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Summary

Pore-forming toxins (PFTs) are commonly associated
with bacterial pathogenesis. In eukaryotes, how-
ever, PFTs operate in the immune system or are de-
ployed for attacking prey (e.g. venoms). This review
focuses upon two families of globular protein PFTs:
the cholesterol-dependent cytolysins (CDCs) and the
membrane attack complex/perforin superfamily
(MACPF). CDCs are produced by Gram-positive bac-
teria and lyse or permeabilize host cells or intracellu-
lar organelles during infection. In eukaryotes, MACPF
proteins have both lytic and non-lytic roles and func-
tion in immunity, invasion and development. The
structure and molecular mechanism of several CDCs
are relatively well characterized. Pore formation

involves oligomerization and assembly of soluble
monomers into a ring-shaped pre-pore which under-
goes conformational change to insert into mem-
branes, forming a large amphipathic transmembrane
b-barrel. In contrast, the structure and mechanism of
MACPF proteins has remained obscure. Recent crys-
tallographic studies now reveal that although MACPF
and CDCs are extremely divergent at the sequence
level, they share a common fold. Together with bio-
chemical studies, these structural data suggest that
lytic MACPF proteins use a CDC-like mechanism
of membrane disruption, and will help understand
the roles these proteins play in immunity and
development.

Introduction

Pore-forming toxins (PFTs) are proteins that possess the
ability to switch from a water-soluble form to a membrane-
inserted pore form. Over 80 different families of PFTs
have been characterized (Saier et al., 2006), these
include short peptides and large globular proteins. PFTs
constitute approximately one-third of all the characterized
bacterial toxins (Alouf and Popoff, 2006), and are found
across both Gram-positive and Gram-negative bacterial
species (Parker and Feil, 2005, Aroian and van der Goot,
2007). Although PFTs have been considered traditionally
as virulence factors contributing to bacterial invasion
and infection, these molecules also play key roles in
eukaryotes. Notable examples of eukaryotic PFTs include
C9 and perforin, proteins of the immune system (Vosk-
oboinik et al., 2006), and venoms used by sea anemones
to kill prey (Nagai et al., 2002).

A remarkable aspect of PFTs is their ability to exist in
both water-soluble and membrane-inserted forms. In the
soluble form, the membrane spanning portions of the PFT
are commonly stabilized by interaction with the core of the
molecule (Tilley and Saibil, 2006). Pore formation thus
often involves an extensive conformational change that
permits the membrane spanning residues to insert into
the lipid bilayer (Tilley and Saibil, 2006).

Pore-forming toxins are broadly classified into two
groups depending upon whether membrane spanning
is achieved using a-helices (a-PFTs, e.g. colicin) or
b-strands (b-PFTs, e.g. perfringolysin O, PFO). While
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extensive structural and mechanistic information is avail-
able for pore formation by various b-PFTs, the structure of
the membrane-inserted form of an a-PFT remains to be
determined.

In addition to conformational mobility, another key
feature of many PFTs is their ability to self-assemble into
doughnut-shaped oligomers (Tilley and Saibil, 2006).
Together, oligomerization and conformational change can
permit formation of pores that permeabilize membranes
and aid processes such as bacterial pathogenesis, for
example, through the transport of toxic proteinaceous
agents (Tweten, 2005; Aroian and van der Goot, 2007).
Depending on the toxin, the pore diameter may vary from
1 to 50 nm (Parker and Feil, 2005; Aroian and van der
Goot, 2007).

In this review we focus on the species distribu-
tion, structure and mechanism of one of the largest
families of b-PFTs, the membrane attack complex/
perforin/cholesterol-dependent cytolysin (MACPF/CDC)
superfamily.

