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SUMMARY
Capturing and depicting themultimodal tissue information of tissues at the spatial scale remains a significant
challenge owing to technical limitations in single-cell multi-omics and spatial transcriptomics sequencing.
Here, we developed a computational method called SpaTrio that can build spatial multi-omics data by inte-
grating these two datasets through probabilistic alignment and enabling further analysis of gene regulation
and cellular interactions.We benchmarkedSpaTrio using simulation datasets and demonstrated its accuracy
and robustness. Next, we evaluated SpaTrio on biological datasets and showed that it could detect topolog-
ical patterns of cells and modalities. SpaTrio has also been applied to multiple sets of actual data to uncover
spatially multimodal heterogeneity, understand the spatiotemporal regulation of gene expression, and
resolve multimodal communication among cells. Our data demonstrated that SpaTrio could accurately
map single cells and reconstruct the spatial distribution of various biomolecules, providing valuable multi-
modal insights into spatial biology.
INTRODUCTION

The development of single-cell multi-omics sequencing

methods has revolutionized our ability to profile multiple modal-

ities of every cell in a single experiment, including gene expres-

sion, protein abundance, and chromatin accessibility.1–4 How-

ever, the tissue dissociation step results in the loss of spatial

information, which is critical for understanding cell states,

cellular microenvironments, and cell-cell interactions.5–7 In

recent years, significant technological advancements have

been made to incorporate omics data in the context of space

to address this challenge.8–13 Despite these advancements, cur-

rent spatial transcriptomics (ST) sequencing technologies are

limited to transcriptome measurements and cannot achieve

cellular-level resolution. Existing deconvolution tools primarily

focus on inferring cell-type proportions or mapping cell positions

using transcriptomic data. While they excel in single-modal data

scenarios, their capability to effectively capture and delineate

differences between diverse modalities in spatial contexts is

limited.7,14–16 The lack of spatial multimodal insights into tissues

has become an obstacle to a better understanding of the spatio-

temporal control of gene expression and the multidimensional

transmission of cellular communication in tissues.
Cell
This is an open access article under the CC BY-N
To overcome these challenges, we present SpaTrio, a compu-

tational tool for spatial mapping of single cells based on single-

cell multi-omics and ST data. By integrating these datasets,

SpaTrio can generate spatial maps of single cells, construct

spatial patterns of cell populations, and investigate the multi-

modal topography of tissues on a spatial scale. Moreover,

SpaTrio can analyze the spatial co-expression of various molec-

ular features and perform gene regulation analysis or cell-cell

communication inferences at a spatial resolution. SpaTrio was

benchmarked using simulation datasets with different spatial

patterns and biological datasets.2,17–20 Furthermore, we applied

SpaTrio to actual data from the mouse brain to the human liver18

and human breast cancer21 to investigate the spatial organiza-

tion of various biomolecules at the cellular level.

DESIGN

In summary, SpaTrio is a computational tool that enables the

spatial mapping of single-cell multi-omics data, preserving the

spatial topology of tissue sections and the local geometry of

modal data (Figure 1). SpaTrio achieves this by constructing a

k-nearest neighbor (k-NN) graph and calculating distance

matrices for each dataset. Specifically, for single-cell multi-omics
Genomics 3, 100446, December 13, 2023 ª 2023 The Author(s). 1
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Figure 1. Spatial mapping of single-cell multi-omics data with SpaTrio

SpaTrio takes in single-cell multi-omics data and ST data as input (left). Using the optimal transport algorithm and considering the gene expression, spatial graph,

and modal graph constructed by k-NN, SpaTrio calculates a probabilistic alignment between cells and spots. This alignment allows SpaTrio to build the spatial

multi-omics data (middle), achieving the deconvolution of spots and reconstruction of the multi-omics patterns. Moreover, through its downstream analysis

functions, SpaTrio can perform spatial gene regulation analysis and multi-omics cell-cell communication inference (right).
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data, amodal graphwas constructed with a low-dimensional rep-

resentation of the modality assay, and for ST data, a spatial graph

was constructed using spatial coordinates. Employing the fused

Gromov-Wasserstein optimal transport,22 SpaTrio computes an

optimal probabilistic alignment between cells in single-cell multi-

omics data and spots in ST data, which minimizes both the tran-

scriptional dissimilarity between two datasets and the difference

in graph distance between pairs of aligned cells/spots from the

same data. Finally, SpaTrio assigns the expected number of cells

to each spot according to the alignment results and corrects the

cell coordinates based on the transcriptional similarity between

the mapped cells and the surrounding spots.

During the alignment, hyperparameter a controls the relative

weight of transcriptional dissimilarity and graph distances.

When a = 0, the spatial alignment only considers transcript infor-

mation and ignores graph information, whereas the spatial align-

ment is calculated only based on graph information when a = 1.

The optimal probabilistic alignment is a one-to-many match be-

tween the cells and the spots in the two datasets, corresponding

to a spot containing several cell types. The flexible tuning of hy-

perparameters in SpaTrio enables the consideration of multiple

modalities and location information during alignment, leading

to more accurate reconstruction results. This approach is partic-

ularly well suited to account for the co-existence of spatial het-

erogeneity and modality differences in cells.

In addition, SpaTrio offers the capability to explore the spatial

co-expression distribution of various molecules via its spatial

feature module analysis functionality. To achieve this, SpaTrio

applies the k-NN algorithm to smooth molecular expression,

calculating the spatial-weighted expression matrix using a

spatial kernel. The feature modules were identified using a

consensus clustering (CC) algorithm. The scores of the modules

determined from the identifiedmodules can be utilized for further

analysis of spatial regulation and inference of cell-cell interac-

tions based on multi-omics data.
2 Cell Genomics 3, 100446, December 13, 2023
RESULTS

Benchmarking of SpaTrio
To assess the performance of SpaTrio, we conducted a series of

evaluations on simulation single-cell multi-omics data and ST

data with distinct spatial patterns derived from the mouse cere-

bral cortex data (single-nucleus chromatin accessibility and

mRNA expression sequencing, SNARE-seq)2 (Figure S1). The

simulations of ST data involved sampling, merging, and coordi-

nate assignment, followed by adding a pseudocount d read to

all genes in all spots and resampling the read count. Adding a

pseudocount reduces the heterogeneity of the transcriptome,

which can simulate scenarios where gene expression is similar

but another modality has a spatially specific distribution

(Figures S2A and S2B). Subsequently, we leveraged SpaTrio to

reconstruct single-cell multi-omics data. We evaluated its per-

formance with various indicators, including the mapping accu-

racy of cells (average percentage of cells correctly assigned to

a spot of matching type), the adjusted Rand index (ARI) of the de-

convolved cell type, the root-mean-square error (RMSE) of the

deconvolved cell-type proportions, and the Pearson correlation

coefficient (PCC) and Spearman correlation coefficient (SCC)

of gene expression (Figure 2A).

Whether in pattern 1 or pattern 2, it can be seen from multiple

indicators that the performance of SpaTrio (a = 0.1) became

more stable as d gradually increased (Figures 2B and S3). In

comparison, relying solely on gene expression (a = 0) results in

a more rapid decay in mapping performance. When predicted

solely on graph data (a = 1), only a minute fraction of the cells

are correctly mapped, underscoring the indispensability of

shared modality for precision integration. Notably, even with

low transcriptome heterogeneity (d = 5), SpaTrio can accurately

restore the spatial location of >87%of cells according to another

modality (epigenome), and the spatial profiles of chromatin

accessibility are also highly correlated with the ground truth



Figure 2. SpaTrio results on simulated and biological data
(A) Schematic of data simulation using the SNARE-seq dataset. We extracted three types of cells (L2/3 IT, L4, and L5 IT) from the SNARE-seq data and randomly

sampled 250 cells from each type as a simulation single-cell multi-omics dataset (cell types 1, 2, and 3). Each cell type was then randomly assigned to groups of

five for merging, and the simulated spots were assigned to the corresponding regions according to two spatial patterns (pattern 1 and pattern 2) to obtain a

simulation ST dataset. We measured the performance of SpaTrio for spatial reconstruction according to cell type, gene expression, and chromatin accessibility.

(B) The average root-mean-square error (RMSE) of SpaTrio using a = 0 (gene expression only), a = 1 (graph information only), and a = 0.1 (both) with pseudocount

d in patterns 1–4. Thirty simulation replicates were performed for each setting.

(C) SpaTrio demonstrates superior performance compared to the other tools. The RMSE of the deconvolved cell-type proportions was calculated by comparing

themwith the ground truth. For simulated data, a pseudocount of 5 was set, while for biological datasets, a pseudocount of 0 was used. In the boxplots, the range

(legend continued on next page)
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(Figures S4A and S4B). Furthermore, we conducted simulations

to replicate scenarios with a more complex distribution of cells

(Figure S1). In pattern 3, 15.4% of the spots contained multiple

cell types, while in pattern 4, this percentage increased to

67.8%. In both of these complex scenarios, SpaTrio (a = 0.1)

demonstrated consistently stable performance, particularly

when a large pseudocount was used, highlighting its significant

advantages (Figure S3). In more complex biological datasets,

setting the parameter a to 0.1 often resulted in optimal perfor-

mance (Figure S5).

