2 

 Chromosome 2 contains one QTL locus, Idd13. It covers 
36,000,000 bp in a region between 105 Mbp and 141 Mbp. 
We found five candidates from a total of 437 genes (Table 
1). An important candidate is ß2-microglobulin (b2m). B2m 
is a serum protein found in association with the MHC class I 
heavy chain on the surface of nearly all nucleated cells. 
NOD-b2m null mice do not express cell surface MHC class I 
molecules or produce detectable levels of CD8

+
 T cells and 

are diabetes and insulitis resistant [21]. Idd13 was found to 
work on nonhematopoietically derived cells controlling se-
lection of diabetogenic T cells and/or their target pancreatic 
ß cells, and B2m-induced alterations in H2g7 class I confor-
mation may partially explain these findings

 
[22]. Another 

possible candidate is the synaptosomal-associated protein, 
25-k; (snap-25). It has been reported that increased expres-
sion of snap-25 is associated with nonesterified fatty acid 
(NEFA)-induced impairment of insulin secretion in mouse 
islets [23]. Decreased expression of t-snare, syntaxin 1, and 
snap-25 in pancreatic ß cells is involved in impaired insulin 
secretion from diabetic GK rat islets [24]. But most research 
on snap-25 is related to type 2 diabetes (T2D). T1D and T2D 
likely share a final common pathway for ß cell dysfunction 
that includes secretion of IL-1ß and prostaglandins by im-
mune effector cells, exacerbating existing ß cell dysfunction 
and causing further hyperglycemia [25]. However, whether 
snap-25 should be considered a candidate is still in question, 
as the destruction of ß cells in T1D is very different from 
that in type 2 diabetes; one is caused by autoimmunity, while 
the other is caused by secondary destruction from hypergly-
cemia. The roles in T1D of other candidates such as chgb 
and mrg have not been confirmed. 

Candidate Genes for QTL of T1D on Chromosome 3 

 Three QTL on chromosome 3 cover 103,721,629 bp, 
which contain 1007 genes. Seventeen well-defined candi-
dates were found from those QTL (Table 1). 

 Both Idd10 and Idd17 are located on chromosome 3m 
and most of Idd17 is located within Idd10. Therefore, on the 
genome region of Idd10 was analyzed. From Idd10, seven 
candidates were identified from a total of 618 genes. Toll-
like receptor 2 (Tlr2) is one of the obvious candidates. Dur-
ing the stimulation of antigen-presenting cells and the devel-
opment of autoimmune diabetes, sensing of ß cell death via 
TLR2 can be an initial event [26]. The Tlr2 polymorphisms 
have been demonstrated to be associated with T1D and HLA 
independent [27]. A second candidate, Cd101, but not Fcgr1 
(Fc receptor, IgG, high affinity I), has been reported to be 
responsible for the Idd10 effect [28].  

 Four genes are secondary candidates because there is no 
direct association for these genes with T1D. Endosulfine-  
(Ensa) is a weak candidate for its role in ß cell stimulation. 
Recombinant Ensa inhibits sulfonylurea binding to ß cell 
membranes, reduces cloned adenosine triphosphate postas-
sium channel (KATP) currents, and stimulates insulin secre-
tion from ß cells [29]. Aristaless-like homeobox 3 (Alx3) is a 
candidate for its capability to regulate insulin gene expres-
sion in pancreatic ß cells [30]. Another autoimmunity-related 
gene is Cd2 [31]. However, it is not clear whether it is asso-

ciated with autoimmunity in addition to insulin secretion and 
resistance. 

 The second locus, Idd18, contains 321 genes. Four can-
didate genes were identified for this locus (Table 1). Ptpn22 
(protein tyrosine phosphatase, nonreceptor type 22) may be 
the best described T1D gene. It is known that the 1858C/T 
allele of Ptpn22 is the major risk variant for T1D, but an 
additional, infrequent coding variant at Ptpn22 may also 
contribute [32, 33]. Besides Ptpn22, it has been reported that 
the presence of glutathione s-transferase mu-1 (Gstm1) may 
be a susceptibility factor in T1D for certain age groups [34]. 
Nuclear factor B (NF- B), subunit 1, which has been de-
tected in numerous cell types, is another candidate gene. A 
case control study demonstrated significant association to 
T1D of certain NF- B alleles in a United Kingdom popula-
tion [35]. The frequency of the A7 allele of the NF- B1 gene 
is significantly increased in T1D adults, and an association 
of the AA genotype of NF- BIA gene has been found for 
latent autoimmune diabetes in adults (LADA) [36]. How-
ever, no association for any allele of the NF- B1 microsatel-
lite marker could be demonstrated in Danish T1D families 
[37].  

