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A B S T R A C T   

In survival and stochastic lifespan modeling, numerous families of distributions are sometimes 
considered unnatural, unjustifiable theoretically, and occasionally superfluous. Here, a novel 
parsimonious survival model is developed using the Bilal distribution (BD) and the Kavya- 
Manoharan (KM) parsimonious transformation family. In addition to other analytical proper-
ties, the forms of probability density function (PDF) and behavior of the distributions’ hazard 
rates are analyzed. The insights are theoretical as well as practical. Theoretically, we offer explicit 
equations for the single and product moments of order statistics from Kavya-Manoharan Bilal 
Distribution. Practically, maximum likelihood (ML) technique, which is based on simple random 
sampling (SRS) and ranked set sampling (RSS) sample schemes, is employed to estimate the 
parameters. Numerical simulations are used as the primary methodology to compare the various 
sampling techniques.   

1. Introduction 

To improve survival data modelling, statisticians and applied researchers are becoming more motivated to establish adaptive 
lifetime models. As a result, substantial progress has been made in the generalization and application of several well-known lifetime 
models. The Bilal distribution (BD) (ξ), a novel one-parameter lifespan distribution, was first presented by Abd-Elrahman [1]. The BD 
(ξ), has been demonstrated to fall under the category of new renewal failure rates that are better than average. The underlying PDF and 
cumulative distribution function (CDF) are specified as follows in the description: 
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f (w; ξ)=
6
ξ
e
− 2w

ξ
(
1 − e

− w
ξ
)
;w, ξ > 0, (1)  

and 

F(w; ξ)= 1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)
, (2) 

respectively. The parameter ξ is the scale parameter. Now W will be referred to as a random variable with PDF (1). Below is a 
description of the main attribute of the BD. The hazard rate function (hrf) of the BD can only be increasing. As a result, it is useless for 
modelling non-monotonic human mortality or mechanical lifetimes. The BD may have received less consideration because of the 
prominence of exponential model, but interest in its extensions, refinements, and associated applications has recently surged. Altun 
et al. [2], proposed a new one-parameter discrete distribution, called a discrete BD. Maya et al. [3], addressed the use of U-statistics in 
the estimation of the scale parameter of the BD. The log-BD and associated regression, which Altun et al. [4], introduced, enhance 
modelling of the highly skewed dependent variables with related covariates. The BD has been generalized in a number of ways. 
Abd-Elrahman [5], suggested a novel two-parameter lifespan model as a generalized version of the BD (ξ). He examined at the 
characteristics of this distribution’s failure rate function and probability density. The maximum likelihood estimates (MLEs) of un-
certain parameters were computed under the entire sample and a thorough mathematical study of the GB distribution was offered. A 
Type-II censored sample was used by Abd-Elrahman [6], to provide MLEs, Bayesian predictions of the unknown parameters, and 
reliability functions. Shi et al. [7], examined entropy and parameter estimation using the generalized Bilal (GB) model centered on 
adaptive Type-II progressive hybrid (A-T–II–PH) censored data. 

Greater flexibility is provided by additional parameters, but the complexity of the estimation also rises. The Dinesh-Umesh-Sanjay 
(DUS) transformation was suggested by Kumar et al. [8], as a solution to overcome this to create new parsimonious classes of dis-
tributions. This is how it goes. The DUS transformation creates a new cdf G(w) expressed as G(w) = eF(w) − 1

e− 1 if F(.) is the baseline CDF. The 
advantage of using such transformation is that no more parameters are added, resulting in a parameter-precise distribution. A novel 
class of distributions with several variable hazard rates was thus proposed by Maurya et al. [9], in this fashion. They experimented with 
the generalized DUS (GDUS) transformation by applying the exponentiated cdf to the DUS transformation. A generalized lifetime 
model based on the DUS transformation was proposed by Kavya & Manoharan [10], with the cdf of the GDUS transformation provided 
by G(w; κ) = eFκ (w) − 1

e− 1 , where κ > 0 and F(.) is the baseline CDF. The KM transformation family of distributions is a new transformation 
that was just developed by Kavya & Manoharan [11]. Both the cdf and the pdf are 

GKM(w)=
e

e − 1
(
1 − e− F(w)),w > 0, (3)  

and 

gKM(w)=
e

e − 1
f (w)e− F(w), (4) 

The HRF is acquired by 

hKM(w)=
f (w)e1− F(w)

e1− F(w) − 1
. (5) 

This family develops updated lifetime models or distributions from a given benchmark distribution. The exponential and Weibull 
distributions were employed as foundation distributions by (Kavya & Manoharan [11]) because reliability theory and survival analysis 
frequently employ them. The field of statistics involves the gathering, structuring, arrangement, and analysis of data, as well as 
drawing conclusions from samples of the complete population. To choose a good sample from the population, there are a number of 
sampling techniques available. The simplest technique is the simple random sampling (SRS) mechanism. Accordingly, a population of 
N size is used to select a sample of n size, giving each class of n items an equal opportunity to be represented in the sample. McIntyre 
[12] developed the RSS (ranked set sampling) design as an effective alternative to SRS design for enhancing precision and estimation 
efficiency when the measurements of relevant variables are costly to measure or hard to attain, nevertheless easy to rank. The authors 
(Dell & Clutter [13] and (Takahasi & Wakimoto [14]), were the first to design the mathematical underpinnings of the RSS technique. 
Bhushan et al. [15], introduced some novel class estimators using ranked set sampling to evaluate the population mean utilizing 
additional information on an auxiliary variable. Bhushan & Kumar [16], proposed an efficient class of estimators for population mean 
in a ranked set sampling framework. Mahdizadeh & Zamanzade [17], studied the estimation of a symmetric distribution function 
under multistage ranked set sampling. They developed a nonparametric estimator and explored its theoretical properties with nu-
merical studies. Mahdizadeh and Zamanzade [18] solved the issue of using ranked set sampling to generate a confidence interval with 
the reliability parameter. They compared their suggested intervals to others based on everything from basic random sampling to Monte 
Carlo simulations and advocated for both asymptotic and resampling-based intervals. Mahdizadeh & Zamanzade [19], developed a 
nonparametric reliability estimator based on multistage ranked set sampling and studied its efficiency relative to simple random 
sampling. One might see Chen et al. [20], for an extensive study of the idea, procedures, and usages of RSS scheme. 