Cholesterol-dependent cytolysins in
bacterial pathogenesis

Pathogenic Gram-positive bacteria such as Clostridium
perfringens, Bacillus anthracis and Streptococcus pneu-
moniae produce CDCs to aid tissue or cell invasion
(Table 1). The majority of characterized CDCs are
secreted toxins. Exceptions include pneumolysin (PLY),
which lacks an N-terminal secretion signal. In many Strep-
tococcus pneumoniae strains, it is hypothesized that PLY
is released via autolysin mediated bacterial autolysis.
However, studies on the WU2 strain reveal release of PLY
in the absence of autolysis, suggesting an unconventional
secretion mechanism is responsible for toxin release in
this strain (Balachandran et al., 2001).

Most CDC-releasing bacteria identified to date are
extracellular pathogens (of either humans or insects) that
release their respective CDCs in the extracellular
environment. However, at least two pathogens release
their CDC (listerolysin O, LLO) inside host phagocytic
cells (Listeria monocytogenes and Listeria ivanovii).

Cholesterol-dependent cytolysins perform a multitude of
functions in bacterial infection. For example, these toxins
disrupt plasma membranes causing cell death by necrosis
(PFO) and facilitating bacterial invasion, or disrupt endo-
somal or phagosomal membranes to release bacteria into
the interior of the cell (LLO). In addition to their pore-
forming properties, many CDCs possess pro-inflammatory
properties that enhance tissue damage at the site of infec-
tion (Cockeran et al., 2003). Further, certain CDCs
possess the ability to kill cells through alternative mecha-
nisms; for example, in bacterial meningitis caused by
Streptococcus pneumoniae, PLY has recently been shown

to form pores in the mitochrondria of neurons, activating
cell death pathways (Braun et al., 2007). Table 1 summa-
rizes the role of the known CDCs identified to date.

The structure and membrane insertion mechanism
of CDCs

The first structure of a CDC family member, PFO (Ross-
john et al., 1997), revealed a flat molecule comprising a
box-shaped N-terminal domain [originally annotated as
three non-contiguous domains (I–III)] connected to a
C-terminal Ig domain (domain 4) (Fig. 1A). An unusual
feature of the N-terminal CDC domain is a central four-
stranded b-sheet containing a 90° bend at its centre. Two
clusters of a-helices [termed transmembrane helices
(TMH) 1 and 2] are located at the base of this sheet and
are suggested to be responsible for membrane pene-
tration (Shepard et al., 1998; Shatursky et al., 1999;
Fig. 1A). The first cluster of a-helices, TMH-1, is loosely
sandwiched between the central b-sheet and the stalk-like
b-sheet that links the N-terminal CDC domain to the
C-terminal Ig domain, while the second cluster of
a-helices (TMH-2) is more solvent exposed. Extensive
biophysical and cryo-electron microscopy (cryo-EM)
studies suggest that both clusters of a-helices unwind and
adopt an amphipathic b-strand conformation in the mem-
brane (Fig. 1B; Shepard et al., 1998; Shatursky et al.,
1999; Tilley et al., 2005).

Initial interaction with the membrane,
oligomerization and conformational change

The current model for CDC mechanism comprises an initial
recognition event at the cell membrane via the C-terminal
Ig domain. This is followed by lateral diffusion and asso-
ciation with other CDC molecules to form a pre-pore oligo-
mer (Soltani et al., 2007). Cryo-EM and biophysical studies
suggest that oligomerization occurs via edge strand hydro-
gen bonding between the central four-stranded b-sheet of
each monomer, i.e. the fourth b-strand of one monomer
interacts with the first b-strand of the next (Ramachandran
et al., 2005; Tilley et al., 2005; Tweten, 2005). Following
formation of the pre-pore, a triggering event transmitted
from the Ig domain to the N-terminal domain permits con-
formational change and insertion of the transmembrane
regions into the membrane. The result of this concerted
activity is a giant b-barrel lined pore spanning the mem-
brane. The precise nature of the conformational change
remains unclear; however, cryo-EM studies reveal that the
N-terminal domain undergoes a significant ‘collapse’ that
brings TMH-1 and TMH-2 in close proximity to the mem-
brane (Tilley et al., 2005).

