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Identification of adult spinal
Shox2 neuronal subpopulations
based on unbiased
computational clustering of
electrophysiological properties

D. Leonardo Garcia-Ramirez, Shayna Singh,

Jenna R. McGrath, Ngoc T. Ha and Kimberly J. Dougherty*

Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel

University College of Medicine, Philadelphia, PA, United States

Spinal cord neurons integrate sensory and descending information to produce

motor output. The expression of transcription factors has been used to dissect

out the neuronal components of circuits underlying behaviors. However,

most of the canonical populations of interneurons are heterogeneous and

require additional criteria to determine functional subpopulations. Neurons

expressing the transcription factor Shox2 can be subclassified based on the

co-expression of the transcription factor Chx10 and each subpopulation is

proposed to have a distinct connectivity and di�erent role in locomotion.

Adult Shox2 neurons have recently been shown to be diverse based on

their firing properties. Here, in order to subclassify adult mouse Shox2

neurons, we performed multiple analyses of data collected from whole-

cell patch clamp recordings of visually-identified Shox2 neurons from

lumbar spinal slices. A smaller set of Chx10 neurons was included in the

analyses for validation. We performed k-means and hierarchical unbiased

clustering approaches, considering electrophysiological variables. Unlike the

categorizations by firing type, the clusters displayed electrophysiological

properties that could di�erentiate between clusters of Shox2 neurons. The

presence of clusters consisting exclusively of Shox2 neurons in both clustering

techniques suggests that it is possible to distinguish Shox2+Chx10− neurons

from Shox2+Chx10+ neurons by electrophysiological properties alone.

Computational clusters were further validated by immunohistochemistry

with accuracy in a small subset of neurons. Thus, unbiased cluster analysis

using electrophysiological properties is a tool that can enhance current

interneuronal subclassifications and can complement groupings based on

transcription factor and molecular expression.
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Introduction

The spinal neuronal circuitry participates in the control

of a wide variety of movements, ranging from reflexes to

highly sophisticated motor skills (Hultborn and Nielsen, 2007;

Goulding, 2009; Todd, 2010; Levine et al., 2012; Kiehn,

2016; Grillner and El Manira, 2020). The identification and

connectivity of spinal interneuron populations that underlie

specific behaviors is essential for a complete understanding of

motor function. Spinal neuronal populations are highly diverse

and functional populations are anatomically intermingled

(Goulding, 2009; Kiehn, 2016; Abraira et al., 2017; Stachowski

and Dougherty, 2021). The identification of spinal interneuronal

populations based on the expression of transcription factors has

defined neurons involved in or essential to rhythm generation,

left-right alternation, flexor-extensor alternation, and patterning

(Wilson et al., 2005; Gosgnach et al., 2006; Crone et al., 2008;

Zhang et al., 2008, 2014; Dyck et al., 2012; Dougherty et al.,

2013; Talpalar et al., 2013; Caldeira et al., 2017). However, each

of the transcription factor-defined canonical classes of ventral

interneurons identified to date is heterogeneous and serves

multiple functions (Pierani et al., 2001; Brownstone andWilson,

2008; Borowska et al., 2013; Bikoff et al., 2016; Shevtsova and

Rybak, 2016; Hayashi et al., 2018; Deska-Gauthier et al., 2020;

Falgairolle and O’Donovan, 2021).

As with other genetically identified populations, lumbar

spinal cord neurons that express the transcription factor

Shox2 are heterogeneous in transcription factor expression,

connectivity, and function (Dougherty et al., 2013; Ha and

Dougherty, 2018). Shox2 neurons overlap with the V2a (Chx10-

expressing) population of neurons (Dougherty et al., 2013).

Similarly, V2a neurons are also heterogeneous based on

molecular expression (Song et al., 2009; Hayashi et al., 2018),

firing types (Dougherty and Kiehn, 2010; Zhong et al., 2010;

Husch et al., 2015), activity pattern during locomotor deletions

(Zhong et al., 2012), and function (Crone et al., 2008, 2009).

There is also interrelation between subpopulations. The Shox2

subpopulation lacking Chx10 expression has been linked to the

generation of the locomotor rhythm (Dougherty et al., 2013;

Dougherty and Ha, 2019), the Chx10+ neuronal population has

been implicated in the left-right alternation (Crone et al., 2008,

2009), and the Shox2+Chx10+ neurons are thought to be pre-

motoneurons participating in the stabilization of the locomotor

burst (Dougherty et al., 2013).

Particularly for transcription factors that are

developmentally downregulated or with deletions that are

lethal, the relation of population to function comes largely

from studies in neonates (Gosgnach et al., 2006; Crone et al.,

2008; Zhang et al., 2008; Dougherty et al., 2013; Talpalar et al.,

2013), as do experiments relating cellular firing or phasing

during locomotor-like activity (Dougherty and Kiehn, 2010;

Zhong et al., 2011; Dyck et al., 2012). Other classification

schemes used to subdivide potential functional populations in

both neonate and adult include location (Harrison et al., 1986;

Puskar and Antal, 1997; Petko et al., 2004; Jankowska, 2008),

neurotransmitter phenotype (Huang et al., 2000; Goulding et al.,

2014; Bikoff et al., 2016; Hughes and Todd, 2020; Stachowski

and Dougherty, 2021), morphology (Gobel, 1975; Maxwell

et al., 2007; Yasaka et al., 2010), electrophysiological properties

(Konnerth et al., 1990; Lopez-Garcia and King, 1994; Grudt and

Perl, 2002; Dai et al., 2009; Dyck et al., 2012) and molecular

profiles (Goulding, 2009; Kiehn, 2016; Ziskind-Conhaim and

Hochman, 2017; Haring et al., 2018; Gatto et al., 2019). Recent

RNA sequence profiling of adult spinal neurons has suggested

clusters of spinal interneurons where ventral clusters outnumber

the canonical V0–V3 developmentally-derived populations and

some clusters contain significant numbers of neurons in more

than one canonical population (Sathyamurthy et al., 2018).

Similarly, mature neurons may be more diverse than those of

neonate electrophysiologically and morphologically (Alvarez

et al., 2005; Al-Mosawie et al., 2007). Electrophysiological

recordings have demonstrated that adult Shox2 neurons display

heterogeneous electrophysiological properties (Garcia-Ramirez

et al., 2021), suggesting the possibility of more than two

subpopulations. Electrophysiological properties establish the

ways in which neurons respond to the synaptic inputs and

neuromodulation, determine integration capacity, and shape

output of individual neurons; therefore, along with connectivity,

they govern spinal circuit function (Konnerth et al., 1990; Russo

and Hounsgaard, 1999; Lee and Heckman, 2000; Butt et al.,

2002; Miles et al., 2005; Smith and Perrier, 2006; Brownstone

and Wilson, 2008; Dai et al., 2009; Grillner and El Manira,

2020). Thus, classification of neurons based on their passive

and active properties can provide essential characteristics that

should correlate with their participation in behavior.

Here, rather than constraining subpopulations of Shox2

neurons based on the expression of a second transcription

factor or other molecular marker, we use electrophysiological

properties to define subpopulations and then determine

how electrophysiolocially-defined subpopulations relate to

transcription factor-defined subdivisions. Using neuronal firing

type and two clustering approaches, k-means clustering and

hierarchical clustering, we identify the electrophysiological

parameters that are characteristic to each subpopulation of

Shox2 neurons. We found 4 populations of adult Shox2 neurons

based on firing type, all of which were in common with

Chx10 neurons. Analysis performed on 4 k-means clusters

and 6 hierarchical clusters of Shox2 neurons identified clusters

which overlap with Chx10 neurons to varying degrees. In both

computational analyses, we found clusters that included Shox2

neurons but not Chx10 neurons, suggesting the possibility

to identify Shox2+Chx10− neurons with a single lineage

traced mouse line. Unbiased computational analysis is a

useful tool to identify populations of neurons in adult mice
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where electrophysiological diversity is high and extends beyond

current molecular markers and transgenic tools. Further, results

could have important implications for the study of neurons in

intact preparations where the ability to visually identify neurons

is limited.

Materials and methods

Experiments were performed using 51 Shox2::Cre; Rosa26-

flox-Stop-flox-tdTomato (Ai9 from Jax mice, #007909)

transgenic mice (Madisen et al., 2010; Dougherty et al., 2013)

and 6 Chx10-eGFP (from MMRRC, Cat#:011391-UCD)

transgenic mice. Electrophysiological properties from 60 of

the Shox2 neurons (from 28 of the mice) included in the

new analyses were reported in a previous study (Garcia-

Ramirez et al., 2021). All experimental procedures followed

National Institutes of Health guidelines and were approved

by the Institutional Animal Care and Use Committee at

Drexel University.

