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Abstract

Objectives/Goals: The association between surgery with general anesthesia (exposure) and cog-
nition (outcome) among older adults has been studied with mixed conclusions. We revisited a
recent analysis to provide missing data education and discuss implications of biostatistical
methodology for informative dropout following dementia diagnosis.Methods/study population:
We used data from the Mayo Clinic Study of Aging, a longitudinal study of prevalence, inci-
dence, and risk factors for mild cognitive impairment (MCI) and dementia. We fit linear mixed
effects models (LMMs) to assess the association between anesthesia exposure and subsequent
trajectories of cognitive z-scores assuming datamissing at random, hypothesizing that exposure
is associated with greater decline in cognitive function. Additionally, we used shared parameter
models for informative dropout assuming data missing not at random. Results: A total of 1948
non-demented participants were included. Median age was 79 years, 49%were female, and 16%
had MCI at enrollment. Among median follow-up of 4 study visits over 6.6 years, 172 subjects
developed dementia, 270 died, and 594 participants underwent anesthesia. In LMMs, exposure
to anesthesia was associated with decline in cognitive function over time (change in annual
cognitive z-score slope=−0.063, 95% CI: (−0.080,−0.046), p< 0.001). Accounting for inform-
ative dropout using shared parameter models, exposure was associated with greater cognitive
decline (change in annual slope=−0.081, 95%CI: (−0.137,−0.026), p= 0.004).Discussion: We
revisited prior work by our group with a focus on informative dropout. Although the conclu-
sions are similar, we demonstrated the potential impact of novel biostatistics methodology in
longitudinal clinical research.

Introduction

Recent research studies have reported that surgery with general anesthesia is associated with
subsequent cognitive decline in older adults [1,2]. However, several studies have reported con-
tradictory results [3,4]. Further supporting the hypothesis that anesthesia is associated with sub-
sequent cognitive decline is a preclinical study in which cell lines exposed to inhalational
anesthesia demonstrate enhancement of brain neuropathology implicated in Alzheimer’s
dementia [5] and a systematic review of short-term perioperative cognitive dysfunction [6].
Recent clinical research studies have used longitudinally collected data to assess this hypothesis.
Longitudinal studies obtain repeated assessments on subjects over time. For example, longi-
tudinal data could be collected at several scheduled study visits or at multiple encounters with
the medical system. While a sample of subjects may be enrolled into a longitudinal study either
prospectively or by defining a retrospective cohort, some subjects may drop out, as the study
progresses during the follow-up period.

Subjects with severe cognitive impairment or dementia more frequently drop out from longi-
tudinal research studies [7,8]. This may result from elevated caregiver burden for persons with
cognitive impairment or dementia [9,10]. Furthermore, participants with dementia are also less
able or even unable to complete a lengthy neuropsychological testing battery. As a result, sub-
jects with poorer cognitive outcomes may be more likely to be missing their outcome measure-
ments in the research study. This type of dropout from a longitudinal study is informative, if the
missing values are related to unobserved data. If informative dropout is present, associations
estimated from statistical analyses that do not account formissing not at random data are biased.
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This manuscript revisits the recent study by Schulte et al.
(2018), assessing the association between surgery or procedures
requiring general anesthesia and subsequent cognitive decline in
older adults [11]. In their paper, an ad-hoc approach to missing
data and possible informative dropout was taken. They performed
a sensitivity analysis restricted to the first 4 years of follow-up
before substantial dropout was observed. However, with recent
information about the potential subject dropout process in the
Mayo Clinic Study of Aging (MCSA), we decided to reanalyze
these data from the same data sources using statistical methodol-
ogy that allows for informative dropout. The aim of this manu-
script is to demonstrate the impact of biostatistics methodology
decisions on clinical research outcomes and expound on biostatis-
tics methods for missing data available to clinical researchers in the
longitudinal data setting. Specifically, we address implications of
dropout in longitudinal studies and implement shared parameter
models to reassess the association between surgery with general
anesthesia and cognitive function in the presence of informative
dropout.