Finally, we conducted a comparison of SpaTrio with several

other integration methods. These methods included ST integra-

tion methods such as PASTE and Tangram, as well as CARD.

Additionally, we also compared SpaTrio with single-cell RNA

sequencing (scRNA-seq) integration methods, namely Seurat

and Scanorama.15,23–26 Our analysis, using a range of metrics

to quantify performance, shows that, across four sets of simu-

lated data (patterns 1–4), SpaTrio outperforms all other tools

on all evaluated pseudocount values. When transcriptome

heterogeneity is low (d = 5), the gap between other tools and

SpaTrio is particularly significant (Figures 2C and S6). At the

same time, we compared SpaTrio with other tools (pseudo-

count = 0) on multiple biological datasets (datasets 1–6). Even

in complex, real scenes, SpaTrio still maintains superior perfor-

mance, which is obviously better than other tools (Figure 2C).

This may be because these methods were not initially designed

for single-cell multi-omics data and failed to adequately account

for the complex nature of integrating multimodal profiles. How-

ever, this does not suggest that thesemethods are flawed in their

ability to address integration problems.

Evaluation of biological data
Given the complexity and variability of the spatial organization of

cells in biological scenarios, we evaluated whether SpaTrio can

maintain superior performance in real-world scenarios with more

complex organizational structures. To this end, we assessed the

performance of SpaTrio on multi-omics data and ST data gener-

ated bymouse embryo data (deterministic barcoding in tissue for

spatial omics sequencing, DBiT-seq).17 These included spatial,

transcriptomic, and proteomics information (Figures 3A and

S7A). From these results, we found that SpaTrio successfully

restored the spatial patterns of significant cell clusters, even

for clusters with irregular or complex spatial patterns

(Figures 3B and S7B), such as clusters 1 and 2. In the original

DBiT-seq data, cluster 3 exhibited a fine loop pattern, which

was not evident in the input ST data due to pixel merging inter-

ference; however, SpaTrio precisely reconstructed this pattern.

Similarly, cluster 4 was mixed with neighboring clusters in the

ST data. However, SpaTrio recognized its correct spatial pattern

(Figure 3C). These results suggest that SpaTrio can infer topo-

logical heterogeneity based on subtle modal differences to

achieve a structural refinement of the spatial pattern. Concerning

gene expression, the SpaTrio results followed those of previous
of each box extends from the first to the third quartile, with the horizontal line rep

beyond the lower and upper bounds of the box. Dataset 1: mouse embryo data

proteins); dataset 3: mouse spleen data (SPOTS); dataset 4: breast tumor data

human hippocampus (spatial ATAC-RNA-seq).
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reports. For instance, Pax6 and Lhx2 were enriched in the

MAdCAM1+ region of the forebrain, whereas Myh6 and Pbn2

were enriched in selected regions that were negative for

MAdCAM1 (Figures 3D and S7C). The expression of the most

variable 2,000 genes was highly similar to the ground truth,

and the average PCC was 0.947 (Figure 3E). At the same time,

the reconstruction results of protein expression were equally

accurate. For example, CD63 was expressed extensively except

in a portion of the forebrain; pan-endothelial cell-antigen (PECA)

was distributed in regions containing microvasculature; EpCAM,

as a pan-epithelial marker, was mainly expressed in the heart

region; and MAdCAM-1 was mainly expressed in the forebrain

region (Figures 3D and S7D). All protein expression levels were

similar to the ground truth, with an average PCC of 0.991

(Figure 3E). These findings underscore the effectiveness of

SpaTrio for accurately reconstructing spatial patterns and multi-

modal information in biological scenarios with complex and var-

iable organizational structures.

Next, we evaluated the performance of SpaTrio on datasets

generated from mouse liver slice (103 Visium with highly multi-

plexed protein).18 These contained both the spatial transcrip-

tome and proteome (Figure 3F). We observed that SpaTrio accu-

rately reconstructed the spatial patterns of gene and protein

expression (Figures 3G, 3H, and S8A). For example, Glul and

Cyp2e1 were mainly expressed in the central zones, whereas

Ass1 andGls2weremainly expressed in the portal and periportal

zones (Figure 3G). Both Cd107a and Cd73 showed low expres-

sion in the portal zone (Figure 3H), consistent with the input ST

data. The expression levels of the top 500 genes with the highest

spatial variability, as well as all proteins, exhibited a strong pos-

itive correlation with actual measurements, as indicated by the

high PCC (Figure 3I); specifically, gene expression reached

0.953, and protein expression reached 0.946 (Figures 3I, S8B,

and S8C). These data divided the liver slice into four main zones

with different functions and metabolic activities: portal, peripor-

tal, mid, and central. We found that the expression of Glul and

Cyp2e1 gradually increased, whereas that of Ass1 and Gls2

gradually decreased, as the location moved from the portal to

the center, both in the original and mapped data (Figure 3J).

Furthermore, SpaTrio accurately mapped the compartmental-

ized protein expression (Figure 3K). In addition, we investigated

the signal patterns of cell populations expressing surface pro-

teins. For example, hepatocytes (CD1d) are mainly located in

the periportal, mid, and central regions, portal vein cells (Ly6A–

Ly6E) in the portal region, and central vein cells (CD105) in the

central region. These results were consistent with prior knowl-

edge of the distribution of cell populations in the mouse liver18

(Figures 3L and S8D).

Besides, we also evaluate the performance of SpaTrio in data-

sets 3–6 (Figures S9–S12). In the mouse spleen data (dataset 3),

SpaTrio accurately restored gene expression and protein distri-

bution in different regions, such as genesCd24a and Vcam1 and

proteins CD163 and CD68 in the macrophage-enriched region;
resenting the median. The whiskers extend to 1.5 times the interquartile range

(DBiT-seq); dataset 2: mouse liver data (103 Visium with highly multiplexed

(SPOTS); dataset 5: mouse embryo data (spatial ATAC-RNA-seq); dataset 6:
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genes Ly86 and Ebf1 and proteins CD19 and immunoglobulin D

(IgD) in the B cell-enriched region; and genes Trbc2 and Cd8b1

and proteins CD3 and CD4 in the T cell-enriched region. In the

human breast tumor data (dataset 4), SpaTrio’s restoration of

cell-type and multimodal information in the five regions is still

very accurate. In a mouse embryonic day 13 (E13) embryo (data-

set 5), Sox2 and Pax showed high gene expression and high

chromatin accessibility in the embryonic field of view and the

ventricular layer containing neural stem/progenitor cells, and

Six6, a key gene involved in eye development, was found in

the eye region and showed the highest gene activity. In the hu-

man hippocampus data (dataset 6), the accessibility of THY1

and BCL11B appears in the granule cell layer (GCL), and

PROX1 is highly expressed in GCL but shows moderate chro-

matin accessibility.

Topological organizations and regulations of mouse
brain cortex cells
We first applied SpaTrio to the public mouse brain single-cell

multi-omics dataset (in situ sequencing hetero RNA–DNA-hybrid

after assay for transposase-accessible chromatin-sequencing,

ISSAAC-seq)27 (Figures S13A and S13B) and the ST dataset

(Visium, 103 Genomics) (Figure S13C). SpaTrio accurately re-

constructed the layer (L)-specific features of excitatory neuron

subpopulations, arranged in the exact order of L2/3 (L2/3 IT,

L2/3 IT Act), L4/L5 (L4/5 IT, L5 PT), and L6 (L6 CT, L6 IT Bmp3,

L6b) (Figures 4A, 4B, S13D, and S13E), consistent with prior

knowledge of the organization of the cortex. We observed the

distribution of cell populations in different cortical regions,

such as L2/3 IT in region 2 (L2/3); L4/5 IT in region 3 (L4); L5

PT in region 4 (L5); L6 CT, L6 IT Bmp3, and L6b in region 5

(L5); and Oligo in region 6 (Oligo) (Figure 4C). To validate the ac-

curacy of the reconstructed spatial expression patterns, we

selected region-specific genes fromST data. We compared their

spatial expression patterns before and after reconstruction (Fig-

ure 4D). Their high consistency demonstrated that SpaTrio suc-

cessfully preserved the transcriptional differences between the

cortical layers in the input data.

