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Abstract: Background: Several studies proved that anodic oxidation improves osseointegration.
This study aimed to optimize osseointegration through anodization in dental implants, obtaining
anatase phase and controlled nanotopography. Methods: The division of the groups with 60 titanium
implants was: control (CG); sandblasted (SG); anodized (AG): anodized pulsed current (duty cycle
30%, 30 V, 0.2 A and 1000 Hz). Before surgery, surface characterization was performed using
Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Dispersive Energy
Spectroscopy (EDS) and Raman Spectroscopy. For in vivo tests, 10 New Zealand white rabbits
received an implant from each group. The sacrifice period was 2 and 6 weeks (n = 5) and the
specimens were subjected to computed microtomography (µCT) and reverse torque test. Results:
AFM and SEM demonstrated a particular nanotopography on the surface in AG; the anatase phase
was proved by Raman spectroscopy. In the µCT and in the reverse torque test, the AG group
presented better results than the other groups. Conclusion: The chemical composition and structure
of the TiO2 film were positively affected by the anodizing technique, intensifying the biological
characteristics in osseointegration.

Keywords: anodizing; microtomography; nanotechnology; osseointegration

1. Background

The anodizing process has received considerable attention, as it is an efficient and
low-cost reproducibility technique, in addition to exhibiting suitable surface modifica-
tion for cellular activities, improving surface properties through nanotopography [1,2].
These changes in the surface of the implants can accelerate the bone repair process, as well
as increase bone deposition [3,4], playing an important role in the osseointegration process,
being the interface between cell-substrate crucial for the success of the biomaterial [5].
The nano-dimensioned resources can simulate the cellular environment [6] and favor the
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proliferation and adhesion of mesenchymal and osteoblastic cells due to the increase in the
surface area of the biomaterial [1,7].

In addition, the anodizing process modifies the amorphous oxide film in a layer of
crystalline oxide on the implant surface [8]. Current techniques that obtained a layer of
crystalline and uniform oxide, showed improvements in the results in this layer when
compared to that formed naturally, in the atmosphere. Thus, the performance of the TiO2
implant as a biomaterial may be associated with the conversion of its amorphous form
into crystalline [9]. The crystalline forms of TiO2 are rutile, used in cosmetics and paints,
with thermodynamic stability as a characteristic; bronquita, intermediate stage of crys-
tallinity and anatase, which is the crystalline phase, manufactured at lower temperatures
and has biocompatibility [10].

Metals showed greater resistance to corrosion and abrasion and also showed improve-
ment in osseointegration [11]. The hydrophilicity of the crystalline surface (anatase phase)
compared to the amorphous one promoted cell scattering in the film when the interaction
of osteoblasts in commercially pure titanium (cpTi) and Ti alloy was analyzed showing
amorphous and crystalline titanium dioxide [7].

Several studies showed that anodic oxidation has improved osseointegration [12].
However, little research studied anodic oxidation on the surface of commercial implants [8].
The present work had the purpose of evaluating the nanotopography and chemical struc-
ture of the crystal line in the anatase phase obtained by a new route in the anodization
process and in the newly formed bone and implant fixation.

2. Materials and Methods
2.1. Anodic Oxidation and Implants

In this study, 60 Ti external hexagon implants, grade IV, rounded conic alapex and
self-drilling screw were used, measuring 8.5 mm × 3.75 mm in diameter (Titanium Fix
Company, Sao Paulo, Brazil). The implants were randomly divided into three experimental
groups of 20 implants each: control (CG-machined surface); sandblasted (SG-machined
surface which was blasted with aluminum oxide followed by subtraction by nitric acid);
anodized (AG-machined surface subjected to the anodization technique with application
of pulsed current, 0,2 A, 30 V and 1000 Hz, for 4 h).

The group sandblasted was commercially acquired from Titanium Fix®. To obtain
the group anodized, the surface treatment was performed in Chemistry Laboratory at São
João da Boa Vista Campus of São Paulo State University (SP, Brazil). Briefly, the machined
implants (screws) were properly fixed on a titanium plate. The anodization of the implants
occurred after cleaning the surface. For the anodizing process, the titanium plate and a
copper plate were used as anode and cathode, respectively. Both plates were placed into a
beaker containing 1.0 mol/L H2SO4 solution as electrolyte. The parameters used for the an-
odization were: 0.2A, resulting current, 30 V of applied potential, and 1000 Hz of frequency
pulses, for 4 h, at room temperature. Despite many anodization procedures having been
described in the literature presenting shorter times, the samples of the present research
presented the best surface properties after 4 h (data not shown). Electrical parameters were
monitored using a digital oscilloscope, model MO2061, Minipabrand; a pulsating square
wave rectifier, GI21P-10/30 model, of the company General Inverter. The implants were
cleaned using ultrasound followed by sterilization with 25kGy at Embrarad (Sterilization
Unit LTDA, Cotia, SP, Brazil).