Spinal cord preparations

For terminal electrophysiology experiments, adult mice (8–

25 weeks postnatal) were anesthetized with ketamine (150

mg/kg) and xylazine (15 mg/kg), decapitated, and eviscerated.

Spinal cords were then removed in ice-cold dissecting solution

containing the following (in mM): 222 glycerol, 3 KCl, 11

glucose, 25 NaHCO3, 1.3 MgSO4, 1.1 KH2PO4, and 2.5 CaCl2

and gassed with 95% O2 and 5% CO2 with pH adjusted to

7.4. The lumbar spinal cord (segments L2–5) was sectioned

transversely using a vibrating microtome (Leica Microsystems).

Slices were next transferred to an artificial cerebrospinal fluid,

containing the following (in mM): 111 NaCl, 3 KCl, 11 glucose,

25 NaHCO3, 1.3 MgSO4, 1.1 KH2PO4, and 2.5 CaCl2 at 37◦C

for 30min and then passively equilibrated to room temperature

for another 30min before recording. Dissecting and recording

solutions were continuously aerated with 95%/5% O2/CO2.

Whole-cell patch clamp recordings

All recordings were performed at room temperature.

Fluorescently labeled (tdTomato) Shox2 and (eGFP) Chx10

neurons were visualized with a 63x objective lens on a BX51WI

scope (Olympus) using LED illumination (Andor Mosaic

System or Lumen Dynamics X-Cite 120 LED). Patch electrodes

were pulled to tip resistances of 5–8 M� using a multistage

puller (Sutter Instruments) and were filled with intracellular

solution, which contained the following (in mM): 128 K-

gluconate, 10 HEPES, 0.0001 CaCl2, 1 glucose, 4 NaCl, 5 ATP,

and 0.3 GTP, with pH adjusted to 7.4. In some experiments,

biocytin (2 mg/ml, B4261, Sigma-Aldrich) was included in the

patch electrode. Data were collected with a Multiclamp 700B

amplifier (Molecular Devices) and Clampex software (pClamp9,

Molecular Devices). Signals were digitized at 20 kHz and filtered

at 10 kHz.

Measurement and calculation of passive
and active membrane properties

We performed whole-cell patch clamp recordings from

Shox2 neurons and Chx10 neurons identified by fluorescence

expression. Following exclusion of neurons with a resting

membrane potential more depolarized than −40mV and

neurons with an action potential peak that did not reach 0mV,

143 Shox2 neurons and 28 Chx10 neurons were considered

for this study. Passive and active membrane properties were

recorded or calculated as described briefly here. Current step

protocols were run when neurons were at∼-70mV and in most

cases this required bias current. Resting membrane potential

(Em) was recorded shortly after entering whole-cell mode.

Input resistance (Rin) was calculated from the current/voltage

slope in response to hyperpolarizing voltage steps in which

no voltage-gated current activation was evident. Membrane

time constant (τ ) was calculated as the time to reach 63%

of the maximum depolarization in response to a subthreshold

depolarizing current step. Membrane capacitance (Cm) was

calculated from the time constant and input resistance (Cm

= Rin/τ ). Rheobase was the minimal current step required to

generate an action potential, applied in intervals of 2–3pA.

Additionally, we recorded action potential (AP) properties from

the first AP observed in the depolarizing current at rheobase

(Figure 1A). AP voltage threshold was the membrane potential

at the first deflection of the AP. AP half width (AP duration)

was determined at the voltage midway from the AP threshold

to the peak. The fast afterhyperpolarization (fAHP) amplitude

was the difference between the AP threshold and the maximum

hyperpolarization. We normalized the fAHP amplitude by

dividing by the AP amplitude. The durations of the fAHP

and slow afterhyperpolarization (sAHP) were measured by the

time elapsed from the AP threshold to the peak fast or slow

hyperpolarization. For neurons firing with an initial double or

initial burst, the slow and fast AHP values were measured from

the AP threshold of the last AP of the double or burst. AP

frequency was calculated as the number of action potentials in

response to a 1 second depolarizing current injection at 1.5x

rheobase. Frequency-current (F/I) curve slope was obtained

from the number of APs generated by the administration

of depolarizing current pulses from 1 to 49 pA at intervals

of 3pA (Figure 1B). The AP frequency at resting membrane

potential was calculated from the number of APs recorded in

1min. We also recorded the voltage onset of the persistent
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FIGURE 1

Measured electrophysiological properties. (A) Representative

example of a recording of the membrane potential of a Shox2

neuron during the injection of a 1 s long current step at

rheobase (bottom) and magnification of the first action potential

generated (top). Arrows point out the voltage threshold and fast

and slow AHP. The AP and fAHP amplitude and duration

measurement points are shown. (B) Action potential firing

frequency in response to the injection of depolarizing currents

in two representative Shox2 neurons (squares, cell #40; circles,

cell #160). Lines represent the F/I fit slope (arrow). (C) Current

response (upper trace) to slow depolarizing ramp injection.

Arrows point out the presence of PIC and the corresponding

voltage on the ramp to activate the PIC (PICon).

inward currents (PICon voltage, Figure 1C), measured as the

membrane potential at which a negative deflection began during

the application of a slow (28 mV/s) voltage ramp.

Statistical analyses

Data analysis was performed with Clampfit (Molecular

Devices) and MATLAB (MathWorks). Statistical tests and post-

hoc analyses used are stated for each experiment and performed

with GraphPad Prism (GraphPad Software) and MATLAB. All

results are presented as mean ± SD. Statistical significance

was set at p < 0.05 unless otherwise stated. The distribution

of the data was determined by Shapiro–Wilk normality test.

The statistical comparisons between Shox2 and Chx10 neurons

were performed by Mann-Whitney test or unpaired t-test.

Comparisons between clusters were performed by Kruskal-

Wallis with Dunn’s post-hoc test or repeated-measures one-way

ANOVA with Bonferroni post-hoc test. Comparisons between

percentages were performed by chi-square test.

Correlations, principal component
analysis, and cluster analysis

To determine correlations in between the 12 properties

obtained for each cell, we performed a Pearson’s linear

correlation test and considered values of p < 0.01 to

be correlated. Principal component analysis (PCA) and

multidimensional cluster analyses were performed on the 6

parameters obtained that were not highly correlated. PCA

was used to reduce dimensionality of the number of variables

recorded (Figure 2). To visualize clustering results, we show

3D graphs displaying neurons or means of clusters in a 3-

dimensional space formed by the 3 first PCAs that explained

more than 63% of the variability of the data. We classified Shox2

and Chx10 neurons by 3 different methods: (1) Firing types were

determined by responses to depolarizing current steps. (2) For

k-means clustering, the number of clusters was determined by

the elbow method on a silhouette value graph after iterating

the algorithm 1,000 times considering k = 2 to k = 8 clusters.

Details can be found in the results section. (3) Hierarchical

clusters were determined by the cosine distance between pairs

of observations and consideration of an average for the distance

between clusters. This combination was used because it resulted

in the highest cophenetic correlation coefficient. The number

of clusters was determined considering the cutoff below the

maximum inconsistency coefficient for each link. For the k-

means and hierarchical cluster analyses, we applied MATLAB

algorithms, initially standardizing the data to set a mean of 0

and standard deviation of 1 to be able to compare variables with

different units.

Immunostaining and visualization of
biocytin-filled neurons

The slices containing biocytin-filled neurons were fixed

overnight (4% paraformaldehyde in 0.1M PBS; pH 7.4; 4◦C),

and subsequently placed in PBS at 4◦C. To visualize biocytin,

the slices were incubated for 2 h at room temperature in

DyLight 633 conjugated streptavidin (21844, Thermo Fischer

Scientific). Then, the slices were washed in PBS (3 x 10min),

permeated with 1% Bovine Serum Albumin (BSA), 5% Donkey

Serum (NGS), 0.1% Fish Gelatin, and 0.2% Triton x-100

for 1 h and incubated in sheep anti-Chx10 antibody 1:100

(AB9016, Chemicon) at room temperature for 48 hrs. Slices

were washed in PBS (3 x 10min) and incubated for 2 h at room

temperature with rabbit anti-sheep Dylight 488 1:400 (SA5-

10054, Thermo Fischer Scientific) followed by a final wash in

PBS (3 x 10min). Slices were then placed on slides within

tissue spacers and coverslipped with a Vectashield mounting

medium (Vector labs). Sections were scanned using a laser

scanning confocal microscope (Leica True Confocal System
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FIGURE 2

Reducing dimensionality of electrophysiological properties. (A) Correlation matrix of p-values from a Pearson’s linear correlation of 12 (Ai) and 6

(Aii) electrophysiological properties from 143 Shox2 and 28 Chx10 neurons. Dark shading corresponds to highly correlated values (p < 0.001).