Consequently, we explored the spatial patterns of gene regu-

lation in mouse cerebral cortex organization using gene expres-

sion and chromatin accessibility. Transcription factors play a

determinative role in cell differentiation, critical for determining

cell fate during brain aging and development by regulating
Figure 3. SpaTrio results on embryonic mouse brain (DBiT-seq) and m
(A) Schematic diagram of input dataset construction using DBiT-seq data from th

data, removed the protein assay as input ST data, and used SpaTrio to perform s

(B) Spatial location of clusters 1 and 2 in the DBiT-seq and SpaTrio-predicted da

(C) Comparison of the spatial location of clusters 3 and 4 in the input spatial dat

(D) Spatial expression of key genes and proteins in DBiT-seq measurements and

(E) The PCCs between the measured and SpaTrio-predicted expression of 2,000

(F) Schematic diagram of input datasets using 103 Visium data of mouse liver

coordinates, and the other removed the protein assay—and then used the two a

(G and H) Spatial expression of test genes (G) and proteins (H) in actual measure

(I) The PCCs between the measured and SpaTrio-predicted expression of 500 h

(J) Violin plot of expression levels of region-specific genes in the liver. Normalize

(K) The scaled PCCs between the measured and SpaTrio-predicted expression

(L) Zonated expression pattern of cell-type-specific proteins from SpaTrio mapp

hepatocytes; PV, portal vein; CV, central vein.
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gene expression.28–34 We inferred transcription-factor-associ-

ated accessibility from an epigenomic assay of spatial multi-

omics data constructed by SpaTrio and performed transcription

factor regulation analysis based on the correlation between mo-

dalities (Figure S13F and S13G). Our findings revealed distinct

gene regulation relationships for the mouse brain’s cortical

marker genes Rorb and Cux2 (Tables S1 and S2). Specifically,

the activation regulator RORB demonstrated a synchronous

change in gene and motif activity across different layers, with a

close spatial pattern of gene expression and motif activity peak-

ing at L4/5. In contrast, the inhibitory regulator CUX2 exhibited

the opposite trend and spatial distribution (Figure 4E). These re-

sults demonstrate that regardless of the gene regulatory relation-

ship, SpaTrio effectively recovers the spatial pattern of gene

regulation, preserving the differences and connections between

the modalities.

In the ISSAAC-seq data, L4/5 IT cells were considered a pop-

ulation based on the transcriptome but were divided into three

subpopulations based on the epigenome, indicating higher het-

erogeneity in the chromatin accessibility of these cells

(Figures S14A and S14B). The differences between these two

modalities are essential for studying gene regulation. From the

results of SpaTrio, we observed that the three major clusters

(A2, A3, and A9) of the transposase-accessible chromatin

(ATAC) assay were roughly distributed in layers, with the inner,

middle, and outer layers represented in turn (Figure 4F), indi-

cating that SpaTrio can identify differences in multiple modalities

to infer the differentiated topological arrangement of cells

comprehensively. We analyzed the spatial modules of the tran-

scriptome and identified two genemodules in L4/5 IT cells. Mod-

ule 1 contained genes such as Fezf2 and Sox5,29,35 which are

markers of L5, whereas module 2 contained Cux2 and Rorb,

which are markers of L434 (Figure 4G). Importantly, the signal

of module 1 was highly activated in the inner layer, whereas

that of module 2 was predominantly expressed in the outer layer,

consistent with the spatial distribution of L5 and L4 cells (Fig-

ure 4H). We re-clustered the L4/5 cells. We obtained two cell

subpopulations, which, respectively, highly expressed two

gene modules (Figures S14C and S14D), and the two groups

of cells can be annotated as L4 and L5 based on marker genes

and spatial position (Figure 4I). This demonstrates that SpaTrio

can infer the topological heterogeneity of the same cell type by

recognizing subtle transcriptional differences.27,35
ouse liver datasets (103 Genomics)
e embryonic mouse brain. We merged the four adjacent pixels in the DBiT-seq

patial reconstruction of the DBiT-seq data, with the spatial position removed.

ta.

aset, the DBiT-seq data, and the SpaTrio reconstruction.

SpaTrio mapping results.

highly variable genes (left) and all proteins (right).

data. We divided the liver slice into two parts—one part removed the spatial

s the input data for SpaTrio.

ments and SpaTrio mapping results.

ighly variable genes (left) and all proteins (right) in different liver zones.

d expression values are indicated on the y axis.

of cell-type-specific proteins in different zones.

ing results. KCs, Kupffer cells; LSECs, liver sinusoidal endothelial cells; Heps,
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Finally, the spatial distribution of motif activity in the mouse

brain was investigated. Our analysis revealed four distinct motif

modules, each exhibiting a unique spatial distribution pattern

(Figures 4J and S14E). Module 1 displayed a predominant distri-

bution in the inner and middle layers of the cortex, comprising

transcription factors such as CUX1 and CUX2, which regulate

neurons in the upper cortex.32,36 In contrast, module 2 was pre-

dominantly located in the middle and outer layers and included

RORB and RORA, which have been reported to be specific reg-

ulators of L4.30,31 Module 3, enriched in the middle layer,

included motifs that regulate the development of the nervous

system. Specifically, NEUROD2 is considered a key epigenome

remodeler,33 while Atoh1 and Tcf4 cooperate to realize the func-

tion of regulating nervous system development28 (Figures 4K

and S14F). Overall, transcriptional and epigenetic information

have many similarities. For example, the results of the module

analysis were closely related to the depth of the cortical layer.

The module related to L4 is located in the outer layer, and the

module related to L5 is located in the inner layer. This is also

consistent with the objective fact of cortical distribution. Howev-

er, the ATAC assay exhibited richer spatial and cellular heteroge-

neity and clustered cell subpopulations that could not be distin-

guished based on the transcriptome. The spatial mapping and

transcription factor analysis results showed that the middle layer

cells (A3) might play an essential role in developing L5 and L4 in

the mouse brain.

Spatial cellular heterogeneity and signal transmission in
steatosis liver
We applied SpaTrio to both the public ST dataset (Visium, 103

Genomics) and single-cell multi-omics dataset (cellular indexing

of transcriptomes and epitopes, CITE-seq) of human steatotic

livers (Figures 5A and S15A). The reconstructed cell-type distri-

bution approximated the input ST data. A high correlation was

observed in the expression of known marker genes and the per-

centage of each cell type across spots, including hepatocytes

(CYP3A4), cholangiocytes (ANXA4), and fibroblasts (ACTA2)18

(Figures 5B, 5C, and S15B). Notably, in the periportal, mid, and

central regions, hepatocytes dominated the cell composition, a

finding consistent with recently published liver ST data.37

Conversely, in the portal region, fibroblasts constituted most of

the cells across the spots (Figure S15C). Fibroblasts are a critical

component of liver tissue, forming fibrous structures in the portal
Figure 4. SpaTrio reconstructed spatial organization and regulation in
(A) Single-cell deconvolution of lower-resolution mouse cortex ST data. There we

based on the cell type.

(B) SpaTrio-based Euclidean distance of selected cell populations to the R21 Ol

(C) The proportion of selected cell types distributed in different regions of the mo

(D) Zonated expression levels of test region-specific genes in real measurement

(E) The scaled expression and activity of the activation (left) and inhibitory (right) re

of gene expression and motif activity.

(F) SpaTrio spatial mapping of R2 Ex-L4/5 IT cells.

(G) Spatial gene modules of R2 Ex-L4/5 IT cells were identified using SpaTrio.

(H) SpaTrio maps of the activity score of the spatial gene modules of R2 Ex-L4/5

(I) Spatial locations of re-clustered R2 Ex-L4/5 IT cells using SpaTrio (right) and t

(J) Spatial motif modules of R2 Ex-L4/5 IT cells identified using SpaTrio.

(K) Activity score of motif modules in ATAC clusters. Boxplots depict the media

extend to a distance of 1.5 times the interquartile range from the box. p values w
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area and playing an essential role in blood distribution and artery

support.38

Because hepatocytes constitute most of the cellular composi-

tion in several liver zones, we first focused our analysis on this

population. Using module analysis of the transcripts, we identi-

fied two gene modules with distinct expression patterns. One

module was highly expressed in the central region and included

CYP3A4 and GLUL, which are associated with central hepato-

cytes. In contrast, the other module was highly expressed in

the periportal region and included ASS1 and other genes asso-

ciated with periportal hepatocytes (Figures 5D, 5E, and S15D–

S15F). We re-clustered all hepatocytes to further elucidate het-

erogeneity within the hepatocyte population, resulting in two

subpopulations (clusters 1 and 2). These corresponded to the

two gene modules (Figures 5F and S16A). At the same time, dif-

ferential gene analysis, regional subpopulation distribution, and

pathway analysis also proved that these two types of cells

were central and periportal hepatocytes (Figures S16B–S16G).

We further inferred hepatocyte trajectories to investigate spatial

expression dynamics and mapped their pseudotime using

SpaTrio (Figures S16H and S16I). We observed continuous

spatial trajectories from the center to the periportal between

the two hepatocyte subpopulations, along with continuous

spatial trends in the marker genes of central hepatocytes

(CYP3A4, CYP2E1, and GLUL) and periportal hepatocyte genes

(GLS2, ASL, and ASS1)39 (Figures 5G and S16J). These results

indicated that SpaTrio successfully restored the spatial structure

of continuous transcriptional programs in tissues.

Next, we selected hepatocytes in the portal and periportal

areas and performed spatial multimodal interaction analysis of

gene expression and protein abundance (Figure 5H). Through

analysis of protein modules, we identified two activatedmodules

in the portal periportal regions (Figures 5I and 5J). We used the

proteins contained in these modules as region-specific proteins

to infer cellular interactions. Our analysis revealed that for infor-

mation transmitted from the portal to the periportal regions, cell

communication in the transcriptome contained important infor-

mation related to fibrosis, consistent with steatosis-induced

fibrosis occurring in the portal vein and its surrounding area.40

Ligand and receptor genes are involved in the SMAD protein

phosphorylation and extracellular matrix (ECM) organization

pathway (Figures 5K and S17A), which play critical roles in devel-

oping liver fibrosis.41,42 Taking specific ligand-receptor
mouse cortex tissue
re six regions in the input ST data, and the predicted single cells were colored

igo.

use cortex.

s and SpaTrio mapping results.

gulators in different layers of the cortex and SpaTrio-predicted spatial patterns

IT cells.

he dot plot of the expression of layer-specific genes (left).

n and interquartile range, spanning the 25th to 75th percentile. The whiskers

ere calculated using the Wilcoxon test. ****p % 0.0001.