Initially, it was proposed that cholesterol functions as a
general receptor for CDCs (hence the family name). For
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Table 1. List of current identified members of the CDC subclass.

Species Toxin
Toxin
abbreviation

Accession
code/PDB ID Functions in disease

Arcanobacterium
pyogenes

Pyolysin PLO AAC45754 Cytotoxic for murine peritoneal macrophages and J774
cells (dose dependant) (Jost et al., 1999)

Bacillus anthracis Anthrolysin O ALO EDT69040 Kills human neutrophils, monocytes and macrophages
(Mosser and Rest, 2006)

Bacillus cereus Cereolysin CLO O45105 Uncharacterized
Bacillus sphaericus Sphaericolysin BAF96950 Damage to the ganglia of German cockroaches

(Blatetela germanica) (Nishiwaki et al., 2007)
Bacillus thuringiensis Thuringiolysin TLO BT9727_3096* Uncharacterized
Brevibacillus laterosporus Laterosporolysin LSL – Uncharacterized
Clostridium bifermentans Bifermentolysin BFL – Uncharacterized
Clostridium botulinum Botulinolysin BLY – Evidence that coronary vasconstriction is triggered by

BLY causing cardiac dysfunction, leading to
systemic hypertension and death in rat model
(Sugimoto et al., 1997)

Clostridium chauvoei Chauveolysin CVL – Uncharacterized
Clostridium histolyticum Histolyticolysin O HTL – Uncharacterized
Clostridium novyi A

(oedematiens)
Novyilysin NVL – Uncharacterized

Clostridium perfringens Perfringolysin O PFO P0C2E9/1PFO,
1M3I, 1M3J

Promotes dysfunctional human PMN/endothelial cell
adhesion contacts and vascular leukostasis. Inhibits
human PMN chemostasis and primes leukocytes
for increased respiratory burst (Ellemor et al., 1999)

Clostridium septicum Septicolysin O SPL – Uncharacterized
Clostridium sordellii Sordellilysin SDL – Suggestion that severity of C. sordellii-associated

disease may be related to the expression of SDL
or lethal toxin (TcsL) (Voth et al., 2006)

Clostridium tetani Tetanolysin TLY NP_782466 Observed lysis of rabbit lysosomes in a suspension of
the large granule fraction of rabbit liver (Cox et al., 1974)

Gardnerella vaginalis Vaginolysin VLY EU522486–
EU533488

Species-specific lysis dependant on CD59. Activates p38
mitogen-activated protein kinase pathway, induces
IL-8 production by human epithelial cells (Cox et al., 1974).

Listeria ivanovii Ivanolysin ILO P31831 Intracellular release of ILO – Does not induce IFN-g
(Kimoto et al., 2003)

Listeria monocytogenes Listeriolysin O LLO P13128 Intracellular release of LLO: Suppression of
phagocytosis by murine macrophages. Induces
the expression of IL-1a, IL-12, IFN-g, IL-8,
macrophage chemotaxis protein 1, adhesion
molecules on the surface of human epithelial cells.
Activates NF-kB (Kayal et al., 1999)

Listeria seeligeri Seeligeriolysin O LSO CAA42996 Strongly induces IL-12 but not IFN-b induces IFN-g in
naïve spleen cells. Requires Toll-like receptor 2
and 4 for signalling (Ito et al., 2005)

Paenibacillus alvei Alveolysin ALV P23564 Induced IL-8 expression in human polymorphonuclear
leukocyte, lymphocyte, monocyte and basophil cell
populations (Konig et al., 1994)

Streptococcus canis Streptolysin O SLO Q53957 Uncharacterized (DeWinter et al., 1999)
Streptococcus dysgalactiae

(ssp. equisimilis)
Streptolysin O SLO Q54114 Uncharacterized (Gerlach et al., 1993)