Numerous studies have recently concentrated on RSS-centered parameters of estimation for a spectrum of important real-life 
models. The RSS stratagem is more effective than the SRS technique and other conventional sampling procedures, as these in-
vestigations have repeatedly shown (Abu-Dayyeh et al. [21]; He et al. [22]; Sabry et al. [23]). Many studies have developed and used 
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the performance of ML estimation under the RSS method. Such as authors (Pedroso et al. [24]; Taconeli et al. [25]) describe how the 
parameter estimation for the two-parameter Birnbaum Saunders and Lindley distribution is derived using simple random sampling and 
ranked set sampling. For a thorough analysis and information on the RSS system and its uses consider, for instance (Ahmed & Shabbir 
[26]; Dorniani et al. [27]; Al-Omari & Bouza [28]), and the sources therein. 

In this article, we extend the study by introducing a novel extension of the BD, referred to as the Kavya-Manoharan Bilal Distri-
bution (KMBD). Our investigation into the KMBD is driven by several key motivations: (i) the desire to develop distributions char-
acterized by diverse shapes, (ii) the need for distributions with both monotone and non-monotone failure rate functions, (iii) the 
exploration of analytic measures and reliability properties for the KMBD, (iv) the examination of parameter estimation techniques 
focusing on both SRS and RSS for the KMBD, and (v) the empirical inference from goodness-of-fit statistics and graphical tools. 

2. KM-Bilal model 

We construct a novel flexible model called Kavya–Manoharan transformation Bilal distribution (KMBD) by using Equation (1) and 
Equation (2) in Equation (3) and Equation (4), we get a new distribution, which has CDF as below 

GKMB(w)=
e

e − 1

(
1 − exp

(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)}))

,w, ξ > 0, (6) 

Fig. 1. Different layouts of pdf for KMBD.  
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And the PDF of W is 

gKMB(w| ξ)=
6
(
1 − e

− w
ξ
)

ξ(e − 1)
exp
(

−

{
2w
ξ

− e
− 2w

ξ
(
3 − 2e

− w
ξ
)
})

,w, ξ > 0, (7) 

The survivor or reliability function is another name for this survival function. It is defined as the probability of a system failing or 
having a mortality rate (Gupta & Nanda [29]; Lyu [30]). The KMBD’s survival function and HRF using in Equation (5) are given in 
Equation (8) and Equation [9] respectively. 

SKMB(w)= 1 −
e

e − 1

(
1 − exp

(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)}))

,w, ξ > 0, (8)  

hKMB(w)=
6
(
1 − e

− w
ξ
)
exp
(

−

{
2w
ξ − e

− 2w
ξ
(
3 − 2e

− w
ξ
)
})

ξ
{
(e − 1) − e

(
1 − exp

(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)}))} . (9) 

The formulation for the cumulative risk exposure function (C′(t| ξ)) is established in Equation (10) as 

Fig. 2. Different layouts of hrf for KMBD.  
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C′(t| ξ)=
∫t

0

h(w| ξ)dw = − log(S(t| ξ)). (10)  

Hence (C′(t| ξ)) of the KMB model is given in Equation (11) as 

C′(t| ξ)=
∫t

0

h(w| ξ)dw= − log
[
1 −

e
e − 1

(
1 − exp

(
−
{

1 − e
− 2t

ξ

(
3 − 2e

− t
ξ

)}))]
. (11)  

The RHRF (reversed hazard rate function) is described as the ratio of the PDF and the relevant CDF. The RHRF h′(w|ξ) =
f(w|ξ)[F(w|ξ)]− 1 have recently piqued the interest of experts (refer to Ref. Chandra & Roy [31] for definitions, characterizations and 
other information). The RHRF of the KMB model is given in Equation (12) as 

h′
KMB(w| ξ)=

6
(
1 − e

− w
ξ
)
exp
(

−

{
2w
ξ − e

− 2w
ξ
(
3 − 2e

− w
ξ
)
})

ξe
(

1 − exp
(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)})) (12)  

Due to its connection to HRF, Mills Ratio {S(w| ξ)[f(w| ξ)]− 1
} is an exceptional approach for assessing reliability. The Mills Ratio of 

the KMB model is given in Equation (13) as 

MRKMB(w|ξ)=
ξ
{
(e − 1) − e

(
1 − exp

(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)}))}

6
(
1 − e

− w
ξ
)
exp
(

−

{
2w
ξ − e

− 2w
ξ
(
3 − 2e

− w
ξ
)
}) . (13) 

The PDF and HRF of the KMBD is graphically depicted in Fig. 1(a–c) and 2 (a-c) with different parameter values. Fig. 1(a–c) il-
lustrates the asymmetric and unimodal configurations of the PDF, providing a visual representation of the distribution’s shape. This 
graphical representation serves as a valuable tool for better understanding the characteristics of the proposed KMBD. Fig. 2(a–c) 
displays the growing, and upside-down bathtub (UBT) forms of the HRF. Engineers and analysts can evaluate the risk of failure at 
various phases of a system’s life cycle by knowing the shape of the hazard function. This data is essential for determining probable 
failure modes, assessing their effects, and putting suitable risk-reduction plans into action. The HRF has a monotonic growing and 
upside-down trend when parametric values are considered. These versatile HRF forms are ideally suited for real-time applications, 
where the necessity for hazard rate trends to display both monotonic and non-monotonic characteristics is prevalent. For instance, the 
data of 3878 cases of breast cancer that were first identified in Edinburgh between 1954 and 1964 has been analyzed by the re-
searchers. They discovered that the death rate peaked after the first year of follow-up, declined progressively after that, and was low in 
the subsequent years [32]. UBT hazard rate is connected in this instance. 

3. Analytical properties 

Here, we analyze several analytical features of the KMBD. 

3.1. Moment properties 

The rth moment of a r.v. W with the KMBD can be expressed explicitly in the following way given in Equation (14) for any integer r 
as 

μ′
r =Е(Wr)=

∫ +∞

0
wrf (w)dw, (14)  

μ′
r =

∫ +∞

0
wr6
(
1 − e

− w
ξ
)

ξ(e − 1)
exp
(

−

{
2w
ξ

− e
− 2w

ξ
(
3 − 2e

− w
ξ
)
})

dw, (15)  

We know eς =
∑+∞

i=0
ςi

i! and for |z| < 1, s ∈ R+, we have (1 − z)s =
∑+∞

j=0 (− 1)j Γ(s+1)
j!Γ(s+1− j)z

j, using these in Equation (15), which is 
equivalent to, 

μ′
r =

6ξr

(e − 1)
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)Γ(1 + r)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)r+1 −
1

(3 + 2m + k)r+1

]

, r= 1, 2, ... (16)  

The average given in Equation [17] of the PDF of the KMBD is 
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μ′ =
6ξ

(e − 1)
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)2 −
1

(3 + 2m + k)2

]

= μ (17)  

Whereas the dispersion given in Equation (18) is determined by 

ς2 =

{
12ξ

(e − 1)
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)3 −
1

(3 + 2m + k)3

]}

− μ2. (18) 

The square root is used to determine the standard deviation ς. The rth central moment using Equation (19) of a r.v. W with the KMB 
model can be expressed explicitly in Equation (20) as 

μr =E(w − μ)r
=

∫ +∞

0
(w − μ)rf (w| ξ)dw, (19) 

We can use the conventional binomial formula to expand the expressions of these measures, and we end up with 

μr =
∑r

s=0
(− 1)s

(
r
s

)

μs 6ξr− s

(e − 1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)Γ(1 + r − s)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)r− s+1 −
1

(3 + 2m + k)r− s+1

]⃒
⃒
⃒
⃒
⃒

}

.