Missing Data in Clinical Research

In any study where missing data are present, the underlying reason
or mechanism for why these data are missing is important to con-
sider. Estimates using partially observed data are usually less effi-
cient than those using fully observed data, where efficiency is
defined by the precision or variability of an estimate. In addition,
missing data may cause bias. Bias and variance have been described
previously using the analogy of a dartboard. When darts are
thrown, they may be narrowly clustered near each other in tight
formation (low variability) or spread out (high variability). Fur-
thermore, they may be centered around the bullseye (unbiased)
or may have a center toward an edge (biased). In select situations,
observations with missing data can be ignored, and statistical
analyses based only on the observed complete-case data will pro-
vide an unbiased estimate, even if less efficient than what could
have been obtained with fully observed data (no missingness).
However, this is rare in practice, and statistical methods may need
to consider the underlying reasons for missing data. In the follow-
ing description of missing data types and methods, we focus on the
issue of bias.

In 1976, Rubin distinguished between ignorable and nonignor-
able mechanisms and defined three types of missing data: missing
completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR) [12]. Data are MCAR if the subset
of data that is complete consists of random observations from the
whole dataset. In other words, the missing data have no relation-
ship with any data in the dataset, observed or missing. An example
ofMCAR data may include a person who is lost to follow-up due to
relocation or a study where only a random subset of patients are
selected for expensive genotyping. In the setting of MCAR, analy-
ses performed only on the complete data are valid, meaning that if
all other statistical assumptions are satisfied, themodel will provide
unbiased estimates.

When data are MAR, the missing data depend on the observed
data but do not depend on unmeasured factors or missing data. An
example of MAR is if subjects receiving a novel therapy stop
attending follow-up study visits more often than those receiving
standard care, so that missing data at later visits are related to
the observed treatment group. Analyses that incorporate all
observed information, and not only people with complete data,
may provide valid estimates. Common approaches to MAR data

include weighting using an estimated probability of missingness
and multiple imputation. MAR and MCAR are sometimes called
ignorable missing data, since statistical modeling or assumptions
about the missing data mechanism, or underlying reason for miss-
ingness, are not required.

Whenmissing values depend not only on the observed data, but
also on the unobserved data, the missing data mechanism is con-
sideredMNAR. This typically arises when the missing data point is
missing directly because of the unobserved value. Self-reported
income is a common example, where study participants at the
extremes may be self-conscious about reporting their income. In
the absence of other available data about socioeconomic status,
missing income would be directly dependent on the unobserved
and unreported income values. In our analysis, a concern is
whether the data we are missing after subjects drop out, or stop
attending or completing study visits, represent unobserved lower
cognitive scores. The reasoning, based on discussions with subject
experts and MCSA investigators, is that subjects with lower cogni-
tive function require additional care, and attending research
appointments may represent a burden. MNAR data are considered
nonignorable, and methods for analyzing MNAR data require stat-
istical modeling or assumptions about the missing data process. Of
note, while a dataset can be used to determine whether data are
MAR versus MCAR, it is not possible to differentiate between
MAR and MNAR using observed data. Instead, this information
may come from auxiliary sources, such as research staff who
may have a better understanding of why data were not obtained
or why subjects did not attend appointments.

Missing data are a prevalent problem in longitudinal studies,
since repeated measurements are collected on the same individuals
over time requiring multiple contacts with the subjects. As partic-
ipants are followed over time, there are more opportunities for
information to be missing. People can drop out of a study and have
missing data for the remainder of the study, or they could miss one
scheduled visit and have complete data for the rest of the study or
some combination of these occurrences. There is extensive litera-
ture on methods for missing data in a longitudinal setting [13–22].

In our motivating data analysis, we are concerned that subjects
who drop out have different longitudinal trajectories of the out-
come compared to subjects who do not drop out, and those
differences cannot be explained by other observed data. There are
three common approaches for informative dropout data: pattern-
mixture, selection, and shared parameter models [23]. There are
many resources extensively describing methodology for pattern-
mixture models [23–27], selection models [20,23,28], and shared
parametermodels [29–32] broadly. All three approaches have been
used in practice to account for informative dropout in aging pop-
ulations, in many cases assuming informative dropout related to
dementia [33–38]. A limitation of pattern-mixture and selection
models is that time is typically discrete. Thus, they are useful when
the timing of study visits is consistent for all subjects (e.g., first visit
at 6 months, second visit at 12 months, third visit at 18 months,
etc., so that visits could be binned by visit number). If subjects
are not observed at the same time intervals, and thus the time scale
is continuous, then pattern-mixture and selection models are not
straightforward to implement with available software. Shared
parameter models, however, allow for time on a continuous scale.
Since dropout times in our motivating example are continuous, the
focus of this paper will be on implementing shared parameter
models to account for informative dropout.