Streptococcus intermedius Intermedilysin ILY BAA89790/1S3R Specific for human CD59 (Giddings et al., 2004)
Essential for S. intermedius infection of HepG2 cells

(Sukeno et al., 2005)
Streptococcus pneumoniae Pneumolysin PLY P0C2J9/2BK1,

2BK2 (28 Å
resolution
cryo EM)

Directly activates the complement cascade, induces
IL-1b and TNFa expression from human monocytes.
Inhibition of immunoglobulin production and proliferative
response from human lymphocytes, as well as of the
bactericidal activity of PMNs and monocytes
(Alouf and Popoff, 2006)

Streptococcus pyogenes Streptolysin O SLO P0C0I3 Inhibits chemotaxis and mobility of human PMNs. Induces
expression of IL-1b, IL-6 and IL-8 and release of
prostaglandin E2 from human keratinocytes. Induces
expression of IL-1b and TNFa expression from human
monocytes (Ruiz et al., 1998)

Streptococcus suis Suilysin SLY CAC94852 Able to lyse epithelial cells. Possible mechanism for entry
into bloodstream and brain microvascular endothelial
cells leading to increased blood–brain barrier
permeability and phagocytosis (Vanier et al., 2004)
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PFO, biochemical data reveal that cholesterol may func-
tion as both a receptor and a trigger for the transition from
the pre-pore to the pore conversion. However, recent
studies using cholesterol-depleted human red blood cells
have revealed that initial membrane interaction and pre-
pore assembly of streptolysin O (SLO) and intermedilysin
(ILY) does not require the presence of cholesterol (Gid-
dings et al., 2003; Soltani et al., 2007). For ILY, it has been
shown that CD59 functions as a glycoprotein receptor that
recruits the CDC to the membrane surface and that cho-
lesterol is instead required to trigger the conformational
transition of the pre-pore to the pore form (Giddings et al.,
2004). Further experiments on ILY demonstrated that a
highly conserved region of the Ig domain, the undecapep-
tide, is not responsible for binding cholesterol-rich
membranes. Instead, it was demonstrated that loops
adjacent to the undecapeptide loop in ILY, called L1–L3,
were responsible for membrane interactions (Soltani
et al., 2007).

Structural studies on CDCs have been hampered by
their conformational mobility as well as the tendency of
these molecules to form oligomers of varying size. Thus

much remains to be understood in regards to the mecha-
nism of pore formation by CDCs. Most importantly, the
molecular details of the interaction between CDCs and
membrane receptors and a precise picture (at atomic
resolution) of the conformational change in the family
need to be resolved.

Membrane attack complex/perforin-like proteins

In comparison to bacteria, PFTs from eukaryotes are rela-
tively understudied (Smyth and Trapani, 1998; Trapani,
1998). One of the largest mammalian family of PFTs is the
MACPF superfamily; so named because of a domain
common to proteins of the mammalian membrane attack
complex (MAC) and perforin (PF) (Tschopp et al., 1986).
These molecules perform crucial roles in the defence
against bacterial and viral infection as well as in tumour
surveillance (Smyth et al., 2000; Voskoboinik et al., 2006).

Initially identified in the late 19th Century as a lytic
factor in blood, the terminal components of complement
(C5b, C6, C7, C8a-b-g and C9) assemble on the surface
of Gram-negative bacteria and protozoan pathogens such

Fig. 1. A. The structure of perfringolysin O
[PDB identifier: 1PFO (Rossjohn et al., 1997)].
The central b-sheet that contains a 90° bend
is in blue. The two transmembrane regions
TMH1 and TMH2 are in red and are labelled.
The C-terminal Ig domain is in pale green.
B. Schematic showing the molecular
mechanism of CDC membrane insertion.
The two clusters of a-helices (red cylinders)
unwind and insert into the membrane as
b-sheets.
C. X-ray crystal structure of Plu-MACPF
[PDB identifier 2QP2 (Rosado et al., 2007)].
Colouring is as for Fig. 1A, with the central
b-sheet in blue and the two clusters of
a-helices corresponding to TMH1 and TMH2
labelled. The location of the binding site for
CD59 on C8a and C9 is at the TMH2 region.