To characterize morphologically the implant surface, Scanning Electron Microscopy
(PhilipsXL-30 FEG, PHILIPS, Leuven, Belgium) and Atomic Force Microscopy (AFM) Mul-
timode Nanoscope V (Veeco Instruments Inc. New York, NY, USA) were used. To analyze
any superficial damage and changes in the chemical composition of the implant surfaces,
the surface analysis was performed before and after surgery by reverse torque.

To determine the chemical composition of the anodic film, Raman spectroscopy
(Horiba, Kyoto, Japan) and X-ray dispersive energy spectroscopy (EDS, Horiba, Kyoto,
Japan) were used. The technique of electrochemical impedance spectroscopy (EIS) was
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used to determine the physicochemical characteristics and the corrosion resistance of the
film of the experimental surfaces (sand blasting and anodizing). To find the bands po-
sitioned in the titanium anatase region, a Raman Horiba Scientific T64000 spectrometer
(Horiba, Kyoto, Japan) was used, with this TiO2 phase being more crystalline and bio-
compatible. In the analysis by EDS, an energy-dispersive detector and the Bruker Esprit
1.9 software was used for the chemical microanalysis. The concentration of chloride ion
found in blood plasma is similar to 0.9%, so in the EIS measurements were performed
in 0.9% NaCl. Autolabpotentiostat/galvanostat (PGSTAT302N model, Eco. Chemie BV,
Utrecht, Netherlands) was used. Briefly, a conventional cell showing three electrodes and
each sample represented the working electrode. A Pt electrode was used as auxiliary and
all potentials were recorded against a saturated Ag/AgCl electrode. EIS diagrams were
registered at OCP by applying a 10 mV sinusoidal potential through a frequency domain
of 100 kHz to 10 mHz.

2.2. Surgical Procedures

First, the protocols were approved by the Ethics in Research Committee of the Institute
of Science and Technology of São José dos Campos from the State University of São Paulo–
UNESP (02/2014-PA/CEP) and ARRIVE was respected.

New Zealand white male rabbits (n = 10) 5 months old, on average, weighing about
4 kg were used, which were kept in individual cages and fed standard solid rations and
water ad libitum at the vivarium of the Science and Technology Institute of Sao Jose dos
Campos-ICT, UNESP.

The present study allows eliminating the interference between individuals, since one
implant of each experimental group was placed in right tibia of each rabbit. In addition,
different destructive tests were performed, due to the placement of an implant of each
group also in left tibia. Five animals were randomly chosen for each evaluation period,
in order to describe similarly aspects of the healing process.

After weighing the animals, general intramuscular anesthesia was performed with
a mixture of 13 mg/kg of xylazine hydrochloride (Anasedan-Vetbrands) and 33 mg/kg
of ketamine (Dopalen®-Agibrands do Brasil Ltd.a). The local anesthesia used was a 3%
prilocaine hydrochloride compound associated with 0.03 IUU/mL felipressin (Citanest3%
®-Dentsply). The left and right tibiae were subjected to scraping and antisepsis with iod-
inated solution [4] followed by an incision made in the proximal third of the tibia in the
region medial. Six implants were installed in each tibia, one from each group. After the
implant placement surgery, the layers were sutured with silk thread no. 4 (Ethicon®/J&J
Medical Devices) and antisepsis, with the use of iodized alcohol. Postoperative antibiotics
were used (6,000,000 IU benzatinabenzyl penicillin, procaine benzyl penicillin, benzyl
penicillin potassium and dihydroestrostptomycin sulfate based on dihydroestrostptomycin
sulfate) (Pentabiotic-FortDodge), intramuscularly at the dose of 1, 35 mL/kg in the imme-
diate postoperative period (48 h) and ketoprofen analgesic (Ketofen, Fort Dodge Animal
Health, Fort Dodge), 1 mg/kg subcutaneously every 24 h for 3 days. In the post-surgical pe-
riod, the animals were kept in individual cages with food and water ad libitum. Euthanasia
in the period of 2 and 6 weeks (n = 5) was performed with deep general anesthesia (propo-
fol 10 mg/kg) intravenously followed by administration of an intravenous potassium
chloride vial.