A shared parameter approach jointly models the longitudinal
outcome and time-to-dropout simultaneously. It gets its name
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from the sharing of information between the two models while
estimating the model parameters. Specifically, some parameters
are found in both models. For example, one can jointly fit a linear
mixed effects model to the longitudinal outcome and a survival
model, such as Cox proportional hazards regression, for time-
to-dropout. In the shared parameter approach, the survival model
may include the random effects or time-dependent estimates from
the longitudinal outcome model. Linear mixed effects models fit
via maximum likelihood allow for data to be MAR while still
providing valid inference (unbiased estimates), assuming other
assumptions hold such as no unmeasured confounders. Shared
parameter models allow for data to beMNAR by updating the sub-
ject specific random intercepts and/or slopes in the linear mixed
effects model by jointly modeling the longitudinal outcome with
the time-to-dropout process. Intuitively, the shared parameter
model revises the estimates in the linear mixed effects model
accounting for the dropout process. In our setting, we are inter-
ested in modeling trajectories of longitudinally collected cognitive
scores as a function of anesthesia exposure while considering pos-
sibly informative dropout due to dementia or death. The shared
parameter model we consider allows for MNAR cognitive scores
by jointly modeling cognitive score trajectories and time-to-dementia
or death.

Materials and Methods

Data

Study subjects were enrolled in the Mayo Clinic Study of Aging
(MCSA), a prospective epidemiologic longitudinal cohort study
of the prevalence, incidence, and risk factors for mild cogni-
tive impairment (MCI) and dementia among Olmsted County,
Minnesota residents [39]. We included MCSA participants who
were at least 70 years of age and without dementia at enrollment.
We used enrollment dates of this cohort from October 1, 2004 to
December 31, 2009. Recent enrollment cohorts continue to expand
the MCSA sample and are not included in the current study.
Follow-upMCSA visits were included through December 31, 2014.

Details of the MCSA study have been described elsewhere [39].
In brief, subjects had a clinical evaluation at an enrollment visit,
and follow-up visits were scheduled at approximately 15-month
intervals thereafter. While planned follow-up was at 15 months,
actual visits occurred more irregularly. Follow-up visits typically
occurred 12–18 months after the prior visit; however, some sub-
ject’s visits were outside of this interval. As a result, investigators
hesitate to bin follow-up visits into discrete time points or visit
numbers. Apolipoprotein ϵ4 (APOE ϵ4) allele (apolipoprotein
E genotype; APOE) genotyping was performed at enrollment.
Each study visit included an evaluation by a study coordinator
or nurse consisting of medical history, memory by self-report,
and family history of dementia. A neurological assessment was per-
formed at each visit by a physician. In addition, a psychometrist
administered a cognitive testing battery of nine tests covering
four cognitive domains at each visit. For our purposes, we define
a global cognitive z-score summarizing overall cognitive function
across the four domains, as described previously [11,39,40]. Briefly,
a subject’s score represents the number of standard deviations their
score is from the mean score of a reference population of cogni-
tively unimpaired subjects of an MCSA 2004 enrollment cohort.
After each clinic visit, a consensus conference reviewing all study
information was conferred. The consensus conference included
the study coordinator or nurse, physician, and neuropsychologist

involved with the participant’s visit as well as neurologists and
other study staffs [39,41,42].

MCSA data were combined with surgery and procedure data
performedunder general anesthesia retrospectively identified through
the Rochester Epidemiology Project (REP) [43]. Procedures with
anesthesia through 2014 were further manually reviewed, and the
data abstracted were combined with MCSA visit data [44].
Mortality data were also obtained from the REP.

Statistical Analysis

Missing data for baseline subject covariates were rare in the MCSA
data, with nine subjects (0.5% of the eligible sample) excluded due
to missing alcohol status (n= 4) or missing APOE ϵ4 status
(n= 5). We assumed these few values were MCAR in the current
study to focus on the issue of potential informative dropout.
Median follow-up (and quantiles) was estimated using the reverse
Kaplan–Meier method.