(20) 

Notably, the very first four moments about origin can be obtained by putting r = 1, 2,3, 4 in Equation (16). The moment skewness 

of r.v. W is calculated using the following equation, S
͝

k = E(w − μ)3
/ς3 and the moment kurtosis of r.v. W can be described as K

͝
u =

E(w − μ)4
/ς4. 

3.2. Moment generating function (MGF) 

The MGF given in Equation (21) of the KMBD is: 

M̃W(d)=E
(
ewd)=

6
ξ(e − 1)

∫∞

0

ewd ( 1 − e
− w
ξ
)

exp
(

−

{
2w
ξ

− e
− 2w

ξ
(
3 − 2e

− w
ξ
)
})

dw, (21)  

Hence 

M̃W(d)=
6

(e − 1)
∑+∞

j=0

dj

j!
ξj

{
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)Γ(1 + j)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)j+1 −
1

(3 + 2m + k)j+1

]}

. (22) 

Additionally, using the Equation (22), we may derive the rth raw moment from MGF 

μr
′ =

drM̃W(d)
dwr

⃒
⃒
⃒
⃒

d=0
.

3.3. Cumulants 

The characteristic function (CF), C
͝

t(d) = E[eitd] of KMBD is obtained by substituting d with ‘id’ in Equation (20), the final expression 
of CF given in Equation (23) as 

C
͝

W(d)=E
(
eiwd)=

6
(e − 1)

∑+∞

j=0

(id)j

j!
ξj

{
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)Γ(1 + j)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)j+1 −
1

(3 + 2m + k)j+1

]}

. (23)  

where i =
̅̅̅̅̅̅̅
− 1

√
is complex number. 

3.4. Cumulant generating function (CGF) 

The CGF is log{C
͝

W(d)} where C
͝

W(d) is given in (23). 

3.5. Probability generating function (PGF) 

In (20), the PGF is obtained by substituting d with ln(d) as follows: 
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GW(d)=E
(
dW)=E

(
ew ln d)

The PGF given in Equation (24) of the KMBD is: 

GW(d)=
6

(e − 1)
∑+∞

j=0

(ln d)jξj

j!

{
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)Γ(1 + j)
k!m!Γ(m + 1 − k)

×

[
1

(2 + 2m + k)j+1 −
1

(3 + 2m + k)j+1

]}

. (24)  

3.6. Incomplete moments 

The incomplete moments given in Equation (25) would be: 

ψs(t) =E(Ws|W < t)=
∫t

0

wsg(w)dw. (25) 

The incomplete moments of the KMBD given in Equation (26) is 

ψs(t) =
6ξs

(e − 1)
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)
k!m!Γ(m + 1 − k)

×

⎡

⎢
⎢
⎣

γ
(

1 + s, t(2+2m+k)
ξ

)

(2 + 2m + k)s+1 −

γ
(

1 + s, t(3+2m+k)
ξ

)

(3 + 2m + k)s+1

⎤

⎥
⎥
⎦, (26)  

where γ(ς, t) =

∫t

0

xς− 1e− xdx. 

4. Some measures of reliability and entropy 

We explore certain reliability indicators, such as the mean residual function for the KMBD, the vitality function, conditional 
survival function (CSF) and failure rate average (FRA) function. In this part, we also extract the expressions for stress strength reli-
ability and entropy. 

4.1. Vitality function and mean residual life (MRL) 

A continuous random variable W with PDF f (w) is said to have the following vitality function: 

υ͝ (w)=E(W|W ≥ x). (27) 

In the framework of reliability, Equation (27) can be defined as the mean longevity of items with an age more than x. Another way 
to express vitality function given in Equation [28] is as follows: 

υ͝ (x)= 1
S(x)

∫+∞

x

wg(w)dw, (28)  

where f (w) and S (w) are the PDF and survival function of the model. 

Applying the results eς =
∑+∞

i=0
ςi

i! and for |z| < 1, s ∈ R+, (1 − z)s =
∑+∞

j=0 (− 1)j Γ(s+1)
j!Γ(s+1− j)z

j, and Γ(ς,w) =

∫+∞

w

xς− 1e− xdx, we get, 

∫+∞

x

wg(w)dw=
6ξ2

(e − 1)
∑+∞

k,m=0

(− 1)k3m− k2kΓ(m + 1)
k!m!Γ(m + 1 − k)

×

⎡

⎢
⎣

Γ
(

2, x
ξ (2 + 2m + k)

)

(2 + 2m + k)2 −

Γ
(

2, x
ξ (3 + 2m + k)

)

(3 + 2m + k)2

⎤

⎥
⎦. (29) 

Using the result of Equation (29) in Equation (28) to obtain the final version of vitality function. The expected lifetime in reliability 
problems is called as the mean time to failure, and the anticipated future lifespan is defined as the mean residual lifetime. For a 
continuous random variable W, with E(W) ≤ ∞, subsequently, the Borel measurable function (MRLF) is described in Equation (30) as 
the mean residual life function, 

m⌢(x)=E{X − x|X ≥ x} (30) 

For KMBD’s MRLF in Equation (31) is 
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m⌢KMB(x| ξ)=
1

S(x| ξ)

∫+∞

x

S(w| ξ)dw, (31) 

The vitality function can also be used to express the MRLF. In other words, MRLF m⌢KMB(x| ξ) can be expressed as, 

m⌢KMB(x| ξ)= υ͝ (x) − x. (32)  

As a result, using Equation (32) the MRLF of the KMBD is determined as 

m⌢KMB(x| ξ)=

6ξ2

(e− 1)