(a)
(c)

(b)
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as Leishmania major to form a large multi-protein complex
called the MAC. Complement-associated bacterial cell
lysis is optimally achieved in the presence of lysozyme,
which hydrolyzes components of the bacterial cell wall
(Martinez and Carroll, 1980). However, even in the
absence of lysozyme complement pore formation can
result in cell death through alternative non-lytic pathways
(Martinez and Carroll, 1980). Consistent with these data,
deficiency of MAC components results in an increased
susceptibility to infection by Gram-negative bacteria such
as Neisseria gonorrhoeae.

C6, C7, C8a, C8b and C9 all contain a common region
called the MACPF domain. Upon binding of C7 to the
C5bC6 complex, forming the C5b-7 complex, there is
interaction with the surface of the bacteria via C7 through
an as yet uncharacterized mechanism. Recruitment of the
C8 complex (which comprises the MACPF components
C8a and C8b together with the lipocalin C8g) is followed
by membrane insertion of the C8a component (Muller-
Eberhard, 1986). Finally, the C5b-8 complex recruits and
permits pore assembly by the final component C9 (Bhakdi
and Tranum-Jensen, 1978). EM studies also revealed that
C9 undergoes conformational change from a ellipsoid to
an elongated torus (DiScipio and Berlin, 1999).

Biochemical studies on C8a and C9 have revealed that
the MACPF domain is required for membrane insertion
and pore formation respectively (Steckel et al., 1983).
Importantly, all host cells express the MAC inhibitor CD59
that inhibits the membrane inserting activity of C8a and
C9, preventing inadvertent lysis of host cells. Deficiency
of CD59 can result in an overactivity of complement,
uncontrolled host cell lysis and development of paroxys-
mal nocturnal haemoglobinuria (Walport, 2001).

In 1984, perforin was characterized as a lytic PFT pro-
duced by natural killer cells and cytotoxic T lymphocytes
(Henkart et al., 1984; Podack and Konigsberg, 1984).
Perforin is stored in cytoplasmic secretory granules and is
released on contact to kill virus-infected or transformed
cells (Voskoboinik et al., 2006). Perforin itself is able to
lyse and kill cells by necrosis; however, it also permits
delivery of pro-apoptopic proteases (granzymes) into the
target cell (Shiver et al., 1992, Bolitho et al., 2007). Two
competing models for granyzme delivery by perforin have
been proposed: diffusion of the granzyme through a
plasma membrane perforin channel, versus coendocyto-
sis of perforin and granzyme with subsequent disruption
of an endosome membrane by perforin to release the
granzyme. However, the precise molecular mechanism
remains to be understood.

Congenital perforin deficiency results in the commonly
fatal immunoregulatory disease of infants, familial
haemophagocytic lymphohistiocytosis (FHL) (Voskobo-
inik et al., 2004; 2005). Affected individuals suffer from
massive accumulation of CD8+ T cells in organs and

a cytokine-storm mediated immunoproliferative disorder
that commonly results in severe tissue damage. Currently,
the only effective treatment for severe recurrent FHL is a
bone marrow transplant (Jabado et al., 1997). Overactiv-
ity of perforin also results in disease; for example, perforin
is critical for the destruction of insulin-producing pancre-
atic b-islet cells in the NOD mouse model of Type I dia-
betes (Kagi et al., 1997).