 Several other genes are not listed as candidate genes in 
Table 1 because of their negative evidence in T1D; these 
genes include pancreatic amylase (Amy2), vav3 oncogene 
(Vav3), and macrophage colony-stimulating factor 1 (Csf1). 
There was a distortion in the distributions of Amy2, but the 
result was not significant when corrected by performing mul-
tiple tests [38]. There is no evidence for Vav3 polymor-
phisms associated with T1D [39]. Csf1 was also excluded 
from Idd18 by genetic interaction mapping [33].  

 The third locus, Idd3, contains 198 genes in its genome 
region. Six genes are considered to be candidates (Table 1). 
Interleukin-2 and -21 are controversial candidate genes. Al-
though NOD alleles at MHC (Idd1) and Il2 (Idd3) are not 
sufficient for T1D in the NOD mouse [40], the NOD allele 
of Il2

 
may functionally differ from the B6 allele in its ability 

to
 
direct the transcription of activation-induced CTLA-4 [5]. 

NOD IIS-Idd3 congenic mice, which share the same alleles 
as the NOD mouse at both Il2 and Il21, were indistinguish-
able from the NOD strain, indicating that both Il2 and Il21 
can be candidates for Idd3 [41]. Data suggest a contribution 
of IL21 and IL21R to a genetic susceptibility to T1D and 
possible involvement of IL-21 and its receptor system in the 
disease pathogenesis [42]. However, no association was 
found between polymorphisms of those genes and T1D in a 
Japaneses population [43].  

 Other candidates including Foxo1, Gffr2, and Pld1 are 
not directly related to the T1D pathogenic process. 

Candidate Genes for QTL of T1D on Chromosome 4 

 Two independent QTL regions that contain 1519 genes 
within 79,815,215 bp: Idd11 and Idd9. Idd9.1, 9.2, and 9.3 
are different versions of Idd9 (Table 1). From those QTL, we 
found seven well defined candidates.  

 Three candidates were selected from a total of 722 genes 
at the Idd11 locus: cell division cycle 42 (Cdc42), alkaline 
phosphatase 2 (Akp2), solute carrier family 2 (facilitated 
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Table 1. Candidate Genes in Insulin Dependent Diabetes Loci in Mouse Genome 

QTL Total bps 
Total  

Genes 
Chr. 

Searched Region (bp)  

or Markers 

Total  

Genes 
Candidate Genes* 

Idd26 1 19797184 40207104 146 Zap70 

Idd5 1 57726214 93726214 353 

Idd5.1 1 57653560 93653560 352 

Idd5.2 

56624948 499 

1 57511186 93511186 352 

Ctla4, Cd28, Icos, Slc11a1, Irs1, Ptprn [141], Acadl [142],  

Erbb4 [18], Ihh, Hes6, Klf7 [143] Casp8 

Idd13 36000000 437 2 105627827 141627827 437 B2m, Snap25, Chgb [144]
 

, Il1b, Mrg1 [145]
 

Idd10 3 73515038 109515038 618 

Idd17 3 67620523 103620523 535 

Tlr2, Cd2 [31], Ensa [29], Txnip, Slc16a1 [146]
 

, Alx3 

Idd18 3 99342152 135342152 321 Ptpn22, Nfkb1, Gstm1, Pitx2 [147]
 

Idd3 

103721629 1007 

3 20075190 56075190 198 Il2, Il21, Foxo1 [148]
 

, Slc2a2, Fgf2 [149]
 

, Pld1 

Idd11 4 113524850 149524850 722 Cdc42, Akp2, Slc2a1 

Idd25 4 10Mbp from peak marker D4Mit71 402  

Idd9.1 4 110485381 146485381 668 tnfrsf9 [44, 61, 150], Hdac1 [151]
 

, E2f2, Nr0b2 [152] 

Idd9.2 4 124346244 154300596 575  

Idd9.3 4 130783882 154300596 446  

Idd9 

79815215 1519 

4 135322552 154300596 335  

Idd15 10000000 51 5 3803678 13803678 51 Sema3A 

Idd6 6 129942622 151104725 211 lapp, Lrmp, Arntl2, Bcat1, Lrp6 

Idd19 
6 111876879 147876879 519 

Cd4, Vwf, Cd69, Iapp, Bid, Gapdh, Lrmp, Gnb3, Arntl2, Bcat1, 

Lrp6, Cxcl12, Foxm1 [153]
 

, Pparg [154]
 

, Wnk1 

Idd20 

74962203 817 

6 76142522 112142522 276 Trh, Pap, Reg1, Reg2 

Idd7 7 1 35564320 786 Apoe, Galp, Ffar1, Akt2 [155]
 