Figure 5. SpaTrio reconstructed spatial organization and cellular multimodal interactions in human steatosis liver tissue

(A) Single-cell deconvolution of lower-resolution human liver ST data. Four liver zonations were in the input ST data, and the predicted single cells were colored

based on the cell type.

(legend continued on next page)
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interaction pairs as an example, GDF5 is a signaling protein that

regulates cell growth, differentiation, and survival. The ligand

ACVR2A activated by GDF5 is a transmembrane receptor

protein that regulates hepatic fibrosis.43 COL1A2, COL4A4,

COL4A1, andCOL1A1 encode different types of collagen, which

are components of the ECM in the liver, and their receptor

ITGAV, which is part of an essential pathway that regulates the

fibrotic liver.44 In addition, the ITGAL receptor in protein-protein

interactions is associated with immune responses in the ECM

and fibrosis in the liver.45 Our multimodal cell-cell interaction

analysis revealed that the portal vein influences the fibrosis of

cells in the peripheral area through intercellular communication

involving multiple modalities.

The transcriptional communications transmitted from the

periportal to the portal were mainly related to the regulation of

inflammation, hypoxic stress, and lipid metabolism (Figures 5L

and S17B). For instance, TGFBR1 is involved in modulating

the cellular reactive oxygen species (ROS) level, which was

closely related to lipotoxicity and inflammatory response during

nonalcoholic steatohepatitis (NASH).46 ITGAV can activate the

PI3K-Akt signaling pathway by recruiting PI3K to the plasma

membrane, activating Akt, and regulating downstream tar-

gets.47 It has been shown that the PI3K/Akt pathway is activated

in response to hypoxia and inhibits oxidative stress in the stea-

tosis liver. Additionally, LGALS9 plays a role in cell adhesion,

apoptosis, and immune response, and CD47 helps protect

healthy cells from being engulfed and destroyed by the immune

system48 (Figure 5L). Previous studies have demonstrated an

association between these two proteins and tissue hypoxia.

Thus, our analysis indicates that the periportal region responds

to inflammation and hypoxia in the portal vein through specific

ligand-receptor pairs of genes and proteins.

Spatial multimodal immune microenvironment of a
breast cancer tissue
SpaTrio was applied to publicly available single-cell multi-

omics and ST datasets (Visium, 103 Genomics) of human

breast cancer21 (Figures 6A and S18B). Using SpaTrio, all sin-

gle cells were mapped to histologically defined regions of

breast cancer tissue (Figure 6B). We selected multiple cell-

type-specific marker genes to calculate the abundance of cell

types for each spot in the input ST data (Table S3). We

compared it with the proportion of cell types mapped using

SpaTrio. From the perspective of spatial arrangement, it was
(B) Scaled PCCs between gene expression of cell markers and percentage of ea

(C) Spatial expression of test genes in real measurements and SpaTrio mapping

(D) Spatial gene modules of hepatocytes identified by SpaTrio.

(E) SpaTrio maps of liver zonation (left) and activity scores of the spatial gene mo

(F) UMAPs of re-clustered hepatocytes showing cell subpopulations (left) and sc

(G) Dot plot of gene expression in periportal hepatocytes (GLS2,ASL, andASS1) a

The circle size indicates the ratio of cell expression, and the color indicates the a

(H) Spatial maps of selected hepatocytes in the portal and periportal regions.

(I) Spatial protein modules of selected hepatocytes identified by SpaTrio.

(J) SpaTrio maps (top) and boxplots (bottom) of selected hepatocytes’ protei

****p % 0.0001.

(K) Significantly enriched gene-gene interactions from the portal to periportal infer

spatial protein modules of hepatocytes (right). The circle size indicates the score

(L) Gene-gene and protein-protein interactions from the periportal to the portal, i

10 Cell Genomics 3, 100446, December 13, 2023
evident that there was a good agreement between cell abun-

dance and type ratio (Figure 6C).

Considering the critical role of T cells in the tumor microenvi-

ronment and their wide distribution in various regions21 (Fig-

ure S18C), we performed a comprehensive analysis of T cells.

We categorized T cells into five subgroups, among which natural

killer T (NKT) cells were the most prominent in the invasive can-

cer + lymphocyte area. It constitutes a much higher proportion

than any other region (Figure 6D). This finding suggests that

this region may be recognized and surveyed by the immune sys-

tem and exhibit antitumor activity49 (Figure S18D). We then

calculated the cytotoxicity and exhaustion scores for each

T cell and found higher cytotoxicity scores. The exhaustion score

was lower in the invasive cancer + lymphocytes area, suggesting

a higher activation of T cells in the infiltrated area (Figures 6E,

S18E, and S18G). Nevertheless, this difference in T cell function

was not pronounced in the input ST data (Figures S18F and

S18G), likely because of multiple cells in the spots. In addition,

we examined the expression of related proteins. It was apparent

that proteins related to T cell activation (CD3, PD-1, CD45, and

TCRab)50,51 had significantly higher signal intensity in the inva-

sive cancer + lymphocytes area (Figures 6F and S18H). Further-

more, we performed a spatial module analysis on the proteome

of T cells in the main regions and obtained two main modules

(Figure 6G). Module 1 contained several proteins related to

T cell inhibition or exhaustion, including PDPN, TIM-3, and

CD62L.52–54 In contrast, module 2 comprises several proteins

associated with T cell activation, such as PD-1, CD45RO,

CD45,50,51,55 and others. Regarding spatial distribution, module

1 was highly abundant in the stroma, lymphocytes, and invasive

cancer areas, whereas module 2 mainly enriched in the invasive

cancer + lymphocytes area (Figures 6H and 6I). Based on the

spatial pattern of the protein modules, we confirmed that

T cells in the infiltrating area exhibited significant immune activity

and participated in antitumor immune responses.

We selected the major cell types in the invasive cancer +

lymphocytes area and performed multimodal interaction anal-

ysis (Figure 6J). The interaction information between the tran-

scriptome and the proteome was consistent, indicating the

reliability of the results. We observed that myeloid, perivascu-

lar-like (PVL), and endothelial cells affected T cells’ CD3D/

CD3G genes and CD3D/TLR4 proteins. These genes play

essential roles in T cells’ recognition and signaling of antigens

and are critical for T cell activation and function.56,57 TLR4 is a
ch cell type.

results.

dules of hepatocytes (right).

ores of spatial gene modules (right).

nd central hepatocytes (CYP3A4,CYP2E1, andGLUL) across the three regions.

verage expression level.

n module activity score. p values were calculated using the Wilcoxon test.

red by SpaTrio mapping (left) and protein-protein interactions inferred from the

of the ligand-receptor interaction.

nferred by SpaTrio.



Figure 6. SpaTrio reconstructed the spatial organization of the immunemicroenvironment with multimodal communication in human breast

cancer tissue

(A) 103 Visium ST dataset of human breast cancer with six pathological regions.

(B) Single-cell deconvolution of lower-resolution human breast cancer ST data. The predicted single cells are colored based on the cell type. PVLs, perivascular-

like cells; CAFs, cancer-associated fibroblasts.

(C) Spatial abundance of cell types in actual measurements and proportions mapped using SpaTrio.

(D) UMAPs of re-clustered T cells and the proportion of T cell subpopulations across pathological regions.

(E) Dot plot of cytotoxicity score and exhaustion scores of T cells.

(F) Violin plot of the expression of proteins related to T cell activity.

(legend continued on next page)
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TLR expressed on the surface of various immune cells and can

trigger their activation of immune cells.58 These results sug-

gest that multiple cell types in the microenvironment

contribute to T cell activation. We found that PVL cells might

play an important role in cellular communications in this re-

gion. PVL can affect the immune environment by stimulating

the CXCR4 and TREM2 genes in myeloid cells.59,60 Interaction

with CD40LG as a ligand can activate the immune response of

myeloid cells and indirectly support the expansion and migra-

tion of T cells.61,62 Myeloid cells regulate cell growth, division,

and angiogenesis through gene and protein interactions. Stim-

ulation of T cells by EGFR may affect the activity of the

NOTCH pathway in PVL cells.63 At the same time, FASLG on

the surface of T cells and the FAS of PVL cells interacted,

and the FAS receptor regulated NOTCH pathway signaling

by activating the ERK-JAG1 axis,64 which provides further ev-

idence of the effect of T cells on PVL cells (Figure 6K). The

NOTCH pathway promotes angiogenesis and breast cancer

metastasis. PVL cells were also involved in the RHO pathway

associated with tumor progression (Figure S19A), and clinical

samples with high expression of the PVL marker gene

(IGFBP5) have a poor prognosis (Figures S19B and S19C).

Hence, PVL cells may play a vital role in promoting the devel-

opment and metastasis of breast cancer by engaging in multi-

modal messaging with immune cells.