(B) Three-dimensional representation of all 171 neurons included (black dots) after performing principal component analysis (PCA). X axis is the

1st principal component (PC), Y axis is the 2nd PC, and Z axis is the 3rd PC, representing 23.0%, 21.7% and 18.3% of the variability, respectively.

SP8) in stacks of 10 optical sections across approximately 50µm

at 20x magnification. Images were condensed into maximum

projections using the Leica collection software and brightness

and contrast were adjusted in ImageJ.

Results

Correlation of the electrophysiological
properties of adult Shox2 and Chx10
neurons

Excitatory spinal neurons expressing the transcription factor

Shox2 are heterogeneous in terms of firing properties (Garcia-

Ramirez et al., 2021). Since the passive and active properties

shape the recruitment of, integration of inputs to, and output

of neurons (Wilson et al., 2007; Tazerart et al., 2008; Harris-

Warrick, 2010; Dougherty and Ha, 2019; Grillner and El

Manira, 2020), we hypothesized that these properties could be

used to subclassify Shox2 neurons. Since the Chx10 neuronal

population partly overlaps with Shox2 neurons and is also

heterogeneous (Dougherty and Kiehn, 2010; Zhong et al.,

2010, 2012; Dougherty et al., 2013; Husch et al., 2015) we

included a smaller set of Chx10 neurons in our sample. We first

considered passive and active membrane properties of Shox2

and Chx10 neurons (Figure 1) and performed a correlation

analysis (Figure 2Ai) to eliminate redundancy in the parameters

measured. We found high correlations (p < 0.001) between

some passive and active cellular properties (Figure 2Ai black

squares). We removed the variables that were highly correlated

from the analysis, which left 6 variables that were not highly

correlated: resting membrane potential (Em), capacitance (Cm),

fast afterhyperpolarization (fAHP) duration, fAHP amplitude,

activation voltage of the persistent inward current (PICon)

and frequency-current (F/I) slope (Figure 2Aii). To visualize

the neurons in a three-dimensional plane, we performed a

principal component analysis (PCA) based on the six variables

(Figure 2B). The first three principal components explained 63%

Frontiers inNeural Circuits 05 frontiersin.org

https://doi.org/10.3389/fncir.2022.957084
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Garcia-Ramirez et al. 10.3389/fncir.2022.957084

of the variability of the 171 neurons. This analysis shows that

dimensionality of the variables recorded can be reduced by

removing highly correlated properties and considering only 6

neuronal properties.

Electrophysiological comparison
between Shox2 and Chx10 neuronal
populations

Graphical display of the three first PCAs shows that

Shox2 and Chx10 neurons partially overlap. We compared

the initial 12 electrophysiological properties of adult Shox2

neurons (n = 143) with those of Chx10 neurons (n = 28)

(Figure 3, Supplementary Table 1). Shox2 neurons had lower

input resistance (Rin), larger capacitance (Cm), shorter AP

half width, shorter fAHP duration, and more depolarized PIC

activation voltages (PIC on) than Chx10 neurons. Resting

membrane potential, time constant, rheobase, action potential

threshold, the sAHP duration, fAHP amplitude, and F/I

slope were similar between the groups. This comparison

shows that Shox2 neurons and Chx10 neurons share some

electrophysiological characteristics, however, differences are

observed between subpopulations.

Classification of the neurons based on
firing type

To identify differences in active and passive cellular

properties based on firing type, we classified the 171 Shox2

and Chx10 neurons based on the response to suprathreshold

depolarizing current steps. We found four types of responses

(Figure 4A). Neurons firing throughout the current step were

most prevalent. Over half of the neurons fired action potentials

throughout and are referred to here as tonic firing neurons

(Figure 4 cyan, n = 88, 51.5%). Initial doublet neurons (blue, n

= 49, 28.7%) fire a doublet of action potentials at the start of

the step (initial interspike interval <40ms) and continue firing

throughout the step but at a lower frequency (steady frequency

of 3.9 ± 5.1Hz). Neurons with burst of action potentials at the

start of the current step are called initial burst firing neurons

(red, n= 24, 14%). These neurons displayed three or more initial

spikes at high frequency (>25Hz) and were either silent or fired

action potentials later in the step but these action potentials

were not a regular frequency like the tonic neurons. Lastly, a

small number of neurons, delay neurons (green, n = 10, 5.9%)

fired action potentials after a delay from the beginning of the

current step. We next looked at the prevalence of firing types

in Shox2 and Chx10 neuronal populations. Of the 143 Shox2

neurons, tonic firing neurons were most common (n = 78,

54.6%), followed by initial doublet (n = 36, 25.2%) and initial

FIGURE 3

Comparison between Shox2 and Chx10 neurons. (A)

Three-dimensional representation of 143 Shox2 neurons (black

dots) and 28 Chx10 neurons (red dots) on the three principal

components (same as Figure 2, but di�erent angle). Ellipsoids

are centered on the mean for the three first PCs and semi-axes

are generated by the standard deviation of each of the three first

PCs. Black and red ellipsoids represent groups of Shox2 and

Chx10 neurons, respectively. (B) Comparison of

electrophysiological properties measured from Shox2 neurons

(black) and Chx10 neurons (red). Filled circles represent the

mean and error bars the standard deviation, unfilled gray circles

represent individual neurons. Resting membrane potential (Em),

input resistance (Rin), time constant (τ ), calculated capacitance

(Cm), rheobase, action potential (AP) threshold, AP width, fast

after hyperpolarization (fAHP) duration, slow

afterhyperpolarization (sAHP) duration, fast after

hyperpolarization (fAHP) amplitude, PIC activation voltage

(PICon), and slope of the AP frequency/current (F/I) curve. *p <

0.05, unpaired t-test or Mann-Whitney test.

burst (n = 21, 14.7%) firing, with delayed firing neurons (n

= 8, 5.6%) being rare (Figure 4Bii, left side). Of the 28 Chx10

neurons, initial doublet firing neurons were most prevalent (n

= 13, 46.4%), over one third were tonic firing (n = 10, 35.7%),

and few neurons fired with an initial burst (n = 3, 10.7%) or

were delayed firing (n = 2, 7.1%, Figure 4Bii, right side). The

difference in the distribution of the 4 firing types in Shox2 and

Chx10 neuronal populations was statistically significant (χ2
(3)

Frontiers inNeural Circuits 06 frontiersin.org

https://doi.org/10.3389/fncir.2022.957084
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Garcia-Ramirez et al. 10.3389/fncir.2022.957084

FIGURE 4

Shox2 and Chx10 neurons sorted based on type of firing. (A) Representative traces of the four action potential firing types in response to the

injection of a 1-s depolarizing current step. (Bi) Pie chart and incidence of the four types of firing responses observed in all 171 neurons. 83.6%

of the neurons were Shox2 neurons (solid) and 16.4% were Chx10 neurons (hatched). (Bii) Incidence of the four firing types observed in 143

Shox2 neurons (left) and in 28 Chx10 neurons (right). (C) Three-dimensional representation of all neurons (Shox2 filled dots, Chx10 unfilled dots)

on the three principal component axes (same as Figure 2B, but di�erent angle displayed). Ellipsoids are centered on the mean for the three first

PCs and semi-axes are generated by the standard deviation of each of the three first PCs. Cyan, blue, red, and green ellipsoids represent tonic,

initial doublet, initial burst, and delay firing subgroups, respectively. (D) Comparisons of electrophysiological properties of tonic, initial doublet,

initial burst and delay firing neurons. Colors as in other panels. Filled circles represent the mean and error bars the standard deviation, unfilled

gray circles represent individual neurons. Properties as in Figure 3. *p < 0.05, one-way ANOVA with Tukey post-hoc test or Kruskal-Wallis with

Dunn’s post-hoc test. * significantly di�erent from the corresponding color coded group.

= 30.71, p < 0.0001). Chx10 neurons preferentially displayed

initial doublet firing and Shox2 neurons weremostly tonic firing.

To identify the electrophysiological characteristics that

corresponded to the different firing types, we performed

statistical analyses on both groups considered as a single

population (Shox2 and Chx10 neurons, Figure 4D and

Supplementary Table 2). Neurons with delayed firing had

lower input resistances than initial doublet firing neurons,

longer action potential durations than tonic neurons, shorter

slow AHP durations than burst firing neurons, and more

depolarized PIC activations than tonic and initial doublet

neurons. Initial burst firing neurons had longer slow AHPs

and more hyperpolarized PIC activation thresholds than both

delay and tonic firing neurons. Initial doublet neurons had

longer slow AHPs than tonic firing neurons. Thus, there was no

property that distinguished one firing type from all others but
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there were differences in properties, particularly those related to

action potential duration and AHP.