MACPF proteins are eukaryote CDCs: implications
for function and dysfunction

In the absence of structural information, and based upon
bioinformatic studies, it was originally proposed that C9
and perforin insert into membranes using two predicted
amphipathic a-helices that map to the most conserved
region of the MACPF domain (residues 292–333 of the
human C9 sequence; Peitsch et al., 1990). Therefore, it
was postulated that C9 and perforin belonged to the a-PFT
class of toxins. Several recently determined structures
challenge this hypothesis. The X-ray crystal structure of
Plu-MACPF (a MACPF domain containing protein from
Photorhabdus luminescens; Rosado et al., 2007; Fig. 1C),
the MACPF domain of C8a (Hadders et al., 2007) and the
MACPF domain of C8a in complex with C8g (Slade et al.,
2008) reveal that the MACPF domain is homologous to the
N-terminal portion (domains I–III) of CDCs (Fig. 1C). In
particular, conservation of a complex core fold, including
the membrane spanning clusters of helices (TMH1-2 or
CH1-2) suggests strongly that MACPF proteins and
CDCs form pores using a analogous mechanism (Fig. 2).
Interestingly, it appears that highly conserved MACPF
signature sequences (Ponting, 1999) map to regions that
may be crucial for controlling conformational change and

Fig. 2. Model of the pore form of a MACPF proteins in a lipid
bilayer (using the Plu-MACPF structure as a template, PDB ID:
2QP2).
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unfurling of the membrane spanning regions for the
MACPF subclass of the MACPF/CDC family of proteins.

The structural data provide a framework upon which we
can start to understand disease-linked variants of perforin
(Rosado et al., 2007). In a previous study, the rather puz-
zling observation was made that many disease-linked
variants of perforin map to two regions that are most
poorly conserved across the superfamily (Voskoboinik
et al., 2006). The structural data reveal that these two
regions comprise the putative perforin transmembrane
sequences. These data present an exception to the rule
that functional regions of proteins generally contain the
highest degree of sequence conservation. A possible
reason for this apparent paradox is that membrane span-
ning regions depend on physiochemical properties
(hydrophobicity), rather than absolute sequence. Further-
more, it is important to note that not all MACPF proteins
insert into membranes (e.g. C6) and thus do not require
amphipathic sequences in TMH1-2/CH1-2. Indeed, many
members of the family may play important non-lytic func-
tions that are discussed at the end of this review.

The structural data also provide an explanation for the
control of C8a and C9 by the host cell factor CD59. The
CD59 binding site on both proteins maps to the second
putative transmembrane sequence TMH-2/CH-2 (Fig. 1C).
Thus, it is suggested that CD59 controls MAC function by
directly interfering with the assembly of the transmem-
brane pore (see Fig. 1C).

The role of C-terminal domains in MACPF function

All CDCs characterized to date contain a C-terminal Ig
domain that is critical for interacting with lipid or protein
cofactors. Further, this domain is of key importance for
triggering conformational change in the N-terminal lytic
CDC domain [domains I–III (Polekhina et al., 2005)]. Bio-
informatic studies reveal that MACPF proteins are also
found in concert with one or more C-terminal domains.
However, rather than the common Ig domain found in
CDCs, a wider variety of C-terminal domain folds are
represented in the MACPF branch of the family. For
example, perforin contains an EGF-like domain followed
by a C2 domain; C8a contains an EGF-like followed by a
thrombospondin type 1 domain; mammalian-derived C9
contains an EGF-like domain and Plu-MACPF contains a
b-prism domain (Rosado et al., 2007). The structure of
Plu-MACPF (which appears non-lytic, but binds to mem-
branes) reveals that the b-prism domain is similarly
located to the Ig domain of the CDCs. Studies on perforin
have revealed that the C2 domain is responsible for initial
interaction with the membrane (Voskoboinik et al., 2006).
Thus for perforin, we propose that C-terminal domain may
perform a similar role to the Ig domains of CDCs by
interacting with lipids or protein receptors and triggering

conformational change and membrane insertion (Fig. 2).
However, it is clear that the C-terminal domains of other
MACPF proteins perform roles distinct from membrane
interaction. For example, the C-terminal domains of C8a
are not essential for formation of a functional MAC
(Scibek et al., 2002; Slade et al., 2006).