∑+∞

k,m=0

(− 1)k3m− k2kΓ(m+1)
k!m!Γ(m+1− k) ×

⎡

⎢
⎣

Γ

(

2,xξ (2+2m+k)

)

(2+2m+k)2 −

Γ

(

2,xξ (3+2m+k)

)

(3+2m+k)2

⎤

⎥
⎦

1 − e
e− 1

(
1 − exp

(
−
{

1 − e
− 2x

ξ
(
3 − 2e

− x
ξ
)})) − x. (33)  

4.2. Mean inactivity time function 

The MIT in Equation (34), also recognized as the mean past lifespan function, is a well reputed integrity indicator with uses in 
different fields like survival investigation, reliability theory, and actuarial research. Consider W be r.v with a life span and having CDF 
given in Equation (6) 

μW(t)=

⎧
⎪⎨

⎪⎩

∫ t

0

G(w| .)dw,
G(t| .)

t > 0

0 t ≤ 0
(34)  

μW(t)=

∫ t
0

(
e

e− 1

(
1 − exp

(
−
{

1 − e
− 2w

ξ
(
3 − 2e

− w
ξ
)})))

dw
(

e
e− 1

(
1 − exp

(
−
{

1 − e
− 2t

ξ

(
3 − 2e

− t
ξ

)}))) , (35) 

After some mathematics applied in Equation (35), we come to the following explicit expression given in Equation (36) as 

μW(t)=

[

t − e− 1 ∑
+∞

k,m=0

(− 1)k3m− k2kΓ(m+1)
k!m!Γ(m+1− k)

{
ξ

2m− k

(
e(2m− k) t

ξ − 1
)}
]

(
1 − exp

(
−
{

1 − e
− 2t

ξ

(
3 − 2e

− t
ξ

)})) . (36)  

4.3. Strong mean inactivity time (SMIT) function 

SμW(t)=

⎧
⎪⎨

⎪⎩

∫ t

0

2wG(w| .)dw,
G(t| .)

t > 0

0 t ≤ 0
(37) 

Some mathematics shows that the Equation [33] is parallel to Equation [34], 

SμW(t)=

2

[

t2
2 − e− 1 ∑

+∞

k,m=0

(− 1)k3m− k2k Γ(m+1)
k!m!Γ(m+1− k)

ξ
2m− k

{

te(2m− k) t
ξ − ξ

2m− k

(
e(2m− k) t

ξ − 1
)}
]

1 − exp
(
−
{

1 − e
− 2t

ξ

(
3 − 2e

− t
ξ

)}) . (38)  

4.4. Conditional survival function (CSF) and failure rate average (FRA) 

FRA and CSF given in Equations (39-40) are two additional helpful reliability functions (DNP, [35]). We may find IFRA (increasing 
failure rate average) and DFRA (decreasing failure rate average) by assessing FRA on t. 

The FRA of T is; 

FRA(w|ξ)=
C′(w|ξ)

w
,w > 0, (39)  

where C′(.) is CHR, and given in (11). The conditional survival of W is described accordingly 
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P(W >w+ t|W > t) = S(w|t) =
S(w + t)

S(w)
, t > 0,w > 0, S(.) > 0, (40)  

where S(.) is SF and given in (8). 

4.5. Entropy measures 

Entropy is an indicator of the variability of uncertainty for a random variable W. Entropy is a measure of uncertainty that is utilized 
in fields like engineering and the natural sciences, and it is discussed by (Nasiru et al. [36]; Oguntunde et al. [37]). 

The entropy of r.v. W is a measure of risk. The Rényi entropy given Equations (41) of W is defined as: 

R
͝

δ(W)=
1

1 − δ
log
∫+∞

0

gδ(w)dw, δ > 0 and δ ∕= 1. (41) 

First, g(w) is simplified in terms of gδ(w) by considering Equation [7] and applying the binomial expansion as: 

gδ(w)=
(

6
ξ(e − 1)

)δ ∑+∞

i,k,m=0

(
δ
i

)
(− 1)i+k3m− k2kδmΓ(m + 1)

k!m!Γ(m + 1 − k)
e− (i+k+2m+2δ)w

ξ . (42)  

and substituting Equation (42) into Equation (41) gives the Rényi entropy of W given in Equation (43) as: 

R
͝

δ(W)=
δm

1 − δ

(
6

ξ(e − 1)

)δ ∑+∞

i,k,m=0

(
δ
i

)
(− 1)i+k3m− k2kΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2δ)
. (43) 

Tsallis entropy defined in Equation (44) is 

Ωδ(W)=
1

δ − 1

(

1 −

∫ +∞

0
gδ(w)dw

)

, δ> 0, δ ∕= 1. (44) 

Finally, the reduced version of the Tsallis entropy given in Equation (45) is obtained after some simplification. 

Ωδ(W)=
1

δ − 1

(

1 −

(
6

ξ(e − 1)

)δ ∑+∞

i,k,m=0

(
δ
i

)
(− 1)i+k3m− k2kδmΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2δ)

)

. (45) 

Mathai and Haubold [38], generalized the classical Shannon entropy is defined by Equation (46) 

МН(W)=
1

δ − 1

(∫ ∞

0
g2− δ(w)dw − 1

)

, δ> 0, δ ∕= 1. (46) 

After some simplification, the reduced version of the Mathai & Haubold entropy of W is obtained and given in Equation (47) 

МН(W)=
1

δ − 1

{
∑+∞

i,k,m=0

(
δ
i

)(
6

ξ(e − 1)

)2− δ
(− 1)i+k3m− k2k(2 − δ)mΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2(2 − δ))

}

. (47) 

The Havrda and Charvat introduced δ − entropy measure. It is defined by Equation (48) 

ННC(W)=
1

21− δ − 1

(∫ ∞

0
gδ(w)dw − 1

)

, δ> 0, δ ∕= 1, (48)  

and the reduced version of the Mathai & Haubold is given in Equation (49) 

ННC(W)=
1

21− δ − 1

(
∑+∞

i,k,m=0

(
δ
i

)(
6

ξ(e − 1)

)δ
(− 1)i+k3m− k2kδmΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2δ)
− 1

)

. (49) 

Boekee and Lubba entropy is defined in Equation (50) of W is: 

BLν(W)=
δ

δ − 1

(

1 −

(∫ ∞

0
gδ(w)dw

)1
δ
)

, δ> 0, δ ∕= 1. (50) 

This entropy has been reduced to its simplest form and given in Equation (51). 