We also compared properties of Shox2 and Chx10 neurons

within each firing group (Table 1). Considering only tonic firing

neurons, Shox2 neurons had longer time constants (Mann-

Whitney test, U = 236, p = 0.04), higher capacitance (Mann-

Whitney test, U = 199, p = 0.01), shorter AP half width

(Mann-Whitney test, U = 195.5, p = 0.009), and shorter fast

(Mann-Whitney test, U = 181, p = 0.005) but longer slow

(Mann-Whitney test, U = 222, p = 0.02) AHPs. We did not

find differences between Shox2 and Chx10 neurons with initial

doublet firing patterns. The numbers of delayed and initial burst

firing Chx10 neurons were low and precluded from statistical

analysis. The electrophysiological properties between neurons

classified by type of firing were expected to be different since

action potential features and spike frequency rely on these

properties. Although firing types were differentially distributed

in Shox2 and Chx10 populations, it is not possible to separate

Shox2 and Chx10 neuronal populations by firing type since the

types are common to both.

k-means cluster analysis to classify Shox2
neuronal subtypes

Firing type classification is based on a subjective analysis

which could bias the results. To classify Shox2 neurons

based on active and passive cellular properties in an

unbiased way, we performed a k-means cluster analysis

(see Methods) on the set of 171 neurons, which included

mainly Shox2 neurons and a small sampling of Chx10

neurons to serve as comparison with a known subdivision

with the Shox2 population. The cluster analysis considered

the six electrophysiological parameters that were not highly

correlated, as described above (Figure 2A). To select the

number of clusters (k) that best fit the data, we ran the k-means

algorithm one thousand times from k = 2–8 and plotted

the highest silhouette value in each condition (Figure 5A).

We found that that the silhouette value reached a plateau

from k = 4 to k = 8 and, therefore, we selected k=4 for

the analysis.

The k-mean cluster algorithm generated four clusters

(Figure 5Bi). Two of the clusters contained the majority of

the neurons (k3 and k4), with each containing ∼40% of the

population. Since Shox2 neurons were 83% of the neurons

included in the analysis, the distribution of the 143 Shox2

neurons was largely similar to that of the entire population

(Figure 5Bii, left side) with 23, 7, 56, and 57 neurons in clusters

were k1, k2, k3, and k4, respectively. Of the 28 Chx10 neurons

(Figure 5Bii, right side), no neurons were in k1, 4 were in

k2, and k3 and k4 each included 12 Chx10 neurons. The

difference in the distribution of the 4 k-clusters was statistically

significant comparing Shox2 and Chx10 populations (χ2
(3)

=

22.85, p<0.0001). k1 cluster is composed exclusively of Shox2

neurons (binomial test p = 0.01). Chx10 neurons appear more

prevalent in k2 cluster than Shox2 neurons, with 14% of Chx10

neurons but only <5% of Shox2 neurons belonging to that

cluster, but this is not significant (binomial test p = 0.09).

The proportion of Chx10 neurons in each of the k3 and k4

clusters (39.2% and 39.9%) is similar to that of Shox2 neurons

(42.9% each, binomial test, p = 0.7 and p = 0.8, for k3 and

k4, respectively). The silhouette values for each of the 171

neurons in the k-clusters (Figure 5C) show that most of the

neurons have positive values, indicating that the neuron is

close to its cluster centroid and far from the centroids of the

other clusters. Few neurons (n = 8) have negative values which

indicate that the neuron is close to its cluster centroid but also

close to other cluster centroids. Together, this shows that the k-

means analysis (Figure 5D) associates the majority of neurons

suitably and that k3 and k4 are comprised of Shox2 and Chx10

neurons rather equally and k1 is exclusively constituted of

Shox2 neurons.

To identify the electrophysiological characteristics of each

k-cluster, we performed statistical analysis on the 4 k-clusters

considering the 171 neurons (Figure 5, Supplementary Table 3).

Unlike when separated by firing type, here, there were more

differences between clusters in both the 6 properties used for

the analysis and the 6 other properties that were found to be

highly correlated (Figure 5E, compared to Figure 4D). Neurons

in the k1 cluster are distinguished from all other clusters in that

they have the lowest input resistance and highest capacitance,

suggesting that these are larger neurons. They also had the

longest time constant and most depolarized voltage thresholds,

although these were not significantly different from the neurons

in the k2 cluster. Neurons in the k2 cluster can be distinguished

from the other clusters by their longer AP and fast AHP

durations. Neurons in the k3 cluster have the largest fast AHPs

and have the most depolarized membrane potentials, although

the latter is not different than neurons in the k2 cluster. Neurons

in the k4 cluster have themost hyperpolarized restingmembrane

potentials and narrow action potential, although neither of these

are significantly different from k1 neurons. Neurons in the k4

cluster have more hyperpolarized PIC activation voltages than

neurons in k1. Taken together, this suggests that k1 cluster

properties may be characteristic of Shox2+Chx10− neurons

while properties of k3 and k4 clusters, and k2 cluster to a lesser

extent, may be characteristic of Shox2+Chx10+ neurons.

We next performed statistical analysis of the k clusters

considering Shox2 and Chx10 neurons separately (Table 2).

In k2, which had a higher proportion of Chx10 neurons

and few Shox2 neurons, the only significant difference was

that Cm of k2 Shox2 neurons was higher than of k2 Chx10

neurons (Mann-Whitney test, U = 2, p = 0.02). We did

not find differences in k3 cluster (with equal proportions

of Shox2 and Chx10 neurons) between Shox2 and Chx10
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TABLE 1 Comparison of Shox2 and Chx10 neurons within each firing type.

Property/Type of

cell

Tonic Initial doublet Initial burst Delay

Shox2

(n= 78)

Chx10

(n= 10)

p Shox2

(n= 36)

Chx10

(n= 13)

p Shox2

(n= 21)

Chx10

(n= 3)

Shox2

(n= 8)

Chx10

(n= 2)

Membrane potential

[mV]

−49.7± 6 −48.0± 6 0.25 −48.6± 7 −50.9± 6 0.1 −48.5± 6 −44.7± 3 −50.1± 6 −48.0± 4

Input resistance [MΩ] 704± 363 758± 277 0.32 838± 433 878± 258 0.46 626± 241 1,073± 795 445± 189 841± 278

Time constant [ms] 42.5± 20 29.8± 9 *0.04 41.9± 22 47.2± 12 0.1 37.2± 14 37.4± 13 41.0± 26 43.5± 28

Capacitance [pF] 71.1± 50 43.1± 16 *0.01 58.1± 33 56.9± 17 0.5 66.3± 37 42.2± 14 108.0± 79 60.7± 53

Rheobase [pA] 23.3± 14 26.9± 17 0.4 21.6± 11 16.5± 7 0.09 24.0± 10 18.0± 13 28.5± 15 22.0± 8

AP Threshold [mV] −36.4± 4 −36.5± 5 0.4 −35.9± 4 −35.6± 3 0.7 −37.2± 6 −37.7± 5 −33.6± 4 −32.5± 7

AP Half width [ms] 1.01± 0.3 1.17± 0.1 *0.009 1.08± 0.2 1.25± 0.3 0.05 1.20± 0.4 1.12± 0.3 1.41± 0.4 1.43± 0.4

fAHP duration [ms] 4.4± 1.8 6.0± 2.0 *0.005 4.3± 1.5 4.7± 1.6 0.5 5.3± 2.8 7.5± 6.2 5.5± 1.4 5.9± 1.1

sAHP duration [ms] 54.8± 34 32.8± 26 *0.02 101.4± 56 80.6± 37 0.2 156.1± 85 122.4± 119 84.1± 97 69.0± 14

fAHP amplitude 0.3± 0.08 0.25± 0.07 0.05 0.26± 0.08 0.26± 0.07 0.6 0.24± 0.1 0.29± 0.03 0.28± 0.06 0.28± 0.09

PIC on [mV] −47.2± 5 −49.4± 3 0.15 −48.7± 4 −50.5± 5 0.2 −50.6± 6 −54.7± 2 −43.6± 3 −45.9± 7

AP F/I slope 0.36± 0.21 0.26± 0.15 0.15 0.29± 0.17 0.27± 0.09 0.9 0.24± 0.15 0.11± 0.14 0.21± 0.18 0.16± 0.18