DISCUSSION

We introduced SpaTrio, a computational tool that leverages

transcriptome similarity and modal/spatial graph distance to

integrate single-cell multi-omics data and ST data to recon-

struct a multimodal spatial map of cells. Furthermore,

SpaTrio facilitates downstream analysis of the reconstructed

spatial multi-omics data. SpaTrio offers several benefits over

existing computational methods. First, it is currently the most

advanced computational tool capable of reconstructing the

spatial distribution of multiple modalities of single cells,

enabling the generation of cell maps using spatial and modal

graphs as inputs. Second, it enables the study of cell types

and states from the perspective of single cells on a spatial

scale, which is more flexible and informative. Third, SpaTrio

features spatial module analysis and spatial cell-cell interac-

tion analysis functions, which enable the exploration of the

spatial regulation of gene expression and multidimensional

transmission of cellular communication in tissues. Finally,

with the development of single-cell multi-omics sequencing

technology, SpaTrio can simultaneously restore the states of

various biomolecules on a spatial scale to provide more

diverse and in-depth omics insights into tissues.

First, we performed benchmarks on SpaTrio using simulated

datasets to evaluate accuracy and robustness with different

spatial patterns, noise levels, and hyperparameters. These re-
(G) Spatial protein modules of selected T cells identified using SpaTrio.

(H) Activity scores of protein modules of selected T cells. p values were calculat

(I) SpaTrio maps of selected T cells and spatial pattern of protein module activity

(J) SpaTrio maps and the number of invasive cancer + lymphocytes cell types.

(K) Gene-gene and protein-protein interactions between major cell populations i
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sults indicate that the spatial arrangement of cells based only

on transcriptome similarity should be treated with caution. The

topological features of slices and the local geometry of omics

can help produce more reliable results. In comparison with other

integration tools, SpaTrio shows superior performance. In bio-

logical datasets, SpaTrio can also refine the spatial patterns of

irregularly distributed cell populations and preserve the gradient

distribution characteristics of various biomolecules among tis-

sue regions. We demonstrated that SpaTrio could maintain cell

alignment in real complex tissue structure scenarios.

SpaTrio is then applied to several real datasets. SpaTrio accu-

rately identified the cortical layers in the mouse cerebral cortex

data and revealed the gene regulatory relationships of different

modes at a spatial resolution. Moreover, SpaTrio resolved

high-resolution substructures of cell populations and modality-

specific spatial heterogeneity. In mouse liver data, SpaTrio

accurately mapped major cell types and subdivided hepatocyte

classifications through the spatial detection of gene modules.

Analysis of the interaction between the portal and periportal

regions revealed gene and protein interactions between them

under steatotic conditions. In human breast cancer data,

SpaTrio analyzed the differences in cell composition among

pathological regions and highlighted the higher immune activity

of T cells in the invasive cancer + lymphocytes area. Further anal-

ysis of this region revealed the multimodal communication

preferences of immune and other cell types in the tumor

microenvironment.

In the future, the continuous development of single-cell multi-

omics sequencing technology will provide additional omics per-

spectives for understanding the intricate states of individual

cells. By incorporating data from the central dogma of gene

regulation, SpaTrio can potentially unravel the complex interplay

network between the gene and protein regulatory layers in

tissues.

In general, single-cell analysis has entered the multi-omics

age, and single-cell multi-omics technology and ST technology

are increasingly used in biological research. Therefore, we antic-

ipate that SpaTrio will become a valuable tool for investigating

tissues’ physiological and pathological states on a spatial scale,

thereby providing new insights into the complex mechanisms

underlying tissue development and disease progression.

Limitations of the study
SpaTrio has certain requirements for the type of input data and

can only perform spatial reconstruction on paired single-cell

multi-omics data. It also requires single-cell data to have clear

clustering labels, and spatial transcriptome data also require

clustering labels or regional annotations.

Additionally, SpaTrio currently does not support inputting im-

age data. As a result, it cannot utilize image information to refine

the accuracy of individual cell coordinates or estimate the num-

ber of cells in specific locations. Nevertheless, we are of the
ed using the Wilcoxon test. ****p % 0.0001.

scores.

nferred using SpaTrio.
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opinion that incorporating advanced image recognition and seg-

mentation techniques into SpaTrio in the future will substantially

augment its functionality.
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8. Ståhl, P.L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnus-

son, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al. (2016).

Visualization and analysis of gene expression in tissue sections by spatial

transcriptomics. Science 353, 78–82.

9. Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Van-

derburg, C.R., Welch, J., Chen, L.M., Chen, F., and Macosko, E.Z.

(2019). Slide-seq: A scalable technology for measuring genome-wide

expression at high spatial resolution. Science 363, 1463–1467.

10. Deng, Y., Bartosovic, M., Ma, S., Zhang, D., Kukanja, P., Xiao, Y., Su, G.,

Liu, Y., Qin, X., Rosoklija, G.B., et al. (2022). Spatial profiling of chromatin

accessibility in mouse and human tissues. Nature 609, 375–383.

11. Fan, R., Zhang, D., Deng, Y., Kukanja, P., Bartosovic, M., Su, G., Bao, S.,

Liu, Y., Xiao, Y., Ma, S., et al. (2022). Spatially resolved epigenome-tran-

scriptome co-profiling of mammalian tissues at the cellular level. Review).

12. Deng, Y., Bartosovic, M., Kukanja, P., Zhang, D., Liu, Y., Su, G., Enninful,

A., Bai, Z., Castelo-Branco, G., and Fan, R. (2022). Spatial-CUT&Tag:

Spatially resolved chromatin modification profiling at the cellular level. Sci-

ence 375, 681–686.

13. Vandereyken, K., Sifrim, A., Thienpont, B., and Voet, T. (2023). Methods

and applications for single-cell and spatial multi-omics. Nat. Rev. Genet.

24, 494–515.

14. Moncada, R., Barkley, D., Wagner, F., Chiodin, M., Devlin, J.C., Baron, M.,

Hajdu, C.H., Simeone, D.M., and Yanai, I. (2020). Integrating microarray-

based spatial transcriptomics and single-cell RNA-seq reveals tissue ar-

chitecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38,

333–342.

15. Ma, Y., and Zhou, X. (2022). Spatially informed cell-type deconvolution for

spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359.

16. Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T.,

Elmentaite, R., Lomakin, A., Kedlian, V., Gayoso, A., et al. (2022). Cell2lo-

cation maps fine-grained cell types in spatial transcriptomics. Nat. Bio-

technol. 40, 661–671.

17. Liu, Y., Yang, M., Deng, Y., Su, G., Enninful, A., Guo, C.C., Tebaldi, T.,

Zhang, D., Kim, D., Bai, Z., et al. (2020). High-Spatial-Resolution Multi-

Omics Sequencing via Deterministic Barcoding in Tissue. Cell 183,

1665–1681.e18.

18. Guilliams, M., Bonnardel, J., Haest, B., Vanderborght, B., Wagner, C., Re-

mmerie, A., Bujko, A., Martens, L., Thoné, T., Browaeys, R., et al. (2022).
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Data and code availability
The original data used in this paper can be accessed through the following links: (1) SNARE-seq data of mouse brain cortex2: GEO

accession: GSE126074; (2) DBiT-seq data of mouse embryo17: GEO accession: GSE137986; (3) 10x Visium with highly multiplexed

protein data of mouse liver, 10x Visium data and CITE-seq data of human liver18: https://www.livercellatlas.org/index.php; (4) SPOTS

data of mouse spleen, SPOTS data of breast tumor: GEO accession: GSE198353; (5) Spatial ATAC–RNA-seq data of mouse embryo,

Spatial ATAC–RNA-seq data of human hippocampus: https://web.atlasxomics.com/visualization/Fan; (6) 10x Visium data of mouse

brain cortex: https://satijalab.org/seurat/articles/spatial_vignette; (7) ISSAC-seq data of mouse brain cortex27: https://www.ebi.ac.

uk/biostudies/arrayexpress/studies/E-MTAB-11264; (8) 10x Visium data of human breast cancer21: https://zenodo.org/record/

4739739#.Y-er_uxBzUY; (9) CITE-seq data of human breast cancer21: GEO accession: GSE176078.

The SpaTrio toolkit is available at GitHub: https://github.com/ZJUFanLab/SpaTrio and Zenodo archive: https://doi.org/10.5281/

zenodo.10025036.

METHODS DETAILS

SpaTrio toolkit
Mapping of cells

The input single-cell multi-omics and ST data were processed before calculating the optimal probabilistic (or fractional) alignment.

Genes that were not shared between the two datasets were removed, and we recommended using the top 100 genes of each cell

type in the two datasets for subsequent analysis under default parameters. Gene expression matrices were normalized and scaled to

prepare for subsequent experiments. The two datasets both contain a pair of matrices, which are (X;E) and (Y ;Z) respectively, where

X = ½xai�˛Rp3n represents the gene expression of p genes in n cells, and Y = ½ybj�˛Rp3m represents the gene expression of p genes

in m spots, E˛Rh3n is the h-dimensional embedded representation matrix of cells, Z˛R23m is the two-dimensional spatial coordi-

natematrix of spots. Thismeans that xai ˛R is the transcript level for gene a in cell i, ybj ˛R is the transcript level for gene b in spot j, e$i
is the vector of h-dimensional low-dimensional representation of cell i and z$j is the two-dimensional spatial location of spot j.