BLδ(W)=
δ

δ − 1

⎛

⎝1 −

(
∑+∞

i,k,m=0

(
δ
i

)(
6

ξ(e − 1)

)δ
(− 1)i+k3m− k2kδmΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2δ)

)1
δ
⎞

⎠. (51)  

When researching the estimate of limit parameters, Arimoto [37] developed a type of generalized entropy function defined in Equation 
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(52) called the “Arimoto entropy,” which is highly good at addressing the likelihood of decision-making. 

А̃(W)=
δ

21− δ − 1

((∫ ∞

0
gδ(w)dw

)1
δ

− 1

)

, δ > 0. (52) 

This Arimoto entropy has been reduced to its simplest form and given in Equation (53). 

А̃(W)=
δ

21− δ − 1

⎛

⎝

(
∑+∞

i,k,m=0

(
δ
i

)(
6

ξ(e − 1)

)δ
(− 1)i+k3m− k2kδmΓ(m + 1)ξ

k!m!Γ(m + 1 − k)(i + k + 2m + 2δ)

)1
δ

− 1

⎞

⎠. (53)  

5. Inference of the parameters 

Some useful insights on the KMBD’s applied study are provided in this part. It covers utilizing the ML approach with the SRS and 
RSS schemes to estimate the parameter ξ of the KMBD. In addition, we reveal the behavior of the guesstimates using a simulation 
experiment. 

5.1. Inference under the SRS scheme 

Suppose n be an integer and W1,W2, ...,Wn be an SRS scheme (of size n) from the KMBD(ξ) with the PDF and CDF specified in 
Equations (6) and (7), respectively and w1,w2, ...,wn be observations of W1,W2, ...,Wn. Here w = {w1,w2, ...,wn}. Then log-likelihood 
(l(w| ξ)) is generally easier to maximize. Hence the l(w| ξ) of the joint probability function of W1,W2, ...,Wn given in Equation (54) is 

l(w| ξ)= n log(6)+
∑n

i=1
log
(

1-e
-wi

ξ

)
-n log ξ-n log(e-1)-

2
ξ
∑n

i=1
wi +

∑n

i=1
e
-2wi

ξ

(
3-2e

-wi
ξ

)
. (54) 

The ML estimates (MLEs) of ξ that are only based on w can be characterized as ξ
⌢

, where ξ
⌢

= argmaxl(w| ξ). The maximizing is 
applied to all potential parameter values. These MLEs also confirm the partial derivative equation: ∂l(w| ξ)

∂ξ = 0. 
With respect to ξ, the partial derivatives of l(w; ξ) given in Equation (55) 
Where 

∂l(w| ξ)
∂ξ

= −
n
ξ
+

2
ξ2

∑n

i=1
wi −

∑n

i=1

wie
− wi

ξ

ξ2
(

1 − e
− wi

ξ

) −
1
ξ2

∑n

i=1
wi

(
2 e

− 2wi
ξ − e

− wi
ξ

(
3 − 2e

− wi
ξ

))
. (55)  

With respect to ξ, the second partial derivatives of l(w; ξ) given in Equation (56) can be represented as 

∂2l(w| ξ)
∂ξ2 =

n
ξ2 −

4
ξ3

∑n

i=1
wi + 2

∑n

i=1
wi

⎛

⎝
2 e

− 2wi
ξ − e

− wi
ξ

(
3 − 2e

− wi
ξ

)

ξ3

⎞

⎠ −
1
ξ2

∑n

i=1
e
− 2wi

ξ wi

(
− 8+ 3e

wi
ξ

)

+
∑n

i=1
wi

⎛

⎜
⎝

2
(
− 1 + e

− 2wi
ξ

)
ξ − e

− wi
ξ wi

(
− 1 + e

wi
ξ

)2
ξ4

⎞

⎟
⎠. (56) 

Equation (55) is non-linear equations does not yield perfect solutions or the best value for MLEs. There are limited chances to obtain 

closed-form formulas for ξ
⌢

due to the interdependencies of these partial derivatives. Numerical techniques such as the (quasi) 
Newton–Raphson method can be helpful to find accurate numerical solutions. 

5.2. Inference under the RSS scheme 

The RSS plan can be summed up as follows:  

⁃ Let c be the overall cycle count and τ be the number of sample units selected for each cycle (fixed size).  
⁃ The stages listed below can be utilized to generate a ranked set sample of size n = cτ.  
⁃ Choose τ2 units at random from the population, then split them into τ groupings of size τ.  
⁃ Assign the units in each set a rank based on a simple, affordable ordering mechanism.  
⁃ Add the lowest ranked unit from the first set, the next lowest ranked unit from the second set, and so on to create a single 

quantification sample.  
⁃ Repeat steps 1 through 3, c times to get an ultimate sample with size n = cτ. 

RSS only utilizes one observation, W(11)c, which is the lowest observation in the c th cycle from this set, followed by W(22)c, which is 
the second-lowest observation from a separate batch of τ observations, and W

( τ⌢ τ⌢)c, which is the highest observation from the last group 
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of τ occurrences. 
Now, to make notations simpler, let {W(ii)k : i= 1, 2, ..., τ, k= 1,2, ..., c} be a RSS procedures sketched from the MKB(ξ) distribution 

with sample of size n = cτ, where τ is the set size and c is the number of cycles or cycle size, and {w(ii)k : i= 1, 2, ..., τ, k= 1,2, ..., c} be 
the corresponding observations. Then CDF given in Equation (57) and PDF given in Equation (58) of W(ii)k are given by: 

Gi:τ
(
w(ii)k; ξ

)
=
∑τ

q⌢=1

(
τ
q⌢
)
{

Gi:τ
(
w(ii)k; ξ

)}q⌢{1 − Gi:τ
(
w(ii)k; ξ

)}τ− q⌢
, (57)  

gi:τ
(
w(ii)k; ξ

)
=ϒi:τ

{
Gi:τ
(
w(ii)k; ξ

)}i− 1{gi:τ
(
w(ii)k; ξ

)}{
1 − Gi:τ

(
w(ii)k; ξ

)}τ− i
, (58) 

ϒi:τ =
τ!

(i− 1)!(τ− i)! . Observing Equation (57), we can formulate the likelihood function using Equation (59) given in Equation (60) of 
KMBD as 

L(w; ξ)=
∏τ

i=1

∏c

k=1
gi: τ⌢
(
w(ii)k; ξ

)
, (59)   

L(w;ξ)=
∏τ

i=1

∏c

k=1
ϒi:τ

6
(

1− e

− w(ii)k

ξ
)

ξ(e− 1)
exp
(

−

{
2w(ii)k

ξ
− e

− 2w(ii)k

ξ
(

3− 2e

− w(ii)k

ξ
)}){ e

e− 1

(

1− exp
(

−

{

1− e

− 2w(ii)k

ξ
(

3− 2e

− w(ii)k

ξ
)}))}i− 1

×

{

1−
e

e− 1

(

1− exp
(

−

{

1− e

− 2w(ii)k

ξ
(

3− 2e

− w(ii)k

ξ
)}))}τ− i

.