*p < 0.05, t-test or Mann-Whitney comparing Shox2 vs. Chx10.
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FIGURE 5

k-means clustering. (A) Plot of the highest silhouette values for each number of clusters (k, x axis). (Bi) Incidence of the four k clusters in 171

neurons, with 83.6% of the neurons from the Shox2 population (solid) and 16.4% were Chx10 neurons (hatched). k1 cluster (purple, n = 23), k2

cluster (cyan, n = 11), k3 cluster (yellow, n = 68), and k4 cluster (gray, n = 69). The same color code is used throughout the figure. (Bii) Incidence

of k clusters observed in 143 Shox2 neurons (left): k1 cluster (n = 23), k2 cluster (n = 7), k3 cluster (n = 56) and k4 cluster (n = 57). Incidence of

the k clusters observed in 28 Chx10 neurons (right): k1 (n = 0), k2 cluster (n = 4), k3 cluster (n = 12), and k4 cluster (n = 12). (C) Plot of the

cluster silhouette values to demonstrate how similar the individual neurons are to the neurons of their own clusters. Each bar represents a single

neuron. (D) Three-dimensional representation of all neurons (Shox2 filled dots, Chx10 unfilled dots) on the three principal components (same as

Figure 2B but di�erent angle displayed). Ellipsoids are centered on the mean for the three first PC and semi-axes are generated by the standard

deviation of each of the three first PCs. (E) Comparisons of electrophysiological properties of the neurons from k1, k2, k3 and k4 clusters. Filled

circle represents the mean and error bars the standard deviation, unfilled gray circles represent individual neurons. *p < 0.05, one-way ANOVA

with Tukey post-hoc test or Kruskal-Wallis with Dunn’s post-hoc test. * significantly di�erent from the corresponding color coded group.

populations. The k4 also had equal proportions of Shox2 and

Chx10 neurons and the only differences between the Shox2

and Chx10 neurons in that cluster were in AP halfwidth

(Mann-Whitney test, U = 168.5, p = 0.005) and fast AHP

amplitude (unpaired t test, t(2.04) = 67, p= 0.04). Notably, there

were less differences between Shox2 and Chx10 neurons from

individual k clusters than there were differences in the whole

populations of Shox2 and Chx10 neurons. This demonstrates

similarity within clusters regardless of the transcription

factor expressed.
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TABLE 2 Comparison of properties of Shox2 and Chx10 neurons in each k cluster.

Property/Cluster k1 k2 k3 k4

Shox2

(n= 23)

Shox2

(n= 7)

Chx10

(n= 4)

p Shox2

(n= 56)

Chx10

(n= 12)

p Shox2

(n= 57)

Chx10

(n= 12)

p

Membrane potential

[mV]

−48.8± 5 −47.3± 5 −44.3± 3 0.4 −44.4± 3 −45.3± 4 0.4 −51.7± 5 −52.3± 5 0.4

Input resistance [MΩ] 408± 160 993± 388 1,190± 567 0.9 797± 407 770± 301 0.8 716± 321 825± 226 0.3

Time constant [ms] 56.9± 24 47.9± 11 35.5± 14 0.2 37.9± 18 37.9± 14 0.7 37.9± 18 43.1± 15 0.2

Capacitance [pF] 148.3± 67 53.1± 16 30.4± 8 *0.02 51.6± 20 52.9± 19 0.9 56.5± 21 55.1± 20 0.9

Rheobase [pA] 21.9± 14 16.9± 4 16.8± 12 0.9 25.1± 15 25.8± 15 0.8 22.9± 11 17.0± 8 0.07

AP threshold [mV] −33.4± 4 −32.6± 6 −38.5± 2 0.4 −36.6± 2 −36.7± 5 0.9 −37.5± 5 −34.3± 4 0.5

AP half width [ms] 1.01± 0.3 1.71± 0.2 1.35± 0.4 0.2 1.14± 0.3 1.20± 0.2 0.5 1.00± 0.3 1.20± 0.3 *0.005

fAHP duration [ms] 4.1± 1.2 10.2± 2.0 10.5± 3.1 0.9 4.5± 1.7 4.8± 1.0 0.5 4.1± 1.3 4.7± 1.1 0.1

sAHP duration [ms] 62.9± 46 120.1± 107 60.0± 48 0.3 93.6± 64 72.2± 63 0.2 76.3± 64 76.9± 42 0.5

fAHP amplitude 0.32± 0.08 0.32± 0.13 0.32± 0.04 0.8 0.23± 0.07 0.24± 0.05 0.5 0.31± 0.06 0.26± 0.07 *0.04

PIC on [mV] −45.2± 5 −46.4± 7 −52.1± 3 0.07 −47.5± 4 −49.0± 6 0.3 −49.5± 5 −50.8± 4 0.4

AP F/I slope 0.36± 0.19 0.32± 0.12 0.24± 0.21 0.5 0.31± 0.23 0.19± 0.11 0.07 0.31± 0.17 0.29± 0.10 0.7

*p < 0.05, t-test or Mann-Whitney comparing Shox2 vs. Chx10.
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FIGURE 6

Hierarchical clustering. (A) Dendrogram plot of the hierarchical binary cluster tree of 171 neurons. Clusters are generated by natural divisions

with the cuto� below the value of the maximum inconsistency coe�cient. Clusters are color coded: blue for H1 cluster, orange for H2 cluster,

(Continued)
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FIGURE 6

yellow for H3 cluster, purple for H4 cluster, green for H5 cluster, and cyan for H6 cluster. The same color code is used for the other panels. The

lines below correspond to the type of neurons with Shox2+ neurons in black and Chx10+ neurons in red. (Bi) Incidence of the six H clusters in

all 171 Shox2 neurons (solid) and Chx10 neurons (hatched). H1 cluster (n = 15), H2 cluster (n = 20), H3 cluster (n = 32), H4 cluster (n = 25), H5

cluster (n = 27) and H6 cluster (n = 52). (Bii) Incidence of the H clusters observed in 143 Shox2 neurons (left): H1 (n = 15), H2 (n = 20), H3 (n =

24), H4 (n = 20), H5 (n = 25) and H6 cluster (n = 39). Incidence of the H clusters observed in 28 Chx10 neurons (right): H1 and H2 (n = 0), H3 (n

= 8), H4 (n = 5), H5 (n = 2) and H6 cluster (n = 13). (C) Three-dimensional representation of all neurons (Shox2 filled, Chx10 open) on the three

principal components (same as Figure 2B but a di�erent angle). Ellipsoids are centered on the mean for the three first PCs and semi-axes are

generated by the standard deviation of each three first PC. (D) Plot of the cluster silhouettes values. (E) Comparisons of electrophysiological

properties of the neurons from H1, H2, H3, H4, H5 and H6 clusters. Filled circles and error bars represent the mean and standard deviation, open

gray circles represent individual neurons. *p < 0.05, one-way ANOVA with Tukey post-hoc test or Kruskal-Wallis with Dunn’s post-hoc test.

*significantly di�erent from the corresponding color coded group.

Hierarchical cluster analysis to classify
subpopulations of Shox2 and Chx10
neurons

The number of clusters in the k-means analysis here was

defined by the elbow rule on a graph of the silhouette values

(Allen et al., 2014; Vergara et al., 2020) which can be considered

arbitrary. Hierarchical clustering produces a dendrogram that

facilitates the visualization of natural clustering, and, therefore,

represents a more unbiased method of classification (Martinez

et al., 2017; Di Miceli et al., 2020). Thus, we performed an

unbiased hierarchical clustering (see Methods) considering the

same set of data used for k-means algorithm (171 neurons, 6

variables in Figure 2Aii). The algorithm established 6 clusters

generated by natural divisions with cutoffs below the value of the

maximum inconsistency coefficient. The component neurons

of each hierarchical cluster (H cluster) can be visualized in a

dendrogram (Figure 6A).

Each of the six H clusters (Figure 6Bi) contained 8.8–30.4%

of the input population. Based on the silhouette values and the

ellipsoids on the PCA graphs (Figures 6C,D), the first 5 clusters

described their constituent neurons well with mainly positive

values, where the largest cluster was H6 and 29% of neurons

had negative values. When considering the 143 Shox2 neurons

(Figure 6Bii, left) separately, neurons were relatively evenly

distributed between H1–H5 (n = 15–25 in each) with more

neurons in H6 (n = 39). The 28 Chx10 neurons (Figure 6Bii,

right) were distributed between H3–H6 clusters (n = 2–13)

but there are no Chx10 neurons in H1 and H2 clusters. The

difference in the distribution of the 6 H-clusters was statistically

significant when comparing Shox2 and Chx10 populations

(χ2
(5)

= 14.95, p = 0.01). Note that H1 and H2 clusters were

composed of Shox2 neurons exclusively and these two clusters

were most similar to each other, as seen by the height of the

next branch point in the analysis. Although clusters H3-H6

contained both Shox2 and Chx10 neurons, the uneven numbers

of Shox2 and Chx10 input neurons (143 vs. 28) should be

considered (Figure 6Bii). H3 and H6 clusters were enriched in

Chx10 neurons, H5 was enriched in Shox2 neurons, and the

proportions of Shox2 and Chx10 neurons in H4 were similar.