Our primary hypothesis was that exposure to surgery with
general anesthesia is associated with worse trajectory of cognitive
z-scores over time. The association between surgery with general
anesthesia and longitudinally measured global cognitive z-scores
was first analyzed using linear mixed effects models (LMM) under
the assumption that dropout is MAR. Fixed effects in the LMM
included baseline covariates, time in years since enrollment, the
interaction between baseline covariates and time since enrollment,
and time after a post-enrollment surgery with general anesthesia.
Time in years since enrollment was modeled to have a linear rela-
tionship with cognitive z-scores, since in prior studies, we found
that a linear relationship described the data well. Time since enroll-
ment, and its interactions with baseline covariates, estimated the
average annual rate of change in cognitive z-scores without or prior
to surgery with general anesthesia. Time after a post-enrollment
surgery with general anesthesia was the primary exposure variable
to test the hypothesis that exposure is associated with a change in
the slope of cognitive z-scores over time. Time after a post-
enrollment surgery with general anesthesia was a time-dependent
variable that was zero among all subjects without or prior to sur-
gery with general anesthesia and begins counting time, in years,
after surgery with general anesthesia. Thus, the coefficient for time
after post-enrollment surgery with general anesthesia estimated
the change in the average annual slope of cognitive z-scores follow-
ing a subject’s post-enrollment surgery. In all analyses, we adjusted
for potential confounders identified a priori by investigators
including: age at enrollment, sex, education level, APOE ϵ4 status,
midlife diabetes mellitus, midlife hypertension, midlife dyslipide-
mia, atrial fibrillation, Charlson Co-morbidity Index, history of
congestive heart failure, stroke, coronary artery disease, marital
status, smoking status, diagnosed alcohol problem, and baseline
MCI status. We also adjusted for exposures to surgery with general
anesthesia in the 20 years prior to enrollment. Interactions between
time after enrollment and baseline covariates were further
included. Random effects in the LMM included random intercepts,
random slope, and random slope after anesthesia exposure. Other
random effects structures were considered for the LMM, and we
chose the model with best fit using the Akaike Information
Criterion (AIC). In this initial model, we assumed that data were
MAR conditional on the observed data including z-scores prior to
dropout, surgery with general anesthesia, and adjustment varia-
bles. This analysis differs from Schulte et al. (2018), which assessed
the relationship between post-enrollment exposure and cognitive
outcomes with an LMM among those without exposure to
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anesthesia and surgery in the 20 years before enrollment by defin-
ing the time-dependent exposure only for those without prior
anesthesia exposure [11]. Here, we estimated the association
between exposure to anesthesia and surgery with subsequent cog-
nitive trajectories with an LMM among all subjects.

Second, we used a shared parameter model, as described in the
missing data section, to assess the association under the assumption
of informative dropout. The shared parameter model combined two
submodels. In the first step, we fitted an LMM submodel for the out-
come of global cognitive z-score. The model was similar to the one
specified above and used the same covariates, but for computation
reasons, we excluded observations from subjects occurring after a
dementia diagnosis, so that dementia always prompts dropout. In
the next step, we fit a survival submodel for time to drop out due
to death or dementia. Dropout due to death was defined by death
within 18months of a prior study visit. Subjects without dementia
diagnosis or death were censored at last known alive or at the end of
available follow-up (December 31, 2014). Variables in this survival
submodel included the same adjustment variables at enrollment as
in the LMM specified previously.

For the shared parameter model, we combined these two sub-
models by sharing information between the two models. Several
options exist for the association structure of the two submodels.
We chose an approach where each random effect term included
in the LMMwas also fitted in the survival model and, thus, explains
the interdependencies between the models for the dropout process
and the longitudinal trajectory of cognitive scores. Specifically,
random intercept, slope, and change in slope after exposure
parameters from the longitudinal model were covariates in the
model for time to death or dementia. Alternative approaches were
considered, and we used the deviance information criterion (DIC)
to select the one shared parameter model that fit the data best. We
used a Bayesian approach implemented in R statistical software
and the JMbayes package (Joint Models Using Markov chain
Monte Carlo in R) [45]. Other software options for shared param-
eter models exist in R [46], SAS [47,48], and Stata [49], among
others. Markov chain Monte Carlo algorithms estimated the joint
model by re-fitting both models under this new shared parameter-
ization. The prior distributions for parameters used were the
software package defaults – typical diffuse and non-informative
priors [45].