(60) 

The log-likelihood function given in Equation (61) as 

l(w; ξ)=C
⌢

+ n ln 6 − n ln ξ − n ln(e − 1) +
∑τ

i=1

∑c

k=1
ln
(

1 − e
− w(ii)k

ξ

)
−
∑τ

i=1

∑c

k=1

({
2w(ii)k

ξ
− e

− 2w(ii)k
ξ

(
3 − 2e

− w(ii)k
ξ

)})

+
∑τ

i=1

∑c

k=1
(i − 1)ln

{
e

e − 1

(

1 − exp
(

−

{

1 − e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

)}))}

+
∑τ

i=1

∑c

k=1
(τ − i)ln

{

1 −
e

e − 1

(

1 − exp
(

−

{

1 − e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

)}))}

,

C
⌢

= ln ϒi: τ⌢. (61) 

The estimation result represents the evaluation of survival analysis for KMBD, and it has been presented, compared graphically, and 

numerically discussed in Section 6. The MLE of ξ is defined by ξ
⌢

= argmax
ξ>0

l(w; ξ). There are no closed forms for ξ
⌢

, however, a numerical 

solution can be produced by using the partial derivatives of l(w; ξ). With respect to ξ, the partial derivatives of l(w; ξ) given in Equation 
(62) can be represented as 

∂l(w; ξ)
∂ξ

=
− n
ξ

−
∑τ

i=1

∑c

k=1

w(ii)ke
− w(ii)k

ξ

(
1 − e

− w(ii)k
ξ

)
ξ2

+ 12
∑τ

i=1

∑c

k=1

(i − 1)w(ii)k
{

Θ1
(
w(ii)k

)
− Θ2

(
w(ii)k

)}

(

1 − e− 1+2e
w(ii)k

ξ

(
3− 2e

− w(ii)k
ξ

)
)

ξ2  

− 12
e

e − 1
∑τ

i=1

∑c

k=1

(τ − i)w(ii)k
{

Θ1
(
w(ii)k

)
− Θ2

(
w(ii)k

)}

{

1 − e
e− 1

(

1 − exp
(

−

{

1 − e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

)}))}

ξ2  

+
∑τ

i=1

∑c

k=1

{
2w(ii)k

ξ2

(

1 − e
− 3w(ii)k

ξ + e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

))}

, (62)  

With respect to ξ, the second derivatives of l(w; ξ) given in Equation (63) is 
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∂2l(w; ξ)
∂ξ2 =

n
ξ2 + 6

∑τ

i=1

∑c

k=1
e
− 3w(ii)k

ξ

w(ii)k

{

2
(

e
3w(ii)k

ξ − ξ + e
w(ii)k

ξ ξ
)

+
(

3 − 2e
− w(ii)k

ξ

)
w(ii)k

}

ξ4 +
∑τ

i=1

∑c

k=1

w(ii)k

{
2
(
− 1 + e

w(ii)k
ξ

)
ξ − e

w(ii)k
ξ w(ii)k

}

(
− 1 + e

w(ii)k
ξ

)2
ξ4  

+12
∑τ

i=1

∑c

k=1

(i − 1)w(ii)k
{

Θ1
(
w(ii)k

)
− Θ2

(
w(ii)k

)}

ξ2

{
− Θ1

(
w(ii)k

)
+ Θ2

(
w(ii)k

)}

(
1 − e

− 1+2e
− 2w(ii)k

ξ

(
3− 2e

− w(ii)k
ξ

)
)

ξ2

−
∑τ

i=1

×
∑c

k=1

12e
− 1+e

− 3w(ii)k
ξ

(
− 4+6e

w(ii)k
ξ

)
−

6w(ii)k
ξ
(i − 1)w(ii)k

ξ4
(

1 − e
− 1+2e

− 2w(ii)k
ξ

(
3− 2e

− w(ii)k
ξ

)
)

(

e
3w(ii)k

ξ
(
2ξ − 3w(ii)k

)
− 2e

4w(ii)k
ξ
(
ξ − w(ii)k

)
+ 12w(ii)k − 24w(ii)ke

w(ii)k
ξ + 12w(ii)ke

2w(ii)k
ξ

)

− 144
e

e − 1
∑τ

i=1

∑c

k=1

(τ − i)(e − 1)2e12e
− 2w(ii)k

ξ −
6w(ii)k

ξ

(
1 − e

w(ii)k
ξ

)2
w2

(ii)k

(
− e1+6e

− 2w(ii)k
ξ

+ e1+4e
− 3w(ii)k

ξ
)

ξ4
− 12

∑τ

i=1

×
∑c

k=1

(τ − i)e1+6e
− 2w(ii)k

ξ −
6w(ii)k

ξ w(ii)k

(

e
3w(ii)k

ξ
(
2ξ − 3w(ii)k

)
− 2e

4w(ii)k
ξ

(

ξ − w(ii)k + 12w(ii)k − 24w(ii)ke
w(ii)k

ξ + 12w(ii)ke
2w(ii)k

ξ

))

(
e1+6e

− 2w(ii)k
ξ − e1+4e

− 3w(ii)k
ξ
)

ξ4
, (63)  

where 

Θ1
(
w(ii)k

)
= exp

(

−

{

1 − 2e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

)
+

3w(ii)k

ξ

})

,

Θ2
(
w(ii)k

)
= exp

(

−

{

1 − 2e
− 2w(ii)k

ξ

(
3 − 2e

− w(ii)k
ξ

)
+

2w(ii)k

ξ

})

.

We employed the Mathematica 12 software to gain numerical answers due to the frequent complexity of the theoretical solutions. 

The estimated confidence intervals for the parameters ξ can be derived as follows because the MLE is asymptotically normal ξ
⌢

±

ςτ
2

̅̅̅̅̅̅̅̅
σ⌢

ξ
⌢2

√
, here σ⌢2

(.) is the variance of the respective parameter ξ and using Eqs. (56) and (63), σ⌢
ξ
⌢

2 = − 1
∂2 l(w| ξ)

∂ξ2

, where the SDN curve’s value 

is ςτ
2 

and τ is the level of significance. 