, Relb 

Idd27 

75991727 1437 

7 79249899 119677306 651 Ucp2, Nox4, Ucp3, Il16, Furin [156]
 

, St5 [157]
 

, Pak1 

Idd22 25000000 276 8 74910379 99910379 276 Junb [158]
 

, Il15 [159]
 

Idd2 25000000 346 9 87254721 112254721 346 Tlr9, Rhoa [160]
 

, Atp2c1 [103] 

Idd4 36000000 732 11 60764632 96764632 732 

Shbg, Ccl2, Nos2, Ccl4, Ccl3, Cd68, Trpv1, Ngfr, Mpo, Ccl1, Ccl7, 

Pld2, psmb6, Cxcl16, Alox15, Alox12e, Vamp2, Spop, Dusp14 [161]
 

, 

Hnf1b [122, 162, 163]
 

Idd14 36000000 385 13 22900536 58900536 385 Prl, Syk [164]
 

, Cd83 [165]
 

, Bmp6, Irf4, Cdkal1 [166]
 

Idd12 14 8717940 44717940 321 Glud1, Bmpr1a [167]
 

Idd8 

44717940 388 

14 1 21444886 148 Il3, Pxk, Dnase1l3 

Idd1 17 16741020 52741020 831 

Idd16 

37262334 843 

17 15478676 51478676 839 

Tnf, C4a [168]
 

, C4b [179], Tap2 [169, 170]
 

, Tbp [137, 171]
 

, Runx2 

[172]
 

, Lta [173, 174]
 

, Vegfa [175]
 

, Nfkbil1 [176]
 

, Ager [177], 

Notch3 [178]
 

, Pim1 [179]
 

, Itpr3 [180]
 

, Cdkn1a, Srf [181]
 

, H2-T23, 

Bat2, Apom 

Idd23   17 D17Mit113 Clcn7 254 Pdcd2, Sod2, Igf2r 

Idd21 36000000 301 18 25051027 61051027 301 Cd14 

* Bolded names are well-documented candidate genes. 
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glucose transporter), and member 1 (Slc2a1). Akp2, a target 
gene of Runx2, was significantly down-regulated in insulin-
deficient, hyperglycemic diabetic animals along with Runx2 
itself and several other targets; however, insulin treatment of 
diabetic animals significantly restored their expression [44]. 

 The C677T Mthfr (5,10-methylenetetrahydrofolate reduc-
tase) polymorphism does not have a significant role in the 
development of diabetic nephropathy in T1D [45, 46], al-
though this gene was reported in type 2 diabetes develop-
ment [47]. Tnfr2 is also related to the regulation of autoim-
mune disease [48]. Three C1q genes, whose deficiency leads 
to autoimmunity, are located in Idd11 [49, 50, 51]. 

 The role of Lck is controversial. Four SNP variants of 
Lck (lymphocyte protein tyrosine kinase) were frequently but 
not significantly associated with diabetes or LCK protein 
level. But of other SNPs studied, 11 were found only within 
the diabetic population and some were associated with low 
LCK protein levels. The low frequency of these polymor-
phisms did not permit any statistical significance, suggesting 
that the Lck gene probably does not contribute to the genetic 
susceptibility to T1D [52]. A major role for the common Lck 
polymorphisms in T1D is unlikely [53].  

 Padi4 (peptidyl arginine deiminase, type IV) [54], cdc42 
[55], Frap1 (FK506 binding protein 12-rapamycin associ-
ated protein 1), and Slc9a1 (solute carrier family 9 member 
1) [56] are not likely to be good candidates for T1D.  

 Candidate genes of Idd25 overlap with those of Idd9 and 
Idd11. Idd9 now has been narrowed to 335 genes; Idd25 may 
contain 402 genes. Four genes are considered to be candi-
dates for this locus: tumor necrosis factor receptor superfa-
mily, member 9 (tnfrsf9); histone deacetylase 1 (Hdac1); e2f 
transcription factor 2 (E2f2); and nuclear receptor subfamily 
0, group b, member 2 (Nr0b2). E2f2 is the best candidate in 
this region considering that mice deficient for both E2F1 and 
E2F2 develop nonautoimmune, insulin-dependent diabetes 
with high penetrance [57]. Another good candidate is 
Tnfrsf9. Functional analyses have demonstrated that purified 
T cells from NOD congenic mice with the C57BL/10 (B10) 
allele at Idd9.3 produce more IL-2 and proliferate more vig-
orously in response to anti-CD3 plus immobilized 4-
1BB/Tnfsf9 ligand than do T cells from NOD mice with the 
NOD allele at Idd9.3. In contrast, the response to anti-CD3 
plus anti-CD28 costimulation was indistinguishable between 
the congenic strains, pinpointing the differences in NOD 
versus NOD.B10 Idd9.3 T cell responses to the Tnfrsf9/4-
1BB costimulatory pathway [58]. But once again, this gene 
was excluded for European ancestry populations [42].  