To identify the electrophysiological characteristics of each

H-cluster, we performed statistical analysis on these clusters

considering all 171 neurons (Figure 6E, Supplementary Table 4).

Neurons in the H1 cluster displayed the smallest fast AHP

amplitudes and highest firing frequencies in response to

depolarizing current steps but these were not significantly

different from all other clusters. The neurons in the H2 cluster

had the lowest input resistance (significantly different from

all but H5), highest capacitance, and most depolarized AP

threshold (significantly different from all but H1 and H5).

Neurons in the H3 cluster had the most hyperpolarized resting

membrane potentials, AP thresholds more hyperpolarized

than neurons in H2 and H5, and the most hyperpolarized

PIC activations (significantly different from all but H4).

Neurons in the H4 cluster had the highest input resistances,

lowest capacitance values, and longest fast AHP durations,

although none of these properties were significantly different

from neurons in the H6 cluster. Neurons in the H5

cluster had the highest fast AHP amplitude (significantly

different from all but H4). Lastly, neurons in the H6

cluster had the lowest firing frequencies in response to

depolarizing current steps (F-I slope, significantly different

from all but H3). Thus, hierarchical clustering generated

six distinct clusters, two of which were composed only of

Shox2 neurons, suggesting that larger neurons (low Rin, high

Cm) with depolarized voltage thresholds are characteristic of

Shox2+Chx10− neurons.

We also performed statistical analysis of the H clusters

considering Shox2 and Chx10 neurons separately (Table 3).

There were no Chx10 neurons in H1 and H2 clusters for analysis

and H5 contained only 2 Chx10 neurons which precluded

statistical testing. There were no differences between Shox2

and Chx10 neurons in the H6 cluster. There were only a

few differences between Shox2 and Chx10 neurons in H3 and

H4 clusters. Shox2 neurons in H3 had more depolarized AP

thresholds and shorter AP half widths than Chx10 neurons

in H3. In H4, the only significant difference was that Shox2

neurons had higher capacitance than the Chx10 neurons. Similar

to the k-means clusters, there were few differences between

Shox2 and Chx10 neurons within any of the hierarchical

clusters. These were outnumbered by differences between the
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TABLE 3 Comparison of properties of Shox2 and Chx10 neurons in each of the hierarchical clusters.

Property/Cluster H3 H4 H5 H6

Shox2

(n= 24)

Chx10

(n= 8)

p Shox2

(n= 20)

Chx10

(n= 5)

p Shox2

(n= 25)

Chx10

(n= 2)

p Shox2

(n= 39)

Chx10

(n= 13)

p

Membrane potential

[mV]

−56.0± 5 −55.0± 2 0.9 −46.9± 4 −45.8± 1 0.5 −48.3± 3 −48.0± 1 N/A −44.1± 3 −44.9± 4 0.5

Input resistance [MΩ] 640± 266 781± 202 0.2 1,074± 348 1,162± 495 0.9 731± 475 801± 423 N/A 673± 328 788± 296 0.1

Time constant [ms] 36.4± 15 47.9± 14 0.06 39.8± 11 30.0± 12 0.07 42.6± 24 39.9± 14 N/A 33.6± 17 38.2± 13 0.2

Capacitance [pF] 60.8± 23 63.0± 17 0.8 40.8± 15 26.5± 3 *0.01 64.6± 27 52.4± 10 N/A 52.0± 16 52.1± 18 0.8

Rheobase [pA] 20.6± 9 16.0± 8 0.2 18.1± 7 16.0± 10 0.5 26.8± 13 20.5± 15 N/A 30.4± 16 25.5± 15 0.3

AP threshold [mV] −39.3± 5 −34.0± 5 *0.02 −36.2± 5 −38.1± 2 0.6 −34.9± 3 −32.9± 2 N/A −36.6± 2 −36.7± 4 0.9

AP half width [ms] 0.98± 0.3 1.24± 0.3 *0.03 1.31± 0.4 1.20± 0.1 0.7 0.89± 0.2 1.00± 0.4 N/A 1.15± 0.3 1.25± 0.3 0.4

fAHP duration [ms] 3.9± 1.0 4.6± 0.9 0.1 6.9± 2.6 8.9± 3.8 0.3 3.9± 1.3 3.8± 1.5 N/A 4.9± 1.7 5.1± 1.5 0.4

sAHP duration [ms] 94.4± 70 85.3± 46 >0.9 86.1± 73 42.3± 46 0.1 53.7± 42 52.3± 24 N/A 97.9± 72 67.8± 61 0.2

fAHP amplitude 0.27± 0.06 0.24± 0.07 0.6 0.31± 0.09 0.32± 0.04 0.6 0.36± 0.06 0.32± 0.04 N/A 0.25± 0.05 0.27± 0.05 >0.9

PIC on [mV] −51.9± 5 −52.1± 4 0.9 −50.6± 6 −52.5± 2 0.5 −44.9± 4 −44.8± 2 N/A −47.5± 4 −49.0± 6 0.3

AP F/I slope 0.28± 0.02 0.28± 0.03 0.8 0.44± 0.20 0.29± 0.21 0.2 0.33± 0.19 0.24± 0.17 N/A 0.18± 0.13 0.2± 0.11 0.7

*p < 0.05, t-test or Mann-Whitney comparing Shox2 vs. Chx10.
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FIGURE 7

Comparison between k and H clusters. (A) Thirteen possible

combinations between k-cluster and H-clusters (k & H pairing,

left) with the corresponding maximum percentage of

appearance (right). The pairings with percentages higher than

80% are marked with red arrows. k-clusters (left boxes), k1

(purple), k2 (blue), k3 (yellow), k4 (gray), H-clusters (right boxes),

H1 (blue), H2 (orange), H3 (yellow), H4 (purple), H5 (green) and

H6 (cyan). (B) Table shows the k & H pairing. Numbers indicate

the neurons within the corresponding cluster, k in columns and

H in rows. Red numbers are the neurons with pairing with

percentages higher than 80%.

clusters, suggesting relatively homogeneous populations within

each cluster.

Comparison of k-mean and hierarchical
clusters

In order to validate clustering results and determine the

differences between them, we paired the clusters generated by

k-means and hierarchical algorithms (Supplementary Figure 1).

k-means and H clusters overlapped in 13 combinations

(Figure 7A, left) and showed high correspondence. Considering

the H clusters with respect to the k clusters, all 15 of the neurons

in H1 corresponded to k3, all (32) in H3 were in k4, and nearly

all (19 of 20) of the neurons in H2 were in k1. Further, the

majority of H5 and H6 neurons were in k4 and k3, respectively,

where neurons in H4 were distributed but absent from k1. The

correspondence can also be considered the other way around.

Most neurons in the k1 cluster (19 of 23) are inH2,most neurons

in k2 (9 of 11) correspond to H4 neurons, neurons belonging to

k3 were mainly distributed on H1 and H6, and neurons in k4

neurons were dispersed but mainly in H3 and H5 (Figure 7B).

Furthermore, there were 6 combinations with high overlap

(>80% of maximum possibilities of pair appearance, Figure 7A,

right). These 6 combinations accounted for 86% of the 171 input

neurons (143 Shox2 neurons and 25 Chx10 neurons).

Further validation of clustering with
immunohistochemistry identified cells

A subset of the Shox2 neurons used for this analysis were

recorded with biocytin in the electrode and were recovered

for labeling with an antibody to Chx10. In total, we stained

8 neurons to determine Shox2+Chx10+ or Shox2+Chx10−

identity (Figure 8A). Of those stained, 2 Shox2 neurons were

Chx10− (Shox2+Chx10−) and 6 Shox2 neurons expressed

Chx10 (Shox2+Chx10+). We next determined which clusters

each of the 8 neurons belonged to. Considering k clusters

(Figure 8Bi), we found that Shox2+Chx10− were classified in

k1 (1 neuron) and k3 (1 neuron) clusters, while Shox2+Chx10+

neurons were classified in k2 (1 neuron), k3 (2 neurons),

and k4 (1 neuron) clusters. This matches rather well with

predictions from the clustering results (Figure 5) because k1

contained only Shox2 neurons and k2–k4 contained both Shox2

and Chx10 neurons. Considering H clusters (Figure 8Bii), we

found that Shox2+Chx10− where classified in H1 (1 neuron)

and H2 (1 neuron), the clusters devoid of Chx10 neurons.