6. Simulation experiment 

This part compares the ML estimators of the unknown parameter ξ for KMBD based on RSS and SRS using a numerical investigation. 
Based on the biases, mean square errors (MSEs), and mean relative errors (MREs), a validation study is conducted. Various set sizes, 
different cycles, and distinct parameters levels are all considered when utilizing Monte Carlo simulation. The MLEs and recommended 
criterion measures are obtained utilizing the below algorithm. 

Step 1. Generate a random sample from the KMBD with sizes n = cτ and set sizes τ = 4, 10, 14, and c = 1, and τ = 2, 5, 7, and c = 2.
Step 2: For the estimation technique, the parameter values are chosen as ξ = (0.75,1.25.1.9,3,7, 15). Step 3: The estimators ξSRS and 
ξRSS are computed under SRS and RSS for the selected parameter’s set and each sample of n size. Step 4: Perform steps 1 through 3, N 
times to represent various samples, where N is equal to 5000. The bias, MSEs and mean relative errors (MREs), of the estimations are 

Table 1 
Bias, MRE, and MSE for the KMBD(ξ) distribution under the RSS and SRS schemes.   

SRS RSS c = 1 RSS c = 2 

ξ n Bias MRE MSE Bias MRE MSE Bias MRE MSE 

0.75 4 0.017 1.093 0.0015 0.015 1.092 0.0014 0.013 1.090 0.0011 
10 0.016 1.021 0.0013 0.014 1.021 0.0011 0.012 1.019 0.0010 
14 0.011 1.015 0.0011 0.011 1.015 0.0009 0.011 1.013 0.0005 

1.25 4 0.036 1.029 0.0013 0.035 1.028 0.0011 0.035 1.021 0.0010 
10 0.026 1.021 0.0007 0.025 1.020 0.0006 0.024 1.019 0.0005 
14 0.022 1.018 0.0005 0.022 1.017 0.0004 0.021 1.016 0.0003 

1.9 4 0.047 1.025 0.0022 0.047 1.024 0.0020 0.047 1.022 0.0017 
10 0.036 1.019 0.0019 0.036 1.016 0.0015 0.035 1.014 0.0013 
14 0.023 1.012 0.0015 0.022 1.012 0.0013 0.022 1.011 0.0011  
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Table 2 
Bias, MRE, and MSE for the KMBD(ξ) distribution under the RSS and SRS schemes.   

SRS RSS c = 1 RSS c = 2 

ξ n Bias MRE MSE Bias MRE MSE Bias MRE MSE 

3.0 4 − 0.032 0.990 0.0010 − 0.031 0.990 0.0009 − 0.031 0.990 0.0006 
10 − 0.019 0.994 0.0004 − 0.019 0.995 0.0003 − 0.018 0.996 0.0001 
14 − 0.017 0.995 0.0003 − 0.016 0.996 0.0002 − 0.016 0.997 0.0001 

7.0 4 − 0.133 0.981 0.0178 − 0.133 0.981 0.0171 − 0.133 0.982 0.0169 
10 − 0.074 0.989 0.0055 − 0.071 0.990 0.0049 − 0.071 0.990 0.0041 
14 − 0.058 0.992 0.0034 − 0.058 0.995 0.0030 − 0.057 0.995 0.0027 

15 4 0.632 1.042 0.3990 0.631 1.035 0.3961 0.630 1.029 0.3912 
10 0.121 1.008 0.0146 0.121 1.008 0.0129 0.120 1.006 0.0117 
14 0.109 1.007 0.1178 0.108 1.006 0.1143 0.108 1.004 0.1122  

Table 3 
Lower, upper bounds of CP and CI for KMBD(ξ) model under RSS and SRS schemes.   

SRS RSS c = 1 RSS c = 2 

ξ n LB UB CP% LB UB CP% LB UB CP% 

0.75 4 − 2.727 4.262 86.141 − 2.268 4.432 86.717 − 2.100 4.564 86.794 
10 − 2.730 4.162 86.329 − 2.530 4.102 86.841 − 2.510 4.060 86.962 
14 − 2.766 3.989 86.596 − 2.610 3.961 86.958 − 2.694 3.861 86.988 

1.25 4 − 0.321 2.892 93.611 − 0.328 2.749 93.879 − 0.335 2.723 93.917 
10 − 0.352 2.803 93.725 − 0.357 2.713 93.892 − 0.359 2.692 93.930 
14 − 0.362 2.695 93.918 − 0.365 2.672 93.958 − 0.368 2.661 93.975 

1.9 4 1.084 2.810 96.574 1.046 2.834 96.450 1.027 2.870 96.342 
10 1.066 2.806 96.547 1.029 2.830 96.425 1.012 2.861 96.330 
14 1.043 2.802 96.509 0.978 2.813 96.359 0.978 2.851 96.282  

Table 4 
Lower, upper bounds of CP and CI and KMBD(ξ) model under RSS and SRS schemes.   

SRS RSS c = 1 RSS c = 2 

ξ n LB UB CP% LB UB CP% LB UB CP% 

3.0 4 2.510 3.427 98.193 2.460 3.466 98.017 2.4153 3.5825 97.698 
10 2.526 3.436 99.453 2.405 3.594 97.656 2.3956 3.5999 97.625 
14 2.529 3.438 98.206 2.300 3.519 97.594 2.1648 3.5789 97.209 

7.0 4 6.136 7.017 98.336 6.365 7.317 98.336 6.4327 7.5648 97.876 
10 6.097 7.594 97.184 6.017 7.521 97.167 5.9887 7.5894 96.987 
14 6.014 7.699 96.831 5.862 7.645 96.643 5.734 7.699 96.297 

15 4 15.094 15.670 99.108 15.00 15.640 99.049 15.010 15.750 98.902 
10 15.081 15.161 99.899 14.100 15.745 98.888 14.616 15.846 98.166 
14 15.069 15.149 99.880 14.347 15.777 98.850 14.616 15.846 98.030  

Table 5 
REs for the KMB(ξ) distribution under the SRS and RSS schemes.  

ξ n RE1 RE2 RE3 ξ RE1 RE2 RE3 

0.75 4 1.071 1.364 1.273 3.0 1.111 1.667 1.500 
10 1.182 1.300 1.100 1.333 4.00 3.000 
14 1.222 2.200 2.200 1.500 3.00 2.000 

1.25 4 0.182 1.300 1.100 7.0 1.041 1.053 1.011 
10 1.167 1.400 1.200 1.122 1.342 1.195 
14 1.250 1.667 1.333 1.133 1.260 1.111 

1.9 4 1.100 1.294 1.176 15 1.007 1.020 1.013 
10 1.267 1.462 1.154 1.132 1.248 1.103 
14 1.154 1.364 1.182 1.031 1.049 1.019  
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then determined. 