Candidate Genes for QTL of T1D on Chromosome 5 

 The genomic region of Idd15 includes 51 genes in a 
10,000,000-bp region. No gene is currently reported to be 
directly related to T1D. However, it has been reported that T 
cells from semaphorin 3A (Sema3A)-deficient mice exhib-
ited hyperproliferative responses to anti-CD3 stimulation and 
to allogeneic dendritic cells in vitro [59].  

Candidate Genes for QTL of T1D on Chromosome 6 

 Two QTL regions contain 817 genes in 74,962,203-bp 
genomic sequences. We found 24 candidate genes.  

 The first region is Idd19, which overlaps with Idd6. CD4 
and CD69 are among the obvious candidates. CD4

+
 cells 

play a key role in the pathogenesis of T1D. The percentages 
of naive T helper cells or suppressor/inducers CD4

+
 cells and 

CD4
+
CD45RA

+
 cells were increased in IDDM patients [60]. 

Decreased numbers, or function, of
 
CD4

+
CD25

+
 Treg cells 

have been linked to the development of
 
T1D [61, 62]. TGF-  

signaling in CD8
+
 T cells is critical for CD4

+
CD25

+
 Treg cell 

suppression of islet-reactive CD8
+
 T cells in T1D [63]. 

CD69 is a negative modulator of autoimmune reactivity and 
inflammation through the synthesis of TGF- , although the 
observation was noted on an arthritis model [64]. A lower 
level of CD25, CD71, CD69, and HLA-DR antigen expres-
sion was found in patients at all observation times and in 
pre-T1D subjects after administration of 1 g/ml of PHA 
showed a significantly reduced expression of CD69 and 
CD71 [65]. In animal models of autoimmune diseases, self 
altered peptide ligands (APL) triggered up-regulation of 
CD69 and CD25 expression and efficiently down-regulated 
in vitro activation of a Th1 clone specific to the mitochon-
drial 38-kD islet antigen (Imogen) induced by either p55-70 
epitope of Imogen or native ß cell auto-antigens [66]. BID 
(BH3 interacting domain death agonist) cleavage by gran-
zyme B precedes mitochondrial disruption and apoptosis in 
pancreatic islets [67]. A large number of polymorphisms and 
amino acid changes were identified in both Lrmp (lymphoid-
restricted membrane protein) and Bcat1 (branched chain 
aminotransferase 1, cytosolic), indicating that they are can-
didates for Idd6 [68]. The NOD allele at this locus mediates 
lower mRNA expression levels of the Lrmp/Jaw1 [69]. But 
the rs2242400 polymorphism in Bcat1 was associated with 
type 2 diabetes in more than one population [70]. In type 2 
diabetes, the 825T allele was reported to be predispose for 
end-stage renal disease, whereas this effect has not yet been 
confirmed for patients with T1D [71]. Arntl2 (aryl hydrocar-
bon receptor nuclear translocator-like 2) up-regulation corre-
lated with the up-regulation of the ARNT-binding

 
motif con-

taining the Pla2g4a gene, which has recently been described
 

as being protective for the progression of insulitis and auto-
immune

 
diabetes in the NOD mouse by regulating the TNF-  

pathway [72]. Chemokine (C-X-C motif) ligand 12 (SDF-
1/Cxcl12) can negatively regulate NOD/LtJ diabetogenic T 
cell adhesion, which may be important in regulating diabeto-
genic T cell recruitment into islets [73].  

 Some candidates do not have strong supportive data. Pep-
tide IAPP (islet amyloid polypeptide) 9-17 is one of the 
HLA-A*0201-restricted T cell epitopes in T1D patients [74], 
but IAPP is more of a type 2 diabetes risk factor in the proc-
ess of ß cell apoptosis [75]. There is an inverse relationship 
between GAPDH (glyceraldehyde-3-phosphate dehydro-
genase) activity and Methylglyoxal production in both T2D 
and T1D [76]. Exocytosis of insulin depends on the regula-
tion of SNARE complex assembly by WNK1 (WNK lysine 
deficient protein kinase 1)-Munc18c complexes [77]. Lrp6 
(low-density lipoprotein receptor-related protein 6) encodes 
a transmembrane protein that has 71% identity with, and is 
structurally similar to, a product of Lrp5 (low-density lipo-
protein receptor-related protein 5), a proposed candidate 
gene for T1D [78].  