In our approach, we allowed for dropout to be MNAR by mod-
eling the dropout process related to death or dementia. Participants
may have dropped out for other reasons, such as relocation. While
studies with discrete follow-up visits could further include “other”
dropouts, in the continuous time setting, we were not able to deter-
mine a date of dropout reliably. Hence, we assumed that the drop-
out for other reasons beyond death or dementia was MAR or
MCAR, which were adequately handled in the current analysis
approaches.

Results of our model were described, in part, with a figure dis-
playing the estimatedmean trajectory of four hypothetical subjects.
Hypothetical subjects were chosen to illustrate variation in cogni-
tive scores at enrollment and changes in cognitive scores over time.
Mean trajectories for these four subjects used estimated coefficients
from the shared parameter model, with random effects set to zero.
Trajectories were estimated for the scenario where the subject had
no post-enrollment exposure to surgery and general anesthesia and
for the scenario where the subject had a surgery with general anes-
thesia at 2 years post-enrollment.

The current study used the same data source as Schulte et al.
(2018), but we note the following differences between the current

analysis and the previously published Schulte et al. (2018) analysis
[11]. (1) We retained subjects with a single MCSA visit with cog-
nitive score in the present analysis, whereas Schulte et al. (2018)
inclusion criteria required two visits with cognitive scores. (2)
We assessed whether there was an association between exposure
to surgery with general anesthesia and subsequent cognitive
decline among all patients in the cohort, whereas Schulte et al.
(2018) assessed the association among those that are anesthesia-
naïve in the 20 years before MCSA enrollment. Thus, our inference
includes a broader population. (3) Cognitive scores observed after
dementia were excluded in some analyses, as mentioned previ-
ously. Finally, (4) Schulte et al. (2018) used LMMs under the
MAR assumption, whereas in the current analysis, we repeated
the LMMs under MAR accommodating changes to (1)–(3) above
and further analyzed the association of interest using shared
parameter models assuming MNAR.

Additional details for the statistical model, including R pro-
gramming code, can be found in the Supplemental Material.

Results

Of 1948 non-demented MCSA participants, median [25th, 75th
percentiles] age was 79 [74, 83] years, and 49% of subjects were
female. Midlife hypertension and dyslipidemia were common
(36% and 43%, respectively). Mild cognitive impairment was
present in 16% at enrollment, and 27% of subjects were APOE
ϵ4 positive. Participants had a median of 4 [3, 6] MCSA visits with
cognitive scores (total 8417 observations among 1948 subjects)
ascertained over 6.6 [4.2, 8.1] years in the study. Time between
consecutive study visits was a median 1.3 years (approximately
15–16 months), but varied substantially (1st percentile= 0.5 years,
99th percentile= 2.7 years), and 25% of observations were outside
±2 months of the planned 15-month interval.

Development of dementia was observed in 172 subjects during
the study period. Death within 18 months of a study visit was con-
sidered death on study before dropout for other reasons; 270 sub-
jects died during follow-up in this study. Patient characteristics
are described according to study outcomes in the Supplemental
Material. In brief, those who died on study were older and had
more comorbidities. Those who developed dementia more often
had APOE ϵ4 allele and mild cognitive impairment at enrollment.
A total of 594 participants had post-enrollment exposure to surgery
with general anesthesia during the study period. Characteristics of
procedures have been described previously with significant overlap
with the current study sample [11,50].

In linear mixed effects models under the assumption that drop-
out is ignorable (MAR), there was significant evidence to suggest
that exposure to surgery and general anesthesia is associated with
greater cognitive decline after surgery (change in annual slope of
cognitive z-score=−0.063, 95%Confidence Interval (CI): (−0.080,
−0.046), p< 0.001; Table 1). There were 63 MCSA visits with cog-
nitive scores after a dementia diagnosis. When the analysis was
repeated without these data and still assuming MAR, results were
nearly identical (see Table 1). However, when refitted in the shared
parameter approach for ignorable missing data (allowing for
MNAR), estimates of the association with cognitive decline were
more pronounced (change in annual slope = −0.081, 95% Credible
Interval (CrI): (−0.137, −0.026), p= 0.004). These results suggest,
on average, exposure to surgery with general anesthesia is associated
with more than double the expected rate of change in cognitive
decline compared to pre-exposure among older adults (see Table 1).
The fullmodel fit is described in the SupplementalMaterial. Since data
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were complete at enrollment, intercept-related terms that describe
the relationship between covariates and the enrollment cognitive
z-score were similar betweenmodels; however, slope-related terms
that describe how covariates were associated with change in cog-
nitive z-score over time tend to be larger (further from 0, the null
hypothesis) in the shared parameter model, possibly reflecting
informative dropout. Fig. 1 demonstrates simulated paths of four
hypothetical subjects with varying risks for cognitive decline. As in
prior studies by our team [11], the estimated changes in slope asso-
ciated with surgery and general anesthesia are small, relatively,
compared to variation in the population.