The Shox2+Chx10+ neurons were in H3 (1 neuron), H4 (2

neurons), H5 (1 neuron) and H6 (2 neurons), all clusters

which contain both Shox2 and Chx10 neurons. Thus, these

results further support the ability of the H clustering method to

distinguish populations of Shox2 neurons.

Discussion

In the present study, electrophysiological properties were

used to define populations of adult spinal Shox2 interneurons.

Since Shox2 neurons overlap partly with Chx10-expressing

neurons (Dougherty et al., 2013), we included a group of

Chx10 neurons in our analysis. We classified the neurons

based on their type of firing into 4 groups, and there

were few significant differences between the groups in

terms of electrophysiological properties. On the contrary,

computational clustering methods delineated groups which

could be readily distinguished by active and passive membrane

properties. The k-means algorithm was run for 4 populations

of neurons while hierarchical clustering analysis defined 6

populations. Interestingly, in each of the two clustering

analyses, we found clusters containing exclusively Shox2

neurons, suggesting possible definition of Shox2+Chx10−

populations by electrophysiological properties. Finally, as

preliminary validation, Chx10 antibody staining of a small

subset of biocytin-filled and recovered Shox2 neurons showed

that all (8/8) of the filled and post-processed neurons were

appropriately found in the expected hierarchical (H) clusters

based on Chx10 presence/absence. The k-means clustering

corresponded to the expected in 7/8 cases. Taken together,

the data demonstrate that it is possible to classify neurons

Frontiers inNeural Circuits 15 frontiersin.org

https://doi.org/10.3389/fncir.2022.957084
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Garcia-Ramirez et al. 10.3389/fncir.2022.957084

FIGURE 8

Validation of clustering analyses with Chx10 staining of Shox2 neurons. (A) Examples of a Shox2+Chx10− (Ai) and a Shox2+Chx10+ (Aii) neuron

filled with biocytin (cyan) during recording of an identified Shox2 neuron (tdTomato, red) and stained with a Chx10 antibody. (B)

Three-dimensional representations of 8 Shox2 neurons processed for Chx10 identity (Shox2+Chx10−, diamonds; Shox2+Chx10+, squares) on

the three principal components (same as Figure 2B, but di�erent angle) for k-mean clusters (Bi) and hierarchical clustering (Bii). Ellipsoids are

centered on the mean for the three first PC and sem-axes are generated by the standard deviation of each of the three first PCs.

expressing Shox2 in at least six different subpopulations

based on active and passive membrane properties. These

subpopulations correspond well with Chx10 absence/presence

and may provide further divisions between neurons currently

defined with intersectional genetics.

Classification by firing type

The firing type of neurons, defined by the response to

current steps, is used to classify interneurons throughout

the CNS (Lopez-Garcia and King, 1994; Prescott and De

Koninck, 2002; Ruscheweyh and Sandkuhler, 2002; Dougherty

and Hochman, 2008; Dai et al., 2009; Dougherty and Kiehn,

2010; Yasaka et al., 2010; Zhong et al., 2010; Dougherty and

Chen, 2016). Prior studies have noted that Shox2 and Chx10

neurons are not entirely homogeneous (Dougherty and Kiehn,

2010; Zhong et al., 2010; Dougherty et al., 2013; Ampatzis

et al., 2014; Garcia-Ramirez et al., 2021). There were significant

differences in the distribution of neurons classified based on

the type of firing. The majority of Shox2 neurons displayed a

tonic response while the majority of Chx10 neurons displayed

initial doublet firing. Adult Chx10 neurons have been shown

to be predominantly tonic firing (Husch et al., 2015) which

aligns with 83% of the Chx10 neurons in the present study

firing throughout the current step. However, over half of the

Chx10 neurons firing throughout a current step here had an

initial doublet. The discrepancy may be due to the level of

description, type of recording (whole-cell vs. perforated patch),

or differences in neurons maintaining fluorescence expression

in the mouse lines used (Chx10-CFP vs Chx10GFP). Initial burst

(called phasic in some studies) and delayed firing types have been

reported in neonatal Chx10 neurons (Dougherty and Kiehn,

2010; Zhong et al., 2010). The types of firing patterns observed

are largely consistent between neonatal and adult but shifts in

the distributions with maturation have been noted previously

(Husch et al., 2015).

Unbiased cluster analysis to classify
Shox2 and Chx10 neurons

The differences in the groups generated based on the type

of firing was low. Additionally, a possible subclassification

that merged Shox2 and Chx10 populations was not evident.

Furthermore, subjectivity is another disadvantage for this type

of classification. Unsupervised computational algorithms, have

been used to unbiasedly classify neuronal populations based

on physiological, molecular, and anatomical features (Dombeck

et al., 2009; Karagiannis et al., 2009; Helm et al., 2013; Li

et al., 2017; Martinez et al., 2017; Sathyamurthy et al., 2018;

Mickelsen et al., 2019; Di Miceli et al., 2020). Two of the most

prevalent algorithms implemented in such analyses are k-means

and hierarchical clustering (Armananzas and Ascoli, 2015; Zeng

and Sanes, 2017). Both analyses group individual objects (in

this case neurons) based on similarities in input data (i.e.

electrophysiological characteristics). The k-means algorithm

requires a pre-established number of clusters (k value) set by the

operator. We tested the k-mean algorithm in a range from 2 to
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8 clusters, based on the idea of at least two populations of Shox2

neurons depending on the expression of Chx10 (Dougherty

et al., 2013) and at least four groups based on the type of firing.

We chose to proceed with 4 clusters because that resulted in

the highest mean silhouette value (Allen et al., 2014; Vergara

et al., 2020). However, we do not exclude the possibility of

finding higher silhouette values with more than 8 clusters. The

hierarchical cluster algorithm does not require the specification

of the number of clusters prior to initial analysis. We found

6 natural divisions in the data based on a cutoff threshold

below the value of the maximum inconsistency. Although the

analyses resulted in a different number of clusters there was

a high overlap between the two methods when clusters were

directly compared.

A main motivation for the analyses was to determine if

there was a way to identify subpopulations within a class of

interneurons using electrophysiological properties rather than

combinatorial genetics. The neurons expressing Shox2 can be

divided into 2 subpopulations based on the expression of Chx10,

Shox2+Chx10− and Shox2+Chx10+. When considering both

transcription factors, it should be noted that there are also

Chx10 neurons which do not express Shox2 (Shox2−Chx10+).

One may expect that electrophysiological properties are related

to transcription factor expression and inferred function. Thus,

there would be clusters that contain each of the possible

combinations. If this is the case, the distribution of Shox2 and

Chx10 neurons in the clusters identified by the k-means and

hierarchical algorithms could potentially be used to predict

the type of neurons (Shox2+Chx10− or Shox2+Chx10+) that

correspond to each cluster. For example, the lack of Chx10

neurons in k1, H1 and H2 clusters suggest that these clusters

are composed of Shox2+Chx10− neurons. H5 cluster could

also be considered as a putative Shox2+Chx10− cluster, since

93% of H5 cluster is comprised by Shox2 neurons, suggesting

higher influence of Shox2 features than Chx10. As k3, k4, H3,

H4 and H6 clusters have similar distributions of Shox2 neurons

(82, 83, 75, 80 and 75%, respectively) as the total proportion of

Shox2 neurons sampled (83%), we suggest that these clusters

are composed of Shox2+Chx10+ neurons. In contrast, Shox2

neurons constitute 64% of the neurons in k2. Even though this

percentage is lower than the total distribution of Shox2, this is

not significantly different (binomial test, p= 0.09) and therefore

we cannot classify them as Shox2−Chx10+ neurons.

We do not have any clusters of Shox2−Chx10+ neurons.

This is most likely because there is a low number of

Chx10 neurons in our analysis which resulted in an

underrepresentation of the population of Shox2−Chx10+

neurons. Our primary focus here was the division of the Shox2

population and how it would match up with the subgroupings

by transcription factor (Chx10) expression. A future analysis

may include a more balanced sample of Chx10 neurons, and

we expect that would generate clusters consisting of only

Chx10 neurons.

FIGURE 9

Arrangement of clusters in suggested order of gradient of

Shox2-like to Chx10-like properties. k-means (above) and

hierarchical (below) clusters arranged based on their similitudes

with Shox2 (left and black portion of the middle bar) and Chx10

(right and red portion of the middle bar) neuronal characteristics.

