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Abstract: The cornea is a very particular tissue due to its transparency and its barrier 

function as it has to resist against the daily insults of the external environment. In addition, 

maintenance of this barrier function is of crucial importance to ensure a correct corneal 

homeostasis. Here, the corneal epithelial permeability has been assessed in vivo by means 

of non-invasive tetrapolar impedance measurements, taking advantage of the huge impact 

of the ion fluxes in the passive electrical properties of living tissues. This has been possible 

by using a flexible sensor based in SU-8 photoresist. In this work, a further analysis focused 

on the validation of the presented sensor is performed by monitoring the healing process of 

corneas that were previously wounded. The obtained impedance measurements have been 

compared with the damaged area observed in corneal fluorescein staining images. The 

successful results confirm the feasibility of this novel method, as it represents a more 

sensitive in vivo and non-invasive test to assess low alterations of the epithelial 

permeability. Then, it could be used as an excellent complement to the fluorescein staining 

image evaluation. 
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1. Introduction 

The cornea is one of the few human tissues that is always in direct contact with the environment. 

This fact, together with its transparency, makes the cornea a very special tissue. In particular, the 

corneal epithelium, which is the outer part of the cornea, acts as a barrier against the daily insults of the 

external environment. Moreover, and to ensure its transparency, the cornea does not have blood vessels 

for its nourishment. Nutrients are supplied by diffusion through the epithelium and endothelium layer, 

ensuring a proper homeostasis. These properties are critically dependent [1], therefore proper and 

quantitative measurements of the epithelium permeability are of special clinical interest. 

Nowadays, in clinical practice, the barrier function of the corneal epithelium and endothelium can 

be directly evaluated by measuring its permeability to fluorescein [2]. This is a non-invasive technique 

where the fluorescein is topically instilled and after several hours, when the dye becomes uniformly 

distributed through the cornea, it is measured in the cornea and anterior chamber by using a suitable 

fluorophotometer. Although optical fluorophotometers have evolved over the years giving pace to 

commercial instruments (i.e., Fluorotron Master, Ocumetrics, Inc., Mountain View, CA, USA), this 

technique still presents substantial variability between repeated measurements. This drawback 

indicates that a single-drop procedure is unreliable for monitoring individual patient changes [3], 

which, together with the time required to perform the measurement, reduces its application to experimental 

purposes only. 

In order to overcome the limitations of this method, our group has been focused in using the passive 

electrical properties of the cornea to assess the corneal barrier function [4–6]. The corneal electrical 

properties were firstly studied on excised lens from cow eyes by Pauly and Schwan [7]. In summary,  

in vitro analyses based on Translayer Electrical Resistance (TER) measurements have been consistently 

used to study the corneal permeability [8,9]. However, studies of the corneal electrical properties 

performed in in vivo conditions are quite limited as, only few reported works are available [10–12], 

revealing the difficulty of performing these analyses. The last approaches to perform in vivo 

measurements have adapted the existing TER measurement methods for being implemented in living 

animals [13–15]. However, the invasiveness of these procedures makes it impossible for being used in 

clinical practice. 

Microfabrication technologies developed for the microelectronic industry have been extensively 

developed during the last thirty years. Among the wide range of applications that have taken advantage 

of these technologies, sensors to monitor different ocular problems have been developed. In particular, 

one of the major interests has been focused on monitoring the intraocular ocular pressure (IOP) to 

study the disease glaucoma [16,17].  

Alternatively, there has been a lack of progress in applying these technologies for developing  

in vivo and non-invasive devices to assess the corneal barrier function. Our group studied how to solve 

this problem by performing tetrapolar impedance measurements with electrodes placed on the surface 
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of the cornea [5]. This method, besides the limitations encountered on its application, was 

experimentally validated by using a Pyrex planar sensing device [4]. To overcome the application 

problems caused by the rigid nature of the sensor and taking into account the expertise that our group 

has in processing SU-8 photoresist, this polymer was used to fabricate a flexible sensing device. With 

this flexible device the application method to assess the corneal barrier function is dramatically 

improved, as it can be observed in Figure 1. In particular, it is possible to minimize the influence of the 

tear film and therefore, to discern between lower and time-dependent alterations in the corneal 

epithelium permeability after instillation of very low concentrated BAC solution (0.01%) [18]. 

Figure 1. Image and sketch representation of how the impedance sensor is applied. It is 

interesting to note that the tear film distribution should be more homogeneous in the case 

of the flexible sensor. 

 

In this work a further analysis focused on the validation of the flexible sensor shown in Figure 1 and 

presented in a previous work from the authors [18] is described. This analysis consists in monitoring the 

healing process of corneas that were previously wounded. For that, the obtained impedance measurements 

are compared with fluorescein staining images, a commonly used method to evaluate structural alterations 

of the corneal epithelium. The obtained results are in agreement with the fluorescein evaluation. 