Because the Ematrix is derived from the embedding space after dimensionality reduction, the distance between the cells represents

the similarity of the cells in the low-dimensional embedding space. The Zmatrix is derived from the spatial position in tissue; thus, the

distances between the cells are the actual coordinate distances. We extract the spatial coordinates of each point from the spatial

transcriptome data and obtain dimensionally reduced low-dimensional embedding representations of ATAC/Protein assay from

the single-cell multi-omics data. The embedding matrix is then normalized to ensure that features of different dimensions have

the sameweight when computing distances. Next, we construct two k-NN graphs using the spatial coordinates and low-dimensional

embedding matrix. The k-NN graphs ensure that both types of distances operate at the same scale, providing important neighbor-

hood information for data integration and alignment. We compute the shortest path distance between each pair of nodes and set the

distance of any unconnected node to its maximum in the graph. Moreover, we added a type-aware mechanism. Specifically, if

the types/regions of two cells/spots differed, their distance is artificially enlarged. Then, the resulting matrix is rescaled by dividing

by the maximum distance and finally forms the graph distance matrix D˛Rn3n, where dik refers to the scaled k-NN graph distance

between cell i and cell k. We tested the effect of the type-aware mechanism and spatial KNN graph on spatial reconstruction using

simulated and real data. From the results, it can be seen that the integration of spatial information performed best under spatial pat-

terns of different complexity. Even in data with very high complexity, the spatial graph still significantly improved the performance of

the tool (Figures S20A–S20D). This illustrates the advantages of spatial information integration and its applicability to spatial patterns

of varying complexity. We also compared the differences in constructing modal graphs using ATAC and RNA assay, and the results

demonstrated that integrating multimodal information to spatially arrange cells is significantly better than solely based on transcrip-

tome similarity (Figures S21A–S21E).

In addition, we assume that each cell/spot has a weight gi, greater than zero, which reflects its significance compared to the other

cells. Theseweights incorporate a priori information, such as the relative number of cells in a spot or the histopathological importance

score of a spot or cell. To ensure consistency, we normalized the weights such that the sum of all gi equals one, resulting in a dis-

tribution g = ðg1;.;gnÞ. If no prior information was available regarding the cells/spots, we used a uniform distribution. Additionally,

we provide users with the flexibility to input the expected number of cells in each spot. This information allows us to adjust theweights

based on the cell count in each spot. The total weight remains constant, and the weight of each spot is proportionally determined by

the number of cells it contains.

The triplets ðX;D;gÞ and ðY ;D0;g0Þ are used to describe single-cell multi-omics data and ST slices, where X and Y are the transcrip-

tome expression matrices of all cells and spots respectively, and D/ D0 is the graph distance of the cell/spot pairwise, g/ g0 is the dis-

tribution of all cells/spots. The Euclidean distance algorithm was used to calculate the cost matrix. Taking single-cell data as an

example, x$i and y$j are expression profile vectors of cell i and spot j, a nonnegative cost between them ismeasured by the expression

cost function c:
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c
�
x$i; y$j

�
= kx$i � y$jk2

To establish the alignment between cells and spots, we introduce the alignment matrix P = ½pij�˛Rn3m
+ . Each element pij in the

alignment matrix represents the mapping strength or weight between a specific cell i and spot j. For all cell i, the sum of the mapping

weights to all spots j should be equal to the weight of cell i in the distribution g. This constraint is formulated as
P

jpij = gi, where gi is

the weight of cell i. For all spots j, the sum of the mapping weights from all cells i should be equal to the weight of spot j in the dis-

tribution g0. This constraint is formulated as
P

ipij = g0
j , where g0

j is the weight of spot j.Gðg;g0Þ is the set of all mappings between two

datasets. Given slices ðX;D;gÞ and ðY ;D0; g0Þ containing n cells andm spots, an expression cost function c and a parameter a, use the

following cost to find a mapping P˛Gðg;g0Þ:

FðP;X;D;Y ;D0; c;aÞ = ð1 � aÞ
X
i;j

c
�
x$i; y$j

�
pij +a

X
i;j;k;l

�
dik � d0

jl

�2
pijpkl:

The first component, ð1 � aÞPi;jcðx$i;y$jÞpij, represents the gene expression cost. It calculates the overall dissimilarity between the

gene expression profiles of cells and spots, considering their respective mapping weights. The second component,

a
P

i;j;k;lðdik � d0
jlÞ2pijpkl, is the pairwise distance cost. It measures the overall discrepancy in pairwise distances between cells

and spots, taking into account the pairwise mapping weights. The parameter a controls the trade-off between gene expression sim-

ilarity and pairwise distance similarity. A higher value of a emphasizes the importance of matching pairwise distances, while a lower

value focuses more on aligning gene expression profiles.75

After obtaining the comparison matrix between cells and spots, we sorted them from largest to smallest probability. Next, we uti-

lized a non-negative least squares (NNLS) algorithm to deconvolve the cell types for each spot based on the average gene expression

of each cell type in the single-cell data. We then prioritized selecting cell types that matched the NNLS results to assign cells to cor-

responding points. This approach ensures consistency between selected cell types from single-cell and spatial transcriptome mea-

surements, thusmitigating the impact of differential abundance and accurately assigning cells to their respective spots. If the number

of mapped cells is less than expected, we complement it with the cell having the highest probability. To demonstrate the effective-

ness of this strategy, we selected simulated data and real data with varying degrees of abundance differences. We compared

SpaTrio with Energy Mover’s Distance (EMD), unbalanced optimal transport (UOT), and partial optimal transport (POT).75 The results

showed that SpaTrio outperformed the other methods in handling the problem of differential abundance (Figures S22A–S22D). This

indicates that SpaTrio’s strategy can accurately address abundance differences, making it a more reliable and robust solution for

tackling this issue.

SpaTrio assigns spatial coordinates to each cell based on the similarity between the cell and its neighbors after obtaining the

assignment relationship between cells and spots. Specifically, it uses gene expression data between cells and neighboring locations

for analysis. For each spot, we quantified the similarity between cells and neighboring locations by computing the PCC between their

gene expressions. This similarity metric reflects the degree to which cells are related to neighboring locations. Then, according to the

weight of similarity, the spatial coordinates of each cell are calculated. A higher weight indicates that the cell is more similar to neigh-

boring locations, so it has more influence in the coordinate calculation. The coordinates of cell i can be expressed as (xi;yi) and map-

ped onto spot j. There are multiple spots j1,., jn around spot j. The PCCs between cell i and the surrounding spots were calculated

and scaled to a range of 0–1, obtaining the final correlation scores as p1, ., pn. The coordinates of cell i are computed using the

following formula:

ðxi; yiÞ =

0
@
P
n

xnpn

n
;

P
n

ynpn

n

1
A

In addition, SpaTrio adjusts the coordinates of the cells so that the centroid of the cells within each spot overlaps with the central

coordinates of the spot, making themmore scattered within the scope of each spot to better simulate the spatial distribution of cells.

The resulting cell locations reflect the similarity of gene expression to surrounding spots and do not extend beyond the boundaries of

the spots. In some cases, the number of neighboring spots of spot j may be insufficient. For this, we added a pseudo-spot jpseudo,

which shares gene expression with spot j, and its spatial coordinates conformed to the following calculation:

�
xpseudo; ypseudo

�
=

 
xj $ ðn+ 1Þ �

X
n

xn; yj $ ðn+ 1Þ �
X
n

yn

!

A pseudo-spot is regarded as a neighboring spot that participates in allocating and correcting the cell coordinates. We compared

the coordinate correction strategies of SpaTrio with CARD and SpaTalk, showing that SpaTrio can effectively assign all cells, and the

gap between the adjusted coordinates and the real coordinates is significantly lower than the other two methods, which proves the

effectiveness of the SpaTrio coordinate correction function (Figures S23A–S23F).

Analysis of module

Based on the spatial coordinates of single cells after mapping and the molecular information contained in the cell, inspired by

CellTrek76 and FigR,77 we designed a module analysis function to identify potential spatial feature expression modules. First, the
e3 Cell Genomics 3, 100446, December 13, 2023
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molecular expression state of cells in space may have insufficient continuity, affecting spatial module recognition. Therefore, we first

smoothed the characteristic intensity of the cells on the k-NN graph, which was calculated using a low-dimensional embedded rep-

resentation. The spatial distancematrix between cells is transformed into a spatial kernel matrixW using radial basis functions (RBF),

the smoothed feature expression matrix X is normalized, and the covariance of the expression matrix X and kernel matrixW is calcu-

lated. Next, the covariance was divided by the square root of the diagonal elements to obtain a spatially weighted correlation matrix.

Using the spatially weighted correlation matrix, we used consensus clustering (CC)68 to detect the feature expression modules.

The CC function was implemented using the ConsensusClusterPlus package (v1.62.0). After the feature clusters were obtained,

the identified features were filtered based on the level of consensus and correlation. The activity score of the identified module

was calculated using Seurat25 (v4.3.0) AddModuleScore.

Inference of CCI

We employed different analytical strategies for cellular communication involving different modalities. For transcriptome-based cell

interaction analysis, the gene expression counts matrix, two-dimensional coordinates, and cell classification information of all as-

signed cells to the SpaTalk69 package (v1.0) for analysis. Interactions between all input cell types were calculated and included spe-

cific ligand-receptor pairs and strengths of interactions.