The right side of the specimens removed after euthanasia were stored in a buffered
formaldehyde solution to be subjected to Computed Microtomography (µCT). While the
specimens on the left side, which were removed, were stored in a Ringer at −20 ◦C, to be
kept in similar conditions to the body to be subjected to the torque removal test.

2.3. Removal Torque Testing

After euthanasia, the left side tibial specimens were removed and immobilized around.
The reverse torque test, using a digital torque meter (Mark-10 Corporation, New York, NY,
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USA) was performed. Counterclockwise rotation was applied and the maximum torque
values (N.cm) required for bone fracture at the bone-implant interface were measured.

2.4. Computed Microtomography (µCT)

Computerized microtomography (µCT) was performed with 360-degree scan rota-
tion of the parts, using monochrome X-rays, with 89 kV and 275 µA, 0.1 copper filter
(SkyScan 1176, Skyscan, Kontich, Belgium) on the fragments of right tibia with the implant.
The analysis was performed after obtaining the images using the NRecon software (version
1.6.6.0) for image reconstruction; data Viewer, CTAnalyzer (BrukerMicroCT) to evaluate
the parameters of bone volume (VB), trabecular thickness (Tb.Th) and the relationship
between bone volume and trabecular volume (BV/TV) by selecting a rectangular region
(ROI) creating a volume of interest (VOI) and the creation of the 3D image of each analyzed
fragment, adjusting a histogram to differentiate the newly formed bone tissue according to
density using the CT-Vol software (v.1.14.4, Kontich, Belgium).

2.5. Cytotoxicity Evaluation by MTT

Through sequential enzymatic digestion, osteogenic cells were isolated from male
newborn rats aged two to four days (Rattus norvegicus, Albinus, Wistar variant) (n = 30).
Subsequently, they were sown in the implants and cultivated as described by Andrade et al.
(2015) [13]. The medium was changed every three days, and the evolution of the cells was
evaluated under an inverted microscope. After 3 days and 10 days, the MTT solution of
3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazole (Sigma) was inserted to the wells with
cells and kept at 37 ◦C for 4 h [13]. After this period of incubation, the supernatant was
removed and the samples were washed with PBS, then 1.0 mL of isopropanol (0.04 mol/L
HCl in isopropanol) was added to each well. The analysis was performed using with
an EL808IU spectrophotometer (Biotek Instruments, Winooski, VT, USA) at 570 nm. The
data were expressed as absorbance. The control used for this test was the well containing
only cells.

2.6. Statistical Analysis

All statistical tests were performed with the aid of the software GraphPad Prism
(version 6.0, GrahPad, San Diego, SA, USA) by means of non-parametric test Kruskal
Wallis was used to determine the significant differences, followed by a Test Dunn post-hoc
test. The level of significance adopted was 0.05.

3. Results
3.1. Implants Characterization

SEM analysis demonstrated topographical differences among implants surfaces. CG
presents the smooth appearance of (Figure 1A). SG presented a topography characteristic
of subtraction process, which formed irregular valleys, with different depths and sizes
(Figure 1B). Finally, the AG presented nanotexturized surface with topography more
uniform and valleys less depth (Figure 1C,D).

When analyzing the images obtained by the AFM, the presence of traces inherent to
the machining stage of dental implants, a textured surface in the micrometer range and the
adequate uniformity of a nanotextured surface, a characteristic pertinent to the anodizing
process, was verified.

The verification of chemical elements, performed by means of Dispersive Energy
Spectroscopy (EDS) of an implant in each group, demonstrated the predominant presence
of titanium in the CG In the SG, Ti and Al were identified; Ti and O were presented
at the AG. In addition to Ti and O, some other components were also found in the AG
implant film.
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Figure 1. Images obtained from SEM. (A) CG showing grooves on the surface due to the machining
process with original magnification of 1000× (10 µm); (B) SG showing some cuts due to the impact
of the oxide particles on the surface, increasing the roughness by 2000 times (10 µm); (C) AG on the
surface of the nanostructured implant increased the roughness by 100,000 times (200 nm); (D) The
AG on the surface of the nanostructured implant increased by 200,000 times (100 nm).

In the Raman spectra (Figure 2A), the characteristic frequency bands of the anatase
were observed in the anodized groups (AG). In AG, bands positioned in the anatase regions
were observed (Figure 2B). The frequency bands were identified as: 147 (±2.8) cm−1,
392.8 (±4.3) cm−1, 515.2 (±5.3) cm−1, 513.14 (±4.7) cm−1, 628.8 (±10.2) cm−1. No peak of
anatase was observed in the sandblasting group (SG) (Figure 2A).