 Two genes have been ruled out. Gnb3 (guanine nucleo-
tide binding protein, ß 3) C825T polymorphism does not 
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contribute substantially to an increased risk of developing 
end-stage renal disease (ESRD) [79]. Lag3 (lymphocyte-
activation gene 3) was also excluded [57]. a2m ( -2-
macroglobulin) is unlikely to be a candidate considering that 
Ig allotypes (Gm, A2m, and Km determinants) were equally 
distributed in both diabetic patients and healthy controls 
[80].  

 The second QTL, Idd20, contains 276 genes. Candidates 
include Thyrotropin-releasing hormone (Trh), regenerating 
islet-derived 1 (Reg1), Reg2, Pap/Reg3b . The role of pitui-
tary hormone is unclear. A case of acquired deficiency of 
pituitary GH, PRL, and TSH associated with T1D mellitus 
was reported [81]. But basal TSH concentrations were un-
changed with or without metabolic control in patients [82]. 
HIP/PAP acts as a T cell auto-antigen in NOD mice [83] and 
becomes overexpressed in human diabetic islets because of 
the local inflammatory response. We did not find any asso-
ciation between abnormalities of either reg1  or reg1  gene 
with any type of diabetes we searched [84]. Reg2 was up-
regulated in islets from NOD RIP-HuIFN  mice at the onset 
of the autoimmune attack. IFN  up-regulates Reg1 and Reg2 
genes in NIT-1 cells. The overexpression of an IFN -
induced auto-antigen (Reg) in the islets during inflammation 
might contribute to the premature onset of diabetes [85]. The 
autoimmune response against REG2 may convert a regenera-
tive process into an islet-destructive process, thereby accel-
erating development of T1D [86]. 

Candidate Genes for QTL of T1D on Chromosome 7 

 Two QTL are located on chromosome 7 and cover 1437 
genes in 75,991,727 bp of the genomic region. Twelve well-
defined candidates were identified from those two regions.  

 From Idd7, three candidates were found from a total of 
786 genes (Table 1). Galp (galanin-like peptide) neurons are 
direct targets for insulin, and these cells play a role in the 
metabolic and behavioral sequelae of T1D [87]. Endogenous 
GALP provides trophic support to the neuroendocrine repro-
ductive axis, including sexual behavior. T1D is associated 
with reduced expression of Galp, as well as an overall de-
cline in reproductive function due to Galp [88]. Ffar1 (free 
fatty acid receptor 1) was shown to be highly expressed

 
in 

rodent pancreatic ß cells, and its down-regulation
 
by RNAi 

caused impaired fatty acid stimulated insulin secretion [89]. 
Variants in the Ffar1 gene are associated with ß cell function 
in T2D [90], but the role of this gene in T1D is unclear. Up-
regulation of FLIP, caspase-8 inhibitor, enhanced NF- B 
activity via NF- B-inducing kinase and RELB can lead to 
increased PDX-1 and insulin production independent of 
changes in cell turnover [91]. 

 Seven candidates were identified from 651 genes in the 
second locus, Idd27. Both the G866A polymorphism in un-
coupling protein 2 (mitochondrial, proton carrier) (Ucp2) 
and the C55T polymorphism in Ucp3 are associated with a 
reduced risk of diabetic neuropathy in T1D [92]. Inflamma-
tion is stronger in Ucp2-knockout mice and islets, leading to 
exacerbated diabetic conditions [93]. NOX4 (NADPH oxi-
dase 4) is the major source of ROS in the kidneys during 
early stages of diabetes, and NOX4-derived ROS mediates 
renal hypertrophy and increased fibronectin expression [94]. 
Gene microarray analyses showed that -GalCer treatment 

decreases IL-16 and increases IL-10 and Mip1  gene expres-
sion in the spleen. Anti-IL-16 antibody treatment protects 
NOD mice against insulitis and T1D [95].  

 Another IL-related protein, IL18BP (interleukin 18 bind-
ing protein), does not contribute to the overall genetic sus-
ceptibility to T1D because of low frequency of several 
polymorphism [96], but there is no direct evidence to ex-
clude it. p21 (CDKN1A)-activated kinase 1 Pak1 may medi-
ate between Cdc42 and Rac1 in the pathway to transmit the 
glucose signal early in stimulus-secretion coupling to sup-
port the later stage of insulin release [97]. Furin and St5 do 
not have strong supportive data. 