In order to validate clusters obtained from both hierarchical

and k-mean algorithms, previous studies have compared the

output of both clusters and then corrected one or both

algorithms (Karagiannis et al., 2009; McGarry et al., 2010;

Perrenoud et al., 2012; Helm et al., 2013; Pohlkamp et al.,

2014; Martinez et al., 2017). Here, we compared k-mean and

hierarchical clusters and found that in 86% of the neurons were

found in corresponding k-means and H-cluster pairs. Based

on the distribution of Shox2 and Chx10 neurons in the k and

H clusters, neurons can be arranged in a gradient from most

Shox2 neuron-like to a most Chx10 neuron-like (Figure 9).

The fact that k1, H1 and H2 clusters are composed only of

Shox2 neurons suggests that these clusters have the features of

Shox2+Chx10− neurons. k3, k4, H3, H4 and H6 are composed

of Shox2+Chx10+ neurons and the k2 cluster has an inclination

toward a Chx10 phenotype. The arrangement displayed here

could be considered as distinct populations of neurons or a

phenotypic gradient of Shox2 to Chx10 neuronal features.

Electrophysiological characteristics of
Shox2 and Chx10 neurons

The passive and active electrophysiological properties of

the neurons delineate firing responses of the cell to synaptic

inputs (Russo and Hounsgaard, 1999; Butt et al., 2002; Smith

and Perrier, 2006; Grillner and El Manira, 2020). Shox2 and

Chx10 neurons are involved on the generation of the locomotor

rhythm and pattern (Crone et al., 2008; Dougherty and Kiehn,

2010; Zhong et al., 2010, 2011; Dougherty et al., 2013; Dougherty

and Ha, 2019). Therefore, the electrophysiological passive and

active properties of the neuronal clusters and the differences

between them should provide insights into the neuronal

characteristics required for unique functional populations. We

found that Shox2 neurons have lower input resistances and

higher capacitance than Chx10 neurons, suggesting that Shox2

neurons are larger than Chx10 neurons. In fact, k1 and H2

clusters, that we consider to be Shox2+Chx10− neurons also

displayed low input resistances and high capacitances. On the
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other hand, the H4 cluster linked with a more Shox2+Chx10+-

like phenotype had high input resistances and low capacitances.

One characteristic of motoneurons is their spike frequency

adaptation in response to depolarizing current steps. Spike

frequency adaptation is related to the inactivation of Na+

channels and functionally related to the initiation of muscle

contraction (Miles et al., 2005; Brownstone, 2006). The initial

doublet and tonic firing types observed here differed in spike

frequency adaptation displayed. Spike frequency adaptation is

evident in the low slope values from initial double compared

with tonic neurons (Table 2). The significant differences

observed in the percentage of type of firing between Shox2

and Chx10 are due to mainly to the larger proportion of

Chx10 neurons with the initial doublet firing and higher

incidence of the tonic type of firing for Shox2 neurons. Chx10

neurons also displayed longer action potentials and fAHPs in

comparison to Shox2 (Table 2). In motoneurons, the fAHP

has been linked to the activation of high threshold transient

A-type K+ channels (Hess and El Manira, 2001; Harris-

Warrick, 2002). fAHP contributes to the adaptation observed in

initial doublet firing neurons (Baldissera and Gustafsson, 1974;

Madison and Nicoll, 1984; Mrowczynski et al., 2015). Here, we

found reduced fAHP amplitudes in neurons in the H1 cluster

(Shox2+Chx10−) and longer fAHP durations in neurons in

the k2 cluster (Shox2−Chx10+ enriched), which corresponds

well with the proportion of initial doublet firing neurons

in each group. Taken together, the computational clustering

analysis performed here exposed potential novel differences

between Shox2 populations that allow for hypotheses to be

made regarding the characteristics of these populations. It is

important to note that the electrophysiological recordings were

performed at room temperature, as with most recordings of

adult locomotor-related neurons in vitro (Husch et al., 2012;

Mitra and Brownstone, 2012; Hadzipasic et al., 2014; Smith and

Brownstone, 2020). The dynamics and activity of ion channels

may differ at physiological temperatures (Russell et al., 1994;

Li and Burke, 2001; Robertson and Money, 2012; O’Leary and

Marder, 2016). Although it is likely to affect values used here for

classification, diversity in properties is seen in spinal neurons in

vivo (Graham et al., 2004) and similar clustering methodologies

should be applicable.

Computational clustering impact

Recent advances in computational technologies have

increased our capabilities to cluster spinal neurons, based

on molecular profiles from RNA sequence analysis (Li et al.,

2017; Menon, 2018; Sathyamurthy et al., 2018; Mickelsen et al.,

2019). RNA sequence analysis provides us information about

the possibilities of neurons to express proteins that in turn

will form ion channels or define neurotransmitter machinery.

But, the ways by which these proteins actively participate

during behavior is dynamic (Hager et al., 2009; Tanay and

Regev, 2017). Classification based on electrophysiological

properties, should be considered as a complement to the

biomolecular identification of neurons. Clustering methods

with electrophysiological properties have been used to identify

neurons from other areas of the central nervous system

(Karagiannis et al., 2009; Perrenoud et al., 2012; Helm et al.,

2013; Martinez et al., 2017; Di Miceli et al., 2020). Here, in

addition to computational clustering to classify Shox2 and

Chx10 neurons, we were able to test the predicted clusters

with immunocytochemistry approaches with high accuracy.

The results observed and further validated allow some of the

electrophysiological properties that potentially conferred the

capacity to a group of neurons to perform specific locomotor

task to be inferred.

Limitations of computational clustering techniques include

the necessity of a large sample of neurons for the analysis

(Armananzas and Ascoli, 2015). Additionally, a large number of

parameters should be measured for each neuron in the sample

(Armananzas and Ascoli, 2015). Although here we demonstrate

that it is possible with a more limited number of parameters,

the larger number was collapsed by determining those that were

highly correlated. Another limitation is that most clustering

algorithms (including the two used here) require the number of

clusters generated to be pre-determined. In order to minimize

subjectivity in the number of clusters, these can be determined

based on mathematical criteria, as we did here. For k-means, the

elbow method considering silhouette values can be used (Allen

et al., 2014; Vergara et al., 2020) and a cutoff can be established

considering inconsistency coefficients for hierarchical clustering

(McGarry et al., 2010). However, computational clustering

overcomes limitations of other methods by being unbiased. For

example, the classification of neurons based on type of firing is

subjective and, therefore, susceptible to discrepancies. Both k-

means and hierarchical clustering are easy to implement, the

computations are fast, and they consider all of the data including

apparent outliers (Karagiannis et al., 2009; Armananzas and

Ascoli, 2015).

The computational unsupervised clustering technique used

here would be useful to classify subpopulations of spinal

interneurons in multiple applications. It could be used when

recording from neurons in in vitro preparations to avoid the

necessity of combinatorial transgenic mice. Additionally, in vivo

recordings often performed blindly (Tao et al., 2015; Lee and

Lee, 2017) but more intact preparations are important for the

understanding of neuronal spinal physiology in awake animal

models. Furthermore, electrophysiological methods to classify

neurons could be combined with other types of classifications,

such as large scale snRNA-sequencing (Sathyamurthy et al.,

2018; Patterson-Cross et al., 2021) or anatomical criteria

(Karagiannis et al., 2009; McGarry et al., 2010), to obtain a

multidimensional identification of spinal neuronal populations.

Finally, the cluster analysis performed here could eventually
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be converted to a semi-supervised machine learning model

by training the algorithm to classify a larger scale of spinal

neurons (Buccino et al., 2018; Paninski and Cunningham,

2018) that is capable of considering additional factors including

behavioral responses, connectivity, and/or neuromodulation,

thereby integrating cellular physiology to behavior.
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SUPPLEMENTARY FIGURE 1

Correspondence of k and H clusters. Correspondence of k-clusters (left

squares) and H-clusters (right squares) for each of the 171 Shox2

neurons (cell identification number on the left, Shox2 in black, Chx10 in

red). k-clusters (left boxes), k1 (purple), k2 (blue), k3 (yellow), k4 (gray),

H-clusters (right boxes), H1 (blue), H2 (orange), H3 (yellow), H4 (purple),

H5 (green), and H6 (cyan).

SUPPLEMENTARY TABLE 1

Statistical comparisons of Shox2 and Chx10 neuronal properties

presented in Figure 3.

SUPPLEMENTARY TABLE 2

Statistical comparisons of membrane properties by firing type of Shox2

and Chx10 neurons presented in Figure 4.

SUPPLEMENTARY TABLE 3

Comparison of cellular properties in neurons separated by k-means

clustering presented in Figure 5.

SUPPLEMENTARY TABLE 4

Comparison of cellular properties in neurons separated by hierarchical

clustering presented in Figure 6.
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