For the proteome-based analysis of cellular communication, we utilized the results of the modular analysis. We calculated the pro-

tein module scores for each cell using the Seurat (v4.3.0) AddModuleScore and divided them into two groups based on the cell-type

specificity of the scores. If the specificity was high, the protein in the module was a specific protein of the corresponding cell type. If

the specificity was low, the proteins in all the modules were treated as spatially differential proteins. If a spatially differentially ex-

pressed protein was highly expressed in a cell group, it was a specific protein. After specific proteins were identified in each cell pop-

ulation, protein interaction scores were calculated based on expressed protein abundance. For example, the specific protein a of cell

population i is a ligand, and the average expression is xai, The specific protein b of cell population j is a receptor, expressed as xbj, and

the corresponding cell interaction score S is calculated by the following formula:

Sa;b;i;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xai$xbj

p

After calculating the interaction scores between all the cell types, we bound the protein interaction scores to 1 by dividing them by

the maximum score.

Simulation data
Weevaluated the performance of SpaTrio by simulating the data.We simulated the data based on amouse cerebral cortex dataset to

make the simulation as realistic as possible. These data, including the transcriptome expression and chromatin accessibility of the

cells, were generated using SNARE-seq technology. First, we preprocessed the transcriptome dataset using normalization, scaling,

principal component analysis (PCA), UMAP dimensionality reduction, and graph-based cell clustering. Normalization and linear

dimensional reduction were also performed in the ATAC assay, and MACS270 (v2.2.7.1) was used for peak calling analysis. For

the cell subpopulations obtained by clustering, we determined the cell types of each cell subpopulation by integrating them with

the Allen brain reference dataset (https://portal.brain-map.org/atlases-and-data/rnaseq). We selected three main cell subpopula-

tions (L2/3 IT, L4, and L5 IT) from the data, defined as Cell type 1, 2, and 3, and randomly sampled 250 cells from each subpopulation.

Only the top 2000 highly variable genes were retained to increase the calculation speed. This dataset of 750 cells was used as the

input for SpaTrio. We then randomly divided 250 cells of each type into 50 groups, with each group corresponding to a spot. The

average expression of each group of cells was used as the expression of the spot. Next, we manually assigned spatial coordinates

to thesemerged spots and evenly arranged the 150 spots in space, as shown in Pattern 1. Furthermore, we developed a design called

Pattern 2, which consisted of three layers of cells evenly distributed from the innermost to the outermost layer. Specifically, the inner

layer comprises 19 spots, the middle layer comprises 42 spots, and the outer layer comprises 30 spots. Pattern 3 and 4 were built

using multivariate normal distribution and randomly sampling. After assigning spatial coordinates to each spot, ST datasets were

formed, and each spot’s transcriptome and epigenome were used to measure SpaTrio performance.

Before SpaTrio mapped the cells to spots, we added a step to the ST data to add a controllable degree of noise to affect the het-

erogeneity of the transcriptome data. We generated new transcript counts based on the negative binomial distribution of total counts

at each spot and then on themultinomial distribution of individual gene counts. This process is controlled by the pseudocount param-

eter d, which perturbs the count of each transcript. Intuitively, the higher the value of d, the more noisy the simulated gene expression

counts are and, therefore, the less informative. In addition, we randomly rotated the slice before alignment. The objective was to elim-

inate the influence of the slice angle.

We selected four indicators to quantify the accuracy of the nodal cell mapping results. Mapping accuracy wasmeasured by calcu-

lating the proportion of cells correctly assigned to the matching regions. For spot j, n cells allocated, among which n0 cells have the

same cell type as spot j, and the accuracy of cell allocation is the proportion of these cells. Allocation accuracy A for an entire slice

with m spots was calculated using the following formula:

A =
1

m

Xm
j = 1

n0

n
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The omics data of the mapped spots were obtained by adding the single-cell omics data. We calculated the PCC and SCC of the

transcriptome before and after mapping each spot. It measured the accuracy of SpaTrio deconvolution of the spot. In addition, we

calculated the ARI between the cell type of the ground truth and the mapped results and the RMSE between the deconvolution and

the proportion of accurate labels for each spot in the ST dataset using the following formula:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n= 1

�
y0n � yn

�
N

vuuut
WhereN is the number of cell types, y0n is the proportion of cell types in the spot obtained by mapping, and yn is the true proportion of

cell type n.

Finally, we compared the performance of SpaTrio with that of PASTE (v1.3.0), Tangram (v1.0.4), CARD (v1.0), Seurat (v4.3.0), and

Scanorama (v1.7.3). A particular angle randomly rotated the input ST data before integration, and a pseudocount of specified size

was added. PASTE was run using default parameters to obtain the alignment probability matrix. Tangram was run using cell level

mapping with default parameters to obtain the alignment probability between the spots and cells. CARD was run to infer the single

cell resolution gene expression for eachmeasured spatial location. We used Seurat to integrate the input with the IntegrateData func-

tion and calculated the distance matrix between spots/cells based on PCA embedding, obtaining the inverse and removing the

maximum values to obtain the alignment matrix. Like Seurat, Scanorama integrated the datasets and calculated the matching rela-

tionships between the spots and cells. The obtained alignment matrices were input into the assign_coord function, the cells were

assigned to the corresponding spots, and the above indicators were used to compare tool performance.

When comparing the impact of using RNA and ATAC graphs, we generated new simulated data based on Pattern 1. In this sce-

nario, we introduced pseudocounts to the Cell type 2 and Cell type 3 populations, effectively eliminating the transcriptome differ-

ences between these two groups of cells, treating them as a single cell population. This allowed us to examine the effect of utilizing

different graph construction methods while controlling for potential transcriptome heterogeneity within these specific cell types.

To better evaluate SpaTrio’s ability to handle cell abundance differences, we modified the Pattern 1 simulated data and created a

"Random abundance" dataset. Specifically, the spatial data remained unchanged, while the single-cell multi-modal data had

randomly altered cell abundances. For each Cell type 1 (250, 500, 750, 1000, 1250), Cell type 2 (250, 500, 750, 1000, 1250), and

Cell type 3 (250, 500), corresponding numbers of cells were randomly sampled to create the dataset. This allowed us to assess

how well SpaTrio performed when facing varying levels of cell abundance differences in the input data.

Biological data
We evaluated the performance of SpaTrio using six biological datasets. Mouse embryo data (DBiT-seq),mouse liver data (10x Visium

with highly multiplexed proteins), mouse spleen data (SPOTS), breast tumor data (SPOTS), mouse embryo data (Spatial ATAC–RNA-

seq) and human hippocampus (Spatial ATAC–RNA-seq) were used to create the input dataset.

Mouse embryo data (Dataset 1)

We selected a slice with a pixel size of 25-mm andmerged the four spatially adjacent pixels into one pixel, preserving the spatial tran-

scriptomics data as input ST data. Meanwhile, we removed the location information of the original data as the input single-cell multi-

omics data. Finally, the single-cell data contained 1789 cells, 13285 genes, and 22 proteins. The corresponding generated ST data

contains 472 spots and 18510 genes. We performed the same preprocessing on the transcriptional data of the input datasets,

including normalization, PCA analysis, and non-linear dimensionality reduction using UMAP. We performed cell clustering at the

same resolution (resolution = 0.8). The count expression matrices, cell clustering information of all datasets, and spatial coordinates

information of ST data were input into SpaTrio. In addition, we performed log-ratio (CLR) normalization on protein abundance and

obtained the dimensionality reduction information of protein assay by performing PCA analysis. It was input as the embedding infor-

mation of single-cell data. Only cell-type differential genes shared between the two datasets are selected for the next step of spatial

mapping. The omics data of the mapped spot is also obtained by merging the data of the contained single cells.

Mouse liver data (Dataset 2)

Mouse liver data (10x Visium with highly multiplexed protein) consisted of a slice, containing 1659 spots annotated with liver zona-

tions, 16555 genes, and 91 proteins. We divided the slice into two parts of different sizes, both containing four zonations of the liver.

The spots located in the larger part were selected to be input as single-cell multi-omics data, and the spots located in the smaller were

selected to be input as ST data. In this way, we constructed single-cell data of 1398 cells and ST data of 261 spots. In the mapping

process, we used the scaled expression matrix, which only contains the differential genes shared by the two datasets, and used the

regional information to affect the calculation of the graph distance. As mentioned before, the mapped spot data is merged from the

assigned cell data. In addition, we calculate the average abundance of the cell type-specific proteins in each region and scaled them

as the signal intensity of the corresponding cell type.

Mouse spleen data (Dataset 3)

Mouse spleen data (SPOTS) consisted of two slices and we choose the replicate 1. The slice containing 2569 spots, 17806 genes,

and 21 proteins. We divide the entire slice into 477 grids of equal size to generate ST data. We performed the same preprocessing on

the transcript data of the input dataset as Dataset 1, including normalization, PCA analysis, and non-linear dimensionality reduction
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using UMAP. We performed CLR normalization on protein abundance and derived PCA dimensionality reduction information. Only

cell-type differential genes shared between the two datasets were selected for the next step of spatial mapping.