Candidate Genes for QTL of T1D on Chromosome 8 

 Chromosome 8 contains only one QTL, Idd22, which 
covers 25,000,000 bp, including 276 genes. Two well-
defined candidates were found: oncogene jun-b (Junb) and 
interleukin-15 (Il-15). High IL-15 expression, detected in 
peritoneal macrophages of vitamin D-deficient mice, accel-
erates T1D development in NOD strain. The MAPK path-
way may function through JunB in mediating some of the 
pleiotropic actions of secretagogues on pancreatic  cells. 

 Several other genes, including Nod2, ccl17, ccl22, 
cx3cl1, and CD97, are related to autoimmunity. The role of 
NOD2 in this IL-23-IL-1-IL-17 axis has been confirmed in 
NOD2-deficient DCs [98]. Although NOD2 is known in 
autoimmune Crohn's disease [99], there is no report on other 
autoimmune diseases. Ccl17, ccl22, and cx3cl1, three 
chemokine ligands, are also located in this region. Deletion 
of the Daf, ligand of CD97, exacerbates autoimmune disease 
development in MRL/lpr mice, a model for human systemic 
lupus erythematosus [100]. Ca

2+
-induced and cAMP-

mediated potentiation of insulin secretion was unchanged in 
the absence of annexin A7 [101], thereby excluding the can-
didacy of this gene.  

Candidate Genes for QTL of T1D on Chromosome 9 

 Three candidates were identified from 346 genes in a 
25,000,000-bp region of Idd2 on chromosome 9 (Table 1). In 
the biobreeding diabetes-resistant (BBDR) rat, KRV can 
induce innate immune activation and autoimmune diabetes 
through toll-like receptor 9 (TLR9)-signaling pathway

 
[102]. 

Depletion of cellular PMR1 (ATPase, Ca
2+

-sequestering) 
with siRNAs inhibited Ca

2+ 
uptake into the endoplasmic re-

ticulum and secretory vesicles by approximately 20%; sub-
cellular fractionation of the cell lines revealed PMR1 im-
munoreactivity in both microsomal and dense-core secretory 
vesicle-enriched fractions [103]. Function of Rhoa in T1D 
has not been confirmed. 

Candidate Genes for QTL of T1D on Chromosome 11 

 Idd4 is located on chromosome 11 covering 36,000,000 
bp and 732 genes. We examined 20 candidates. Plasma lev-
els of glucagon-like peptide (GLP)-1 and gastric inhibitory 
peptide (GIP) did not differ between control and diabetic 
subjects [104]. IR-GIP seems not to be responsible for the 
changes in ß cell function after the onset of the disease [105]. 
In adult men with T1D, sex hormone-binding globulin 
(SHBG) was higher [106]; such was not the case in adoles-
cents [107].  
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 The function of a large group of chemokine genes in this 
region varies a lot in T1D. Adiponectin-mediated induction 
of IL-6, CCL2, and CXCL8 is disturbed in monocytes from 
T1D patients; therefore, elevated systemic adiponectin in 
T1D patients may be less protective [108]. The up-regulation 
of CCL3 and CCL4 vs. down-regulation of CCL2 suggests 
opposed functions of these chemokines in the disease proc-
ess in T1D. No significant differences were seen for CCL5, 
CCL11, or CXCL10 [109]. CCR8/CCL1 interaction may 
play a role in T1D through macrophage recruitment and acti-
vation [110]. There was a marked decrease in transcripts of 
genes specific to  cells, followed by an increase in tran-
scripts of chemokine genes (cxcl1, cxcl5, and ccl7) and of 
other genes typical of the myelo-monocytic lineages during 
disease progression [111]. Inflammatory responses that tar-
get islet ß cells are suppressed by CCL4 [112]. Pathogenicity 
was associated with T cell production of the macrophage-
attracting chemokines CCL3 and CCL4 when T cells were 
primed with APCs expressing both B7-1 and ICAM-1 [113].  

 Besides those chemokines, a Nos2 (nitric oxide synthase 
2, inducible, macrophage) C/T single nucleotide polymor-
phism in exon 16 and resulting in Ser608Leu showed linkage 
to IDDM in HLA DR3/4-positive affected offspring [114]. 
But some populations do not have this association [115]. 
Insulitis was found in the islets from donors with serum posi-
tivity for

 
islet cell antibodies

 
(ICAs), glutamate decarboxy-

lase aAbs (GADAs), insulinoma-associated
 
protein 2 aAbs 

(IA-2As) and for the susceptible HLA-DQ genotype, and 
were consisted of CD3

+
/CD8

+
 T cells and CD68

+
 macro-

phages [116]. Trpv1
+
 (transient receptor potential cation 

channel, subfamily V, member 1) pancreatic sensory neurons 
control islet inflammation and insulin resistance. Eliminating 
these neurons in NOD mice prevents insulitis and diabetes 
[117]. Antimyeloperoxidase antibodies were detected in pa-
tients with T1D mellitus [118]. Alox15, Alox12e, Psmb6, 
Pld2, and Cxcl16 are excellent candidate genes for the ef-
fects of the Idd4 by fine mapping and quantitative real-time 
PCR [119]. 12/15-lipoxygenase (12/15-LO) and cyclooxy-
genase-2 (COX-2) pathways of arachidonate metabolism 
have been implicated in the pathogenesis of diabetic neph-
ropathy [120]. 