The broader MACPF proteins family in defence
and attack

The development of powerful informatic tools such as
PSI-BLAST now permits the identification of a large
number (> 500) of MACPF proteins. Predictably, many of
these proteins appear to be involved in immune defence
or attack (Table 2). Notably, in plants the MACPF protein
constitutively activated cell death-1 (CAD-1) is important
for defence against bacterial infection. Interestingly,
CAD-1 knockouts result in an overactivity of the plant
immune response (Morita-Yamamuro et al., 2005).

Several organisms use MACPF proteins as weapons
of attack. For example, sea anemone venom contains
haemolytic MACPF proteins and the malaria parasite
uses two MACPF proteins to invade the mosquito midgut
and to breach the liver sinusoidal membrane (Ishino et al.,
2004; Kadota et al., 2004).

A variety of pathogenic bacteria produce MACPF pro-
teins; indeed Plu-MACPF from the insect pathogenic
enterobacteria P. luminescens proved useful for structural
studies. It remains to be understood whether these
bacterial MACPF domain-containing proteins have pore-
forming functions in pathogenesis.

MACPF proteins in development

Interestingly, several MACPF proteins have been identi-
fied that may play roles in development rather than
immune defence or attack. In most of these cases it is not
yet clear whether the MACPF protein has a lytic or non-
lytic function.

In insects, Torso-like protein (Tsl) is maternally secreted
at the anterior and posterior poles of the oocyte. Through
an as yet uncharacterized mechanism, Tsl secretion
results in Trunk-mediated activation of the Torso receptor
tyrosine kinase. Torso-signalling results in development of
anterior and posterior structures. Accordingly, Tsl knock-
outs are embryonically lethal (Stevens et al., 1990).

The sea urchin protein, apextrin, was initially identified
in secretory vesicles within eggs (Haag et al., 1999).
Closely related molecules have been subsequently been
identified in several other sea urchin species, Cnidaria
[hydrazoans (Hydra magnipapillata) and corals (Acropora
millepora)] (Miller et al., 2007). Haag and colleagues ini-
tially postulated that the role of apextrin was in cell adhe-
sion in developing embryos (Haag et al., 1999). However,
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more recent experiments in amphioxus (lancelet) suggest
that apextrin may also play a role in immune defence
against bacterial infection (Huang et al., 2007).

In mammals the large (over 1000 amino acids) proteins
astrotactin-1 and -2 play important roles in neural
development. Astrotactin 1 is hypothesized to be a neu-
ronal adhesion molecule (Zheng et al., 1996) and precur-
sor neuronal cells in the cerebella cortex of humans and
mice produce astrotactin-1 in order to migrate along glial
fibres. Targeted disruption of astrotactin-1 gene in mice
resulted in mice with cerebella that were 10% smaller and
reduction in the ability of granule cells to migrate (Adams
et al., 2002). Similarly human deleted in bladder cancer
candidate region-1 (DBCCR-1)/BMP/RA inducible neural-
specific protein-1 (BRINP-1) is also thought to play a role
in neural development (Kawano et al., 2004). Other data
also suggest this latter molecule is a tumour suppressor
that may modulate the cell cycle. Finally, studies on the
mammalian MACPF protein EPCS50, reveal that this
protein is produced in the developing trophoblast. It is

suggested that this molecule may be involved in tropho-
blast invasion of the uterine lining (Hemberger et al.,
2000).

Concluding statements

Recent structural studies have permitted the unification of
CDC and MACPF proteins as a single superfamily and
thus suggest that MACPF proteins and CDCs share
a common mechanism of oligomerization and pore
formation. However, important distinctions between the
families remain to be understood. Most notably, while all
CDCs appear to function as lytic toxins, the same cannot
be said for MACPF proteins. Molecules such as C6 and
C8b appear non-lytic and perhaps function as scaffolds
and/or regulators of lytic molecules such as C9.