Moreover, it has been observed that the proposed method is able to detect small alterations of the 

epithelial permeability that cannot be observed in the case of fluorescein staining. This is of special 

relevance at the final stages of the wounding process when the structural damage of the epithelium is 

very low. Consequently, these results confirm the feasibility of the proposed method to complement 

the fluorescein staining technique in the case of lower alterations of the epithelial permeability. 
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2. Experimental Section 

2.1. Sensor Fabrication  

The electrode geometry of the SU-8 based impedance sensor that has been used in this work is 

shown in Figure 2. Its fabrication process was carried out in the clean room facilities at the Barcelona 

Microelectronics Institute (IMB-CNM). The devices were fabricated onto a silicon wafer used a carrier 

substrate. There, a Cr/Al (50/100 nm) bi-layer was evaporated as a sacrificial layer before depositing a 

first 25 µm thick SU-8 layer that was structured using a standard photolithography process.  Then, gold 

electrodes were defined onto the SU-8 layer after evaporating a 20/200 nm Ti/Au bi-layer (where Ti 

acts as an adhesion layer) by using another standard photolithography process and subsequent wet 

chemical etchings. A second 1 µm thick SU-8 layer was deposited and structured to define the 

electrodes and connecting pads while insulating the metal tracks. 

Figure 2. Sketch of the flexible sensor device and bottom image of the packaged sensor 

ready to be used with the 5 mm electrode configuration. 

 

Finally, and differently from the previous article from the authors, where the full fabrication process 

is described in more detail [18], the metallic sacrificial layer was removed by using an anodic metal 

dissolution. Now, detachment of the SU-8 structures was performed in a neutral salt solution bath by 

applying a positive potential to the metallic sacrificial layer. The use of an environmentally friendly 

media minimizes the delamination of the SU-8 structures, which was a handicap when using a  

HF-solution to etch a SiO2 sacrificial layer. Specifically, aluminum was dissolved by applying −0.2 V 

against an Ag/AgCl reference electrode. Under this potential the aluminum layer is dissolved in a very 
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short time (less than 10 min), while the chromium it is not dissolved. Therefore, a proper electrical 

contact is ensured along the whole wafer. 

Individual SU-8 sensor devices were connected to a printed circuit board (PCB) using zero insertion 

force (ZIF) connectors. In Figure 2, an impedance sensor ready for being used is shown. As it can be 

observed, the PCB was waterproof-protected with an epoxy resin (Epo-Tek OG147-7) in order to 

facilitate the sensor manipulation. Moreover, the electrodes were electrochemically coated with a 

porous layer of platinum black [19] in order to increase its specific surface and, therefore, decrease the 

electrode impedance value. In this work, all the experiments have been performed using the 5 mm 

electrode configuration (i.e., total sensor width, Ws = 5 mm), which was demonstrated to be the most 

suitable configuration to assess the epithelial permeability [18].  

2.2. Sensor Characterization 

The electrode–electrolyte impedance has been measured in order to evaluate the effect of the 

electrode modification process. For that, the impedance sensor was immersed in a physiological saline 

solution (0.9%wt. NaCl, resistivity at 298 K = 0.7 Ωm) where the electrode–electrolyte impedance was 

measured versus a platinum reference electrode (Radiometer Analytical, Villeurbanne, France) in the 

100 Hz to 100 kHz frequency range. Measurements were performed using a custom-made bipolar 

impedance analysis system [6,20], which allows the measurement of all electrodes simultaneously. 

To evaluate the parasitic effects of the electrode–electrolyte interface on the measured impedance, 

tetrapolar impedance measurements were also performed in the same saline solution. A custom-made 

tetrapolar impedance analysis system [21] was used to determine the frequency band where the 

parasitic effects of the electrode–electrolyte interface are depreciable (100 Hz to 1 MHz). Moreover, to 

verify the stability of the electrodes, these measurements were performed before and after each series 

of in vivo experiments.  

2.3. Experimental Procedures 

In this work, assessment of the corneal epithelium permeability has been performed by  

monitoring the healing process of rabbit corneas after being wounded. Experiments have been done  

in 50 New Zealand white rabbits which were anaesthetized with a single intramuscular injection  

of 50 mg/kg of ketamine (Imalgene 1000
®

, Merial, Lyon, France) plus 7 mg/kg of Xilacine (Rompun
®

, 

Bayer, Leverkusen, Germany). Then, both eyes were kept open by a blepharostat and a circular wound 

was performed in the central corneal epithelium by applying a 6 mm diameter paper disc which was 

previously soaked during 30 s with 10 µL of n-heptanol. After removing the paper disk, the cornea was 

rinsed with 10 mL of sterile saline solution. It has been reported that this protocol generates an 

epithelial wound with little or even no damage to the underlying stroma [22].  

To evaluate the wound healing, the impedance measurements performed with the proposed sensor 

have been compared with corneal fluorescein staining images. In brief, 40 µL of fluorescein (0.1%) 

solution was applied to the eye, which was followed by photography under a cobalt filter-attached  

slit-lamp [23]. The obtained images were analyzed with image analysis software (ImageJ) to determine 

the area affected by the wound. From this analysis it can be obtained the ratio between the area 
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affected by the wound and the total corneal area. This value, FITC, quantitatively expresses the 

information obtained from the fluorescein staining images.  