 Some other genes do not relate directly to T1D but to  
cell function. Overexpression of the full-length Synip protein 
inhibited VAMP2 (vesicle-associated membrane protein 2) 
association with syntaxin 4 and decreased glucose-stimulated 
insulin secretion [121]. HNF-1  (HNF1 homeobox B) muta-
tions may be associated with nondiabetic renal dysfunction 
and diabetes in Chinese and Italian patients [122, 123], but 
this gene is considered to be involved in T2D.  

Candidate Genes for QTL of T1D on Chromosome 13 

 Idd14 covers 36,000,000 bp and 385 genes on chromo-
some 13, among which six candidates are mapped: prl, 
CD83, Bmp6, Irf4, Syk, and cdkal1. Prolactin PRL enhanced 
a Th2 response, which may reflect the preventive effect of 
PRL against development of multiple low-dose STZ diabetes 
in mice [124, 125]. The comparison of mature DCs between 
patients and controls indicated a difference in CD83 expres-
sion. The excess numbers of bone morphogenetic protein 6 
(BMP6)-deficient myofibroblast progenitor cells may favor 

adverse tissue remodelling in patients [126]. Irf4 (interferon 
regulatory factor 4) and Tra1 with increased expression in 
B9-23 insulin peptide-treated NOD mice help promote the 
Th2 response [127]. Heightened IFN- /  responses in NOD 
DC were not due to increased SYK kinase activity, exclud-
ing the candidacy of this gene. Cdkal1 is more likely to be a 
T2D candidate. 

Candidate Genes for QTL of T1D on Chromosome 14 

 Two loci, Idd12 and Idd8, cover a genomic region of 
44,717,940 bp and 388 genes on chromosome 14. Five can-
didates are listed in Table 1. Glud1 may be responsible for 
the effect of Idd12. Autosomal dominant mutations in the 
gene encoding glutamate dehydrogenase (GLUD1) lead to 
inappropriate insulin secretion by increasing the ATP/ADP 
ratio in the ß cells [128, 129]. Although BMPR1A is consid-
ered to function in glucose-stimulated insulin secretion, it is 
most likely to be a T2D-related gene. 

 So far, there is no report of Idd8 candidate genes. But IL-
3 receptor is located within this region. Pxk [130] and 
Dnase1l3 [131] are related to systemic lupus erythematosus 
but not to T1D. 

Candidate Genes for QTL of T1D on Chromosome 17 

 The search on chromosome 17 covers 37,262,334 bp and 
843 genes. We found 22 candidates in three loci: Idd1, 
Idd16, and Idd23.  

 Idd1 and Idd16 overlap each other. Candidate genes in 
these two regions were the same within our search. Pancre-
atic-derived factor (PANDER)-induced down-regulation of 
CDKN1A (cyclin-dependent kinase inhibitor 1A (P21)) ex-
pression coupled with induced CASP3-activation may serve 
a central role in islet cell death [132]. The ratio of cy-
clinD2/Cdkn1a, genes that respectively promote or inhibit 
cell cycle progression, was decreased in BioBreeding diabe-
tes-prone (BBdp) islets [133]. Another nonclassical MHC 
class IB molecule, Qa-1, encoded by H2-T23 is capable of 
presenting antigens to  and  T cells, and lymphocytes 
restricted to Qa-1 may contribute to immunoregulatory func-
tions [134]. The third candidate is Bat2 (HLA-B associated 
transcript 2). Microsatellite polymorphism in Bat2 is associ-
ated with the age-at-onset of IDDM and possibly with the 
inflammatory process of pancreatic ß cell destruction during 
the development of IDDM. However, this association is not 
independent of TNF  polymorphisms [135]. HNF-1  hap-
loinsufficiency in MODY3 subjects leads to decreased serum 
protein concentrations of APOM (apolipoprotein M), a pro-
posed candidate of T1D [136]. 