We decided, based on review of other papers implementing
models for informative dropout, to focus on the composite dropout
due to death or dementia. As an alternative, we further considered
a shared parameter model where the survival model was fitted for
the endpoint of dropout due to dementia alone. Thus, this analysis
assumes dropout due to dementia is MNAR, but dropout due to
death is MAR. Results were similar, but of smaller magnitude for
the estimate (change in annual slope = −0.074, 95% CrI: (−0.129,
−0.019), p= 0.006; Table 1).

Discussion

We showed that when accounting for potential informative drop-
out due to death or dementia, the estimated association (point esti-
mate) was 29% larger than the results under a MAR assumption,
although both lead to similar qualitative conclusions. Results from
all models we considered suggested that exposure to anesthesia and
surgery is associated with greater decline in cognitive z-scores
compared to those not exposed. When participants drop out from
research studies after dementia diagnosis or death, missing data
may represent informative missingness, and there may be some
sensitivity for the association with respect to this type of missing
data mechanism. Specifically, in our study, poorer cognitive out-
comes may be unobserved or missing, and analyses using only
observed outcome data prior to dropout may underestimate the
true association.

Our results were qualitatively similar to Schulte et al. (2018) and
Sprung et al. (2019) [11,50], which suggested an acceleration of
cognitive decline beyond that expected for normal aging in this
population of older adults. Under the linear mixed effects models
in this study, our results suggested a point estimate that is stronger
in the association between surgery with general anesthesia and cog-
nitive outcomes compared to Schulte et al. (2018), but this may be
attributable to the small differences in inclusion criteria and that

our estimates include exposure among those with surgeries and
general anesthesia prior to MCSA enrollment. Our shared param-
eter model, while estimating a slightly more pronounced associa-
tion, had similar qualitative conclusions to these prior studies,

Table 1. Cognitive scores over time following enrollment

Surgery and general anesthesia

Method
Slope
est.*

Difference in slope
est. (95% CI)** p

Linear mixed effects model −0.072 −0.063 (−0.080, −0.046) <0.001

Linear mixed effects model, excluding observations after dementia −0.076 −0.063 (−0.079, −0.047) <0.001