For the impedance measurements, the above-described home-made tetrapolar impedance analysis 

system together with a home-made multiplexer was used. With this system it was possible to acquire 

the impedance measurements of the four different electrode configurations in an automatic fashion.  

Both measurements were carried out on the same eye. Firstly, the impedance was evaluated using 

the flexible sensor and afterwards, the cornea was fluorescently stained. This procedure was repeated 

before wounding, to obtain the basal values, and after wounding (15 min and 6, 24 and 48 h). 

3. Results and Discussion 

The results presented in this work have been performed in collaboration with the pharmaceutics 

company SALVAT S.A. Impedance measurements performed during corneal epithelium wound 

healing process are shown in Figure 3 in both Bode and Nyquist representation. These results are 

presented by plotting the mean of all the measurements for each group performed with the 5 mm 

electrode configuration. As expected, an increase, in both the impedance module and phase, related to 

the elapsed time from wounding can be clearly observed. Moreover, the basal state is not even reached 

after 48 h. 

Figure 3. Experimental impedance measurements for the eyes, before and after being 

wounded. (left) Bode and (right) Nyquist representation of the mean values for each group. 

 

Figure 4 shows the images of the fluorescein staining during the evolution of the wound healing 

process. There, it is interesting to note that the cornea appears to be healthy after 48 h of wounding. 

Moreover, and taking into account that the fluorescein evaluation was performed after the impedance 

measurement, any structural alteration produced by the sensor application would be observed in the 

fluorescein staining images. Therefore, it can be stated that the impedance sensor does not damage the 

corneal surface.  
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Figure 4. Fluorescent staining images, wherein the corneal epithelium wound appears in 

bright green upon illumination by blue cobalt light. It can be observed the evolution of the 

healing process along the time. 

 

To quantitatively expresses the information obtained from the fluorescein staining images, the ratio 

between the area affected by the wound and the total corneal area (FITC) has been measured.  

In Figure 5, the impedance values from measurements performed before and after the wounding are 

shown and compared to the FITC values obtained at the same time. In particular, values of imaginary 

part measured at 2 KHz, which was proposed as an indicator of the epithelial permeability [18], are 

shown in a boxplot representation for each measured time. It is interesting to note that the value of the 

proposed indicator after wounding is almost null. This fact denotes that the proposed indicator is 

mainly related to the corneal epithelium barrier function since the n-heptanol removes all the epithelial 

cells and, therefore, no barrier exists. It can be also observed that the value of the indicator after 48 h is 

lower than the basal measurement. On the contrary, in both fluorescein tests performed after 48 h 

(optical image shown in Figure 4 and FITC measurement in Figure 5, left) the corneal epithelium 

appears to be healthy. Therefore, it can be stated that although fluorescein test has more accuracy to 

evaluate the area affected by the wounding, its accuracy is substantially reduced to evaluate the 

epithelial permeability in advanced stages of the healing process. In those stages, our proposed method 

is more sensitive to assess the epithelial permeability; then, it could be used as a good complement to 

the more subjective in vivo measurements of the fluorescein test.  

Figure 5. Boxplot representations of the measured wound affected area (FITC) (left) and 

the value of the imaginary part of the impedance measure at 2 kHz (right). Measurements 

have been performed on the same eye, before wounding (basal) and after 15 min, 6 h, 24 h, 

48 h, 72 h and 96 h. 
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Moreover, these results can be compared with the results reported by Fukuda and Sasaki, who used 

a non-invasive method in a similar experimental procedure [15]. Fukuda and Sasaki performed the 

impedance measurements at 1 kHz with two circular gold wire electrodes placed on the corneal 

surface. Their results, which were presented as the percentage variation of the impedance modulus, 

showed a temporal evolution similar to the results presented here. However, the variation measured 

after wounding is much lower than the variation obtained with the method presented in this work (50% 

variation reported by Fukuda and Sasaki vs. 96,7% variation obtained in our model). Since the range of 

the variability is similar in both methods, the higher variation obtained with our method indicates that 

it has a higher sensitivity than the one presented by Fukuda and Sasaki. 

4. Conclusions 

In previous studies, the feasibility of a new model to non-invasively assess the corneal epithelial 

permeability through tetrapolar impedance measurements was demonstrated by using a flexible 

sensing device. Here, a variation on the fabrication process of the SU-8 based sensing device is 

reported in order to improve the fabrication yield. Moreover, the usability of the flexible sensor has 

been demonstrated by evaluating the corneal permeability during the healing process of wounded 

corneas. The impedance results obtained with the fabricated sensing device have been compared with 

their corresponding fluorescein staining images, which is the most extensively used clinical method to 

evaluate the corneal permeability. The results show that 48 h after being wounded, corneas which 

appear to be healthy when being fluorescein stained, have not recovered its basal state if the impedance 

measurements are taken into account. This demonstrates that the accuracy in evaluating the corneal 

permeability of our proposed method is higher. Then, this method shows a great value for being used 

in advanced stages of the healing process. These results, together with the device usability, places the 

presented method as a reliable complement for the more subjective in vivo evaluation performed with 

fluorescein staining. 
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