 Idd23 has three well-characterized candidates. Pdcd2 
(programmed cell death 2) is a likely susceptibility gene for 
T1D within this locus; two hypermorphs have been associ-
ated with a higher risk risk of T1D development [137]. 
Genes encoding the enzymes (superoxide dismutase 2, mito-
chondrial) Mn-SOD and extracellular superoxide dismutase 
(EC-SOD) were found to be associated with the pathogenesis 
of diabetic polyneuropathy (DPN) [138]. Maternal alleles at 
an Igf2r (insulin-like growth factor 2 receptor) polymor-
phism are associated with T1D [139]. Other genes including 
tbp, psmb1, dll1, phf10, slc22a2, and slc22a3 do not have 
any supportive data. 
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Candidate Genes for QTL of T1D on Chromosome 18 

 Idd21 covers 36,000,000 bp on chromosome 18, among 
which 301 genes are located. CD14 is the only gene reported 
to trigger autoimmune T1D in the NOD mouse [140]. Other 
genes including apc and spink5 do not have supporting evi-
dence. 

CONCLUSION 

 We conducted a comprehensive candidate search of re-
ported T1D QTL identified from mouse models based on 
published genomic information, literature, and association of 
polymorphism with T1D. Our search revealed that a huge 
number of candidate genes exist within QTL regions. For 
most of them, careful studies regarding their relation to T1D 
QTL need to be done. 

 Our data also support the importance of maintaining the 
genome databases at a high level of currency. Most of the 
candidates selected based on the genetic map have not been 
identified as candidates in early studies. The simple explana-
tion is that candidates in original publications were based on 
early, incomplete genetic information that does not accu-
rately reflect the optimum location of genes. 

 For well-defined QTL, two markers flanking the QTL 
were used for gene searching. For QTL with more ambigu-
ous boundaries, we searched the genome region that in-
cluded 10 Mbp on each side of the molecular marker in the 
peak region of a QTL. We used this method, assuming that 
10 Mbp on each side of peak marker provided enough ge-
nome sequences to encompass the genes underlying the QTL 
regions. We realize that this may not be true for every QTL. 
For the major QTL with large effects, there is a possibility 
that we did not cover all possible candidate genes.  

 Our data also reveal the complexity in searching for can-
didate genes for T1D, as T1D is influenced by numerous 
genetic and environmental factors. For example, the destruc-
tion of  cells in T1D is very different from that of type 2 
diabetes; one is by autoimmunity, while the other is by sec-
ondary destruction by hyperglycemia. Thus, a gene plays 
role in secondary destruction by hyperglycemia may not be 
relevant to T1D. Another question is that a candidate gene 
detected in mice may not have the same function or the ef-
fect may differ in humans. Furthermore, the richness in ge-
netic alleles likely to characterize human gene regulation is 
more limited among inbred strains of mice due to common 
ancestry. Clearly, this assists initial mapping studies and 
eventual gene identification, while missing some molecular 
differences related to alleles. Nevertheless, we believe a 
combination of data from mouse models and human studies 
(population association, families, etc.) is a practical way to 
focus on the candidate genes revealed in this study.  

 Fortunatley, we are in an era of rapid genomic research. 
Genome resources and technologies progress at an ever-
increasing pace. In particular, the increasing comparative 
genomic information can complement mouse and human 
data by providing new insights to the diversity of a given 
gene's functions. We feel that a comprehensive search of 
candidate genes using updated genome information for 
known T1D QTL may provide unexpected benefits for our 
knowledge of the molecular bases and pathways of T1D. 
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ABBREVIATIONS 

APL = Altered peptide ligands 

DC  = Dedritic cell 

DPN = Diabetic polyneuropathy 

EAE = Experimental autoimmune encephalitis 

ESRD = End-stage renal disease 

HLA  = Human leukocyte antigen 

IddM = Insulin-dependent diabetes mellitus 

KATP = Adenosine triphosphate postassium channel 

LADA = Latent autoimmune diabetes in adults 

LCK = Lymphocyte-specific protein-tyrosine kinase 

MAPK  = Mitogen-activated protein kinase 

Mbp = Megabase pair 

MHC = Major histocompatibility complex 

NEFA = Nonesterified fatty acid 

NF- B = Nuclear factor B 

OMIM = Online Mendelian Inheritance in Man 

PHA  = Phytohemagglutinin 

PKC  = Protein kinase C 

QTL = Quantitative genetic loci 

Ras  = Rat sarcoma virus oncogene 1 

RNAi = RNA interference 

ROS  = Reactive oxygen species 

SNP = Single nucleotide polymorphism 

TCR  = T-cell receptor 

T1D = Type 1 diabetes 

T2D = Type 2 diabetes 

VWF = Von Willebrand factor 
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