Breast tumor data (Dataset 4)

Breast tumor data (SPOTS) consisted of 1978 spots, 18932 genes, and 32 proteins. We divide the entire slice into 600 grids of equal

size to generate ST data. We performed the same preprocessing on the transcript data of the input dataset as Dataset 1 and per-

formed cell clustering at the same resolution (resolution = 0.2). For the subsequent spatial mapping, we only considered cell-type

differential genes that were common to both datasets.

Mouse embryo data (Dataset 5)

Mouse embryo data (Spatial ATAC–RNA-seq) consisted of 2187 pixels, 17058 genes, and 32437 peaks.We divide the entire slice into

573 grids of equal size to generate ST data. We processed ATAC assay using normalization using term frequency-inverse document

frequency (TF-IDF), linear dimensional reduction using singular value decomposition (SVD), and nonlinear dimensionality reduction

using UMAP. For the subsequent spatial mapping, we only considered highly variable genes that were common to both datasets.

Human hippocampus data (Dataset 6)

Human hippocampus data (Spatial ATAC–RNA-seq) consisted of 2500 pixels, 29293 genes, and 56614 peaks. We divide the entire

slice into 625 grids of equal size to generate ST data. We processed ATAC assay as Dataset 5. For the subsequent spatial mapping,

we focused on highly variable genes that were shared between both datasets.

Mouse brain cortex data analysis
Single-cell multi-omics data of the mouse brain cortex were measured by ISSAAC-seq, which contained chromatin accessibility and

gene expression of 12 types of excitatory neurons, seven types of inhibitory neurons, and four types of non-neurons. ST data of 10x

Visium only retained spots located in the cortex, and the slice was segmented into five regions (Region 1, 2, 3, 4, and 5) based on

transcriptome heterogeneity, corresponding to five major cortex layers (Astro, L2/3, L4, L5, L6, and Oligo). The ATAC assay of the

ISSAAC-seq data was performed using a standard analysis procedure, including normalization using TF-IDF, linear dimensional

reduction using SVD, and nonlinear dimensionality reduction using UMAP. The first component was removed from the downstream

analysis. In addition to the two expression count matrices, we input the cluster information and low-dimensional embeddingmatrix of

the single-cell data, ST region information, and spatial coordinates into SpaTrio. SpaTrio was operated according to default param-

eters. The number of cells expected to be allocated to each spot was set to 10. When calculating the spatial gene module of L4/5

cells, we selected the top 5000 highly variable genes and set sigma = 140, min_avg_con = 0.3, min_avg_cor = 0.3, min_featuer =

20, max_featuer = 1200, and min_pct_cutoff = 0.15. The spatial motif modules were calculated with sigma = 140, min_avg_con =

0.3, min_avg_cor = 0.3 min_featuer = 20, and max_featuer = 400.

Human liver data analysis
Liver datasets were extracted from the Liver Cell Atlas (https://www.livercellatlas.org/index.php).We selected single-cell multi-omics

data from one patient who developed liver obesity with 5,393 cells, 26,758 genes, and 189 proteins. ST data were generated from a

steatotic patient (H35), containing the gene expression and surface protein abundance of five major cell types (hepatocytes, fibro-

blasts, endothelial cells, macrophages, and cholangiocytes), covering 18,703 unique genes among 1,248 spots. On this slice, spots

were divided into the main liver zones, including the portal (48 spots), periportal (72 spots), mid (364 spots), and central (142 spots)

zones, as well as 622 spots that had not been annotated. Gene expression matrices were normalized and scaled, and the most var-

iable 5000 genes were retained to create the input. CLR normalization was performed on the protein abundancematrix, and PCAwas

used to obtain a low-dimensional embedding matrix for the protein assay, which was then transmitted to SpaTrio. SpaTrio was oper-

ated using default parameters, and the number of cells expected to be mapped to each spot was set to three. When calculating the

spatial gene module of hepatocytes, we selected the top 2000 highly variable genes and set sigma = 230, min_avg_con = 0.5, min_

avg_cor = 0.5, min_featuer = 20, max_featuer = 1000, and min_pct_ cut-off = 0.1. The spatial protein modules used for cell commu-

nication inference in selected regions were calculated with sigma = 230, min_avg_con = 0.6, min_avg_cor = 0.6, min_featuer = 10,

and max_featuer = 200, min_pct_cutoff = 0.1. We used the Monocle 2 software package (v.2.26.0)65 to perform a trajectory analysis

of hepatocytes inmajor regions, with raw count data as input, based on theDDRTree function, gene order, and dimensionality reduc-

tion according to differential genes between subpopulations and along pseudotime trajectories to order cells.

Human breast cancer data analysis
The CITE-seq and 10x Visium datasets of human breast cancer were obtained from an atlas of human breast cancers (https://

singlecell.broadinstitute.org/single_cell/study/SCP1039/a-single-cell-and-spatially-resolved-atlas-of-human-breast-cancers). We

retained the cell-type annotations for individual cells and the regional divisions for spots from the original paper. The CITE-seq counts

were normalized and scaled using Seurat, and the protein abundance of the samples was imputed without the protein assay. Spe-

cifically, we selected seven significant cell populations: T cells, PVL cells, endothelial cells, CAFs, myeloid cells, plasmablasts, and B

cells. Using the FindAllMarkers step, differentially expressed antibodies between populations were calculated, and protein expres-

sion levels were transferred to other samples using anchoring-based transfer learning. We chose the CITE-seq data of three patients

(ER+: CID4535, CID4040, and CID4530N) with similar transcriptomes (Figure S18A) and the ST data of one slice (ER+: CID4535) as

inputs to SpaTrio. The ST data covered 17,908 unique genes among the 357 spots, and the CITE-seq data included transcriptional
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and protein assays of 6,543 cells, covering 23,926 unique genes and 169 proteins. SpaTrio was operated with default parameters,

and each spot was matched with up to 15 cells. The abundance of cell types for each spot, the cytotoxicity score (GZMB, GNLY,

GZMA, NKG7, and PRF1), and the exhaustion score (PDCD1, CTLA4, and HAVCR2) of cells were calculated using the Seurat

AddModuleScorewith the corresponding genes. The toxicity scoreminus the exhaustion score was used to obtain the T cell function

score. In the ST data, spots with T cell abundance greater than 0 were annotated as T cells, and to calculate the spatial protein mod-

ule of T cells, we set sigma = 110, min_avg_con = 0.6, min_avg_cor = 0.6, min_featuer = 5, and max_featuer = 100. We set sigma =

110, min_avg_con = 0.5, min_avg_cor = 0.5, min_featuer = 5, max_featuer = 200, and min_pct_cutoff = 0.1 to identify the protein

modules of invasive cancer + lymphocytes region in preparation for the cell–cell interaction analysis and visualize the results using

ggplot274 (v3.4.2).

Transcription factor regulation analysis
We performed peak calling analysis on the ATAC data using MACS2, and estimated transcription factor activity using the

RunChromVAR feature within Signac66 (v1.9.0). The positional weight matrix used in the process was obtained from the

JASPAR202073 database. Fold changes in transcription factor activity and gene expression were computed using the FindMarkers

function, with a false discovery rate (FDR) of less than 0.05. We then used the PCCs of the fold-change of the transcription factor

and the corresponding gene as the correlation between the two modalities. Transcription factors were classified into three groups

based on the correlation between transcription factor activity and expression: (1) transcription factors whose motif activity was with

high positively correlatedwith gene expression, (2) transcription factors that showed a negative correlation, and (3) transcription factors

that showed an insignificant correlation. We hypothesized that transcription factors with a positive correlation act as transcriptional

activators within differentially accessible chromatin regions (DAR), whereas those with a negative correlation act as transcriptional

repressors.

Pathway and biological process enrichment analysis
To enrich gene modules with pathways, all genes within each module were analyzed using the clusterProfiler R package.67 Enrich-

ment analysis results meeting the statistical threshold (qvalueCutoff = 0.05) and related to Biological Process(BP) were selected and

reserved. For pathway enrichment in cell populations, the FindAllMarkers function was used to calculate differential expression

genes (DEGs) for each cell subset by comparing it to other cells. We filtered them using the following settings (only.pos = TRUE,

min.pct = 0.2, logfc.threshold = 0.2), and only retained the genes with an adjusted p value (Wilcoxon test) < 0.05. For Gene

Ontology(GO) enrichment analysis, we selected the top 100 genes in fold change. Additionally, we performed Gene Set Enrichment

Analysis (GSEA) on the ranked gene list to identify significantly activated pathways and biological processes. The signatures for these

pathways and processes were obtained from the Molecular Signatures Database72 (http://www.gsea-msigdb.org/gsea/msigdb).

SURVIVAL ANALYSIS

RNA-seq and clinical data of BRCA patients were obtained from the Cancer Genome Atlas (TCGA) and Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) using the cgdsr R package. To investigate the association between target

gene expression and patient survival, tumor samples were categorized into low (25%) and high (75%) expression groups. The

Kaplan-Meier formula in the R package "Survival" was utilized for survival analysis, and the survival curve was visualized using

the ggsurvplot function in the R package "survminer".

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of the Method details and in the figure legends.

R (version 4.2.2) and Python 3.8.13 were used for all statistical analyses.
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