BiasΘ(n)=
1
N

∑N

j=1

(
Θ̃j − Θ

)
, MSEΘ(n)=

1
N

∑N

j=1

(
Θ̃j − Θ

)2
, MREΘ(n)=

1
N

∑N

j=1

(
Θ̃j
/

Θ
)
.

We also report the relative efficiencies (REs) of the estimators of R based on MSE defined by the following 

RE1=
MSE

(
Θ̃ML,SRS

)

MSE
(
Θ̃ML,RSS

c=1),RE2=
MSE

(
Θ̃ML,SRS

)

MSE
(
Θ̃ML,RSS

c=2),RE3=
MSE

(
Θ̃ML,RSS

c=1)

MSE
(
Θ̃ML,RSS

c=2)

Larger values (>1) of RE indicate that the efficiency of the estimator given in the denominator outperforms the estimator given in 
the numerator. Tables 1- 5 present the results of the simulation investigation. Tables 1 and 2 give the outcomes of simulation study for 
bias, MSE and MRE. The results of the simulation studies regarding coverage probabilities (CPs) and confidence intervals are displayed 
in Tables 3 and 4. Since intervals get shorter as sample size increases, so does confidence interval accuracy. It is consistently noted that 
bias and MSE values derived from RSS consistently exhibit lower values compared to those relying on SRS. In addition, for both of the 
SRS and RSS techniques, the MSE levels decrease as the sample size rises. Additionally, it is evident from Tables 1 and 2 that all the 
estimators exhibit negligible bias in terms of the bias criterion. In comparison to the SRS scheme, the CPs for the RSS scheme is 

Fig. 3. PP-plot, QQ-plot, estimated CDF, SF of KMBD(ξ).  

Table 6 
Cycle 1.  

0.52 0.77 1.2 1.87 2.48 
0.77 0.81 1.31 1.74 1.95 
0.32 0.59 0.96 1.51 1.62 
0.81 0.81 0.96 1.20 2.05 
0.81 1.87 1.87 1.95 3.00  
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superior. In most scenarios, the bias and MSE values decrease as the number of cycles rises. Based on the efficiencies observed, the 
following conclusions can be drawn from Table 5. The estimators of the ξ, based on RSS are more efficient than the corresponding 
estimators based on SRS for all sample sizes and the all parameter values, see the columns for RE1 and RE2. As the number of cycles 
increases, the REs rises as well; observe the columns RE3. 

7. Data investigation 

Here, actual data analysis using Hinkley’s [34] original data is done. The March precipitation data set for Minneapolis/St Paul 
includes 30 observations (in inches). The proposed approach, as presented in the investigations by Sindhu et al. [ [39,40]] and Shafiq 
et al. [41], demonstrates a good fit of the data to the KMB distribution. The MLE of the parameter ξ for the entire sample is 2.38. With a 
p-value of 0.4660, the Anderson Darling is 0.8188 and value of Pearson χ2 is 4.6667 with p-value 0.70057. We can corroborate these 
findings by referring to Fig. 3 with two alternative sampling techniques, SRS and RSS, a random sample of 20 people is chosen for 
analysis. 

In SRS, the sample is {2.05, 0.81, 1.87, 2.2, 1.43, 1.89, 1.74, 1.31, 0.81, 1.51, 1.95, 1.18, 0.47, 3.37, 0.32, 2.48, 1.35, 1.62, 0.9, and 
1.2}. With two alternative sampling techniques, SRS and RSS, a random sample of 20 values is chosen for analysis. In the RSS, we 
defined c⌢ = 4 and τ⌢ = 5; see Tables 5–9. The analysis’s findings are provided in Table 10. 

8. Conclusions 

In this investigation, we utilized ranked set and simple random sample strategies for parameter estimation of the Kavya-Manoharan 
Bilal Distribution (KMBD) through maximum likelihood estimation. Our comparative analysis considered various scenarios, sample 
sizes, the quantity of sample units per iteration, and cycle counts, leading to insightful conclusions. Notably, bias and mean squared 
error (MSE) decreased with increasing sample size, the number of sample units per cycle, and the number of cycles. 

To assess the estimation method’s effectiveness and compare different sets and cycle lengths, we applied it to real data, estimating 

Table 7 
Cycle 2.  

0.9 0.96 1.2 2.2 2.81 
0.9 0.96 1.2 2.05 4.75 
0.96 1.87 2.05 2.48 3.00 
0.81 1.31 1.43 1.87 1.89 
0.47 0.77 0.96 1.95 3.37  

Table 8 
Cycle 3.  

0.81 1.51 2.10 2.81 3.00 
0.77 1.35 2.20 3.09 4.75 
0.47 0.90 1.87 2.10 2.20 
0.81 0.96 1.74 1.89 3.37 
0.81 1.20 1.43 1.89 3.37  

Table 9 
Cycle 4.  

0.77 0.81 1.95 2.81 3.37 
1.43 1.74 1.89 2.81 3.09 
0.81 1.20 1.51 1.62 1.89 
0.32 0.52 1.20 1.89 2.20 
0.77 0.90 1.43 1.87 2.05  

Table 10 
Parameter Estimation and measure for KMBD using SRS and RSS.   

SRS RSS 

Est. par Estimate LB UB Estimate LB UB 

ξ
⌢ 2.2025 2.1422 2.2628 2.7267 2.6855 2.7679 

Anderson-Darling(Statistic) 1.3967 p-value 0.2017 0.9297 p-value 0.3940 
Cramer-von Mises (Statistic) 0.2722  0.1622 0.1333  0.4447 
Pearson χ2 (Statistic) 8.0  0.2381 9.35  0.1523  
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parameters and determining the best-fit measurement criteria using the KMBD under both SRS and RSS. Additionally, we established 
95 % confidence intervals. Theoretical findings and numerical results underscore the superior efficiency of ML estimates derived from 
the RSS procedure compared to the SRS strategy. 

In future endeavors, we plan to extend the application of the proposed distribution to censored sample methods. Exploring various 
censoring strategies, including type-I and type-II censored samples, and generating random censored samples based on the new sample 
methods will be a focal point. Furthermore, our work may evolve to encompass the application of the suggested model in different 
types of accelerated life testing, such as constant and partially constant tests, and potentially progressive stress accelerated life tests. 
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