Interestingly, several members of the MACPF family
appear to perform novel roles in development. While
intriguing, a role for proteins of the same family in immu-
nity or development is not unprecedented. For example,

Table 2. List of current identified members of the MACPF subclass.

MACPF
subclasses Common names Description of expression pattern and function

The following subclasses contain proteins with demonstrated lytic activity:
C9-like C6, C7, C8a, C8b, C9 Vertebrate membrane attack complex (MAC)

Roles within the MAC:
C9 – membrane insertion, pore formation and lytic activity
C8a, C7 – role in anchoring the MAC to the target membrane
C6 and C8b – no detected ability to insert into membranes (Muller-Eberhard, 1986)

Perforin-like perforin Released from granules within natural killer and cytotoxic T lymphocytes to lyse
targeted cells in the immune response (Voskoboinik et al., 2006).

Sea anemone toxins PsTX-60A
PsTX-60B
AvTX-60A

Haemolytic toxin released from the sea anenome nemocysts to kill prey.
Species include Phyllodiscus semoni and Actineria villosa (Oshiro et al., 2004).

The following proteins have not been demonstrated to have lytic activity:
Apextrin apextrin Located in secretory vesicles in sea-urchin eggs, Apextrin becomes localized to the apical

extracellular matrix upon fertilization of the cells in the blastula (Haag et al., 1999)
Upregulation upon bacterial infection in amphioxus (Huang et al., 2007)

Astrotactin Astrotactin-1
Astrotactin-2

Astrotactin-1 required for neuronal cells migration along glial fibres, possibly neuronal
adhesion molecules (Zheng et al., 1996)

Chlamydia proteins – Hypothetical proteins of Chlamydia trachomatis, Chlamydophila pneumoniae and
C. muridium (Ponting, 1999)

Cyano-bacteria – Hypothetical protein of Trichodesmium erythraeum (cyanobacteria)
DBCCR/BRINP DBCCR1 (BRINP1),

DBCCR1-like protein 1
(BRINP3), DBCCR1-
like protein 2 (BRINP2)

DBCCR-1, deleted in bladder cancer candidate region-1 gene, tumour suppressor gene
commonly deleted in bladder cancer. Overexpression of DBCCR-1 suppresses tumour
cell growth. Involved in neuronal development (Motomiya et al., 2007)

Also referred to as FAM5 family of proteins.
EPCS50 EPCS50 EPCS50 expressed in the trophoblast upon implantation of the murine embryo

(Hemberger et al., 2000)
Fungal proteins SpoC1-C1C Expressed during maturation of the conidia (specialized organ for asexual reproduction)

of Emericella nidulans, mRNA levels drop upon germination (Stephens et al., 1999)
Malarial proteins SPECT2 and MAOP SPECT2 and MAOP are essential for parasite invasion into the human liver

(Ishino et al., 2004) and the mosquito host (Kadota et al., 2004) respectively
MPS MPS, MPG Macrophage Proliferation-specific Gene-1 detected in differentiated macrophages

(Spilsbury et al., 1995)
Plant proteins CAD1 Arabidopsis thaliana CAD1 involved in plant immune response (Morita-Yamamuro et al.,

2005)
Plu-MACPF Plu-MACPF Hypothetical protein from the bacteria, Photorhabdus luminescens (Rosado et al., 2007)
Tsl Tsl Torso-like protein (Tsl) from Drosophila melanogaster, is hypothesized to activate the

receptor, Torso, via the protein Trunk (Stevens et al., 1990)
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members of the Toll-like receptor family play well-defined
roles in fly development and mammalian immunity.

Many unanswered questions remain about the MACPF/
CDC family. In particular, the absence of a high-resolution
structure of either a MACPF or a CDC in the pore form
precludes an understanding of the fine details of the con-
formational re-arrangements that these remarkable pro-
teins undergo. Future structural and biochemical studies
will no doubt start to shed light on these processes as well
as addressing the role of lytic or non-lytic MACPF proteins
in development.
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