Shared parameter model§ – death or dementia −0.077 −0.081 (−0.137, −0.026) 0.004

Shared parameter model§ – dementia alone −0.065 −0.074 (−0.129, −0.019) 0.006

Linear mixed effects models assume data are missing at random (MAR), whereas shared parameter models assume missing not at random (MNAR).
*Slope est. is the estimated change in cognitive z-score slope per year without a post-enrollment exposure to surgery and anesthesia. It is obtained by averaging estimated subject-specific slopes
over the distribution of the sample and assuming no post-enrollment exposure.
**Difference in slope est. is the average change in annual slope following a post-enrollment exposure to surgery with general anesthesia. The linearmixed effectsmodel provides an estimatewith
95% confidence interval. Shared parameter models provide an estimate and 95% credible interval.
§Shared parameter models exclude observations after dementia.
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Fig. 1 Simulated trajectories for four hypothetical patients under two scenarios: (1)
no surgery with general anesthesia during the follow-up period (shownwith solid line),
and post-enrollment surgery and anesthesia at 2 years after enrollment (shown with
dashed line). Follow-up is described from enrollment through 8 years. Exposure refers
to exposure to surgery and general anesthesia. The four hypothetical patients
were chosen to represent varying degrees of health at enrollment. Patient (Pt) 1 is
a 75-year-old female, never a smoker, married, with ≥16 years of education, with
Charlson comorbidity index of 1, APOE ϵ4 negative, cognitively normal at enrollment,
andwith prior exposure to anesthesia in the last 20 years. Pt 2 is an 80-year-old female,
never a smoker, married, 13–15 years of education, with prior history of coronary
artery disease and a Charlson comorbidity Index score of 2, APOE ϵ4 negative, cogni-
tively normal at enrollment, and without prior exposure to anesthesia in the 20 years
before enrollment. Pt 3 is an 85-year-old female, former smoker, single-partner status,
12 years of education, with prior history of stroke and atrial fibrillation and a Charlson
comorbidity Index score of 3, APOE ϵ4 positive, cognitively normal at enrollment, and
with a prior exposure to anesthesia in the last 20 years. Pt 4 is a 75-year-old male, cur-
rent smoker, single-partner status, 12 years of education, prior history of coronary
artery disease and a Charlson comorbidity Index score of 4, withmidlife dyslipidaemia,
APOE ϵ4 positive, mild cognitive impairment at enrollment, and without exposure to
anesthesia in the 20 years prior. The plot demonstrates that changes over time attrib-
utable to surgery and anesthesia before enrollment or post-enrollment represent a
subtle, although statistically significant, change in the average trajectory of cognitive
z-scores relative to the variability in z-scores inherent in the population.
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despite new information about potential dropout processes in the
MCSA. As a result, we refer the reader to those papers and refer-
ences therein for discussion of the clinical implications of these
results.

In this study, we implemented shared parameter models to
model informative dropout. Other studies have taken different
approaches, including pattern-mixture models [35,36,38]. In those
studies, data had discrete observation times amenable to the
pattern-mixture analysis approach. When follow-up is discrete,
researchers could consider this approach. However, pattern-
mixture models and selection models are not easily extended
to continuous observation times. We did not consider pattern-
mixture and selection models for our data, since an ad-hoc
approach to binning data with ±2 months would result in delet-
ing 25% of the longitudinal observations.

Our baseline data were nearly complete at enrollment due to
MCSA procedures that comprehensively collect data on partici-
pants. However, nine subjects were excluded from our analyses
for missing baseline data. When missing data are present, investi-
gators need to consider potential causes and mechanisms for that
missingness. In our study, we felt it reasonable to perform complete
case analysis with respect to baseline covariates assuming MCAR
to exclude less than half of one percent of the sample with missing
baseline covariates, especially as it relates to missing APOE ϵ4 sta-
tus as refusal to participate in genotyping is unlikely to be related to
APOE ϵ4 status nor other covariates. However, other studies may
need to consider additional methodologies for missing baseline
covariates or missing exposure status.

Additional limitations apply to our study. First, the MCSA is a
prospective cohort of older adults residing in Olmsted County,
Minnesota, and results may not generalize broadly to other diverse
populations. Furthermore, theMCSAwas not designed for the spe-
cific investigation of exposures to anesthesia and surgery, and so
the timing of MCSA assessments does not correspond to a clear
time point relative to surgery with general anesthesia among sub-
jects with exposure. In the current study, we fit models for time to
death or dementia to describe dropout. Alternative approaches
could define dropout due to other causes and alternative approaches
exist for death as informative censoring [18,21,22]. This may
be more feasible in the discrete visit time scenario. Additional
approaches not considered here could further model the dropout
process using competing risks models or multistate models that
evaluate time to each potential dropoutmechanism.We used a com-
plete case analysis with respect to missing baseline data (excluding
0.5% of the sample) to maintain focus on the issue of informative
dropout. However, other studies withmore significantmissing base-
line data may want to consider alternative approaches for those
missing data. Residual confounding may be present. Especially with
a time-dependent exposure variable, there is a strong potential for
time-dependent confounding, such that a post-baseline confounder
may be a common cause of need for surgery and cognitive decline.

In the current study, we hypothesized that dropout due to death
or dementia may result in underestimation of the association
between surgery with general anesthesia and cognitive decline,
as subjects with dementia may have difficulty attending study visits
or completing neuropsychological testing and demented subjects
likely have lower cognitive scores. While differences in results
between analyses assuming MAR and MNAR were small in this
study, we have shown that incorporating information about poten-
tial dropout mechanisms is an important consideration in clinical
research, as differences of this magnitude may have substantial
clinical implications in other settings.
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