Figure 2C show the EIS spectra obtained from the complex planar format. Extrapolat-
ing the capacitive semicircle to the point of intersection with the real axis can estimate the
polarization resistance Rp, which is determined in the frequency spectrum generated by
the low frequency region. For the commercial samples processed by blasting, the smallest
diameter of the capacitor arc was obtained. The Rp value is about 100 kΩ, which is about
10 times the Rp value of anodized samples; this shows that the Sandblasted Group has
a greater susceptibility to corrosion than the Anodized Group; presenting the greatest
resistance to corrosion extrapolating the Y axis of the graph.

3.2. Removal Torque Testing

The data obtained in the removal torque tests were subjected to descriptive analysis for
each group (Figure 3). The highest values were observed in anodized implants compared
to the other groups at 2 weeks.

A statistical difference was observed only in the 2-week periods, in which the CG
differed statistically from the AG group (p < 0.05). There was no statistical difference
between groups in relation to osseointegration, in the period of 6 weeks. (p = 0.0714).
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Figure 3. Torque test data. Effects of surface topography on osseointegration measured by reverse
torque test. Anodized group presented higher values than control group at 2 weeks. Statistical
differences are shown using different letters. (Kruskal Wallis and Test Dunn’s).

3.3. Micro-Computed Tomography

The data obtained through the descriptive analysis and the inferential statistical results
of the groups are represented in Figures 4 and 5, in both periods. The mean values of
AG implants were higher when compared to the other groups, with the exception of
the parameter Tb.N (trabecular number) in 2 weeks. The comparison of bone volume
using Kruska Wallis showed no statistically significant difference in the period of 2 weeks
(p = 0.1139) and 6 weeks (p = 0.3271). A similar result was observed in parameter Tb.N,
in which the period of 2 weeks p = 0.6298 and 6 weeks p = 0.8151. With regard to BV/TV,
the AG showed greater results, differing statistically when compared to the CG and SG at
2 weeks (p = 0.0012). In none of the parameters or periods, statistical differences between
CG and AG could be observed. However, in the 6-week period, there was no significant
differences between groups (p = 0.6298) when analyzed BV/TV. In the 3D images obtained
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from the microtomography, it was possible to observe that there was a greater amount of
cortical bone for AG implants, both in the period of 2 weeks to 6 weeks; compared to other
implants (Figure 6).
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3.4. Cytotoxicity Evaluation by MTT Assay

Within three days, the groups showed no statistical difference between groups and
between the control group (well with cells only). While the SG presented a higher percent-
age of viable cells in the period of 10 days, this differed statistically with the control group
(p < 0.05). Most of the groups analyzed exhibited greater cell viability over time and none
of the groups showed cytotoxicity to the cells. The results can be seen in Figure 7.
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4. Discussion

The crystalline structure found in the anatase phase of TiO2 leads to an appropriate
anatomy for mineral growth on the surface of the biomaterial [14]. This occurs because
the mineralization in the formation of bone tissue is promoted by hydroxyapatite crystals,
which are nucleated in this phase [15,16].

Among the techniques used to modify the surface of the implants [17–19] the anodiza-
tion process consists of forming a nanotopography that favors cellular activity and has the
ability to interact with fluid and bone tissue. As an electrochemical method, of low cost
and reproducibility, it also presented positive results in relation to bioactivity [2,20].

The titanium anodizing technique in orthopedic implants and in the dental field has
been used. An example of the latter is TiUnite®, Nobel Biocare AB, Gothenburg, Sweden.
Thus, it is evident that the morphological characteristic of TiO2 is a preponderant aspect in
the studies, as well as what was observed in a study by Mu-Hyon Kim et al. (2015) [1] in
which the authors evaluated implants subjected to the anodization process and observed
the presence of a rough surface on a nanometric scale. In another study, by Pinheiro et al.
(2014) [21], anodization was obtained in 1.0% Na2SO4 solution, applying 100 V for 1 min
and the authors observed a nanotextured surface. El-Wassefy et al. (2014) [22], used a
solution of H2SO4, 200 V for 4 min, with subsequent treatment for 1 h at 600 ◦C and
obtained similar results.

Based on previous studies [21,22], in this study we used a time for the anodizing
process of 4 h, which is longer and more innovative in the relevant literature, in order to
form a nanoscale roughness in TiO2 and a more chemical composition biocompatible with
the interest of obtaining the anatase phase of TiO2 without the need for heat treatment
at high temperatures. For the process, in addition to the time already mentioned, other
parameters were used (1.0% H2SO4 solution as electrolyte, 0.2 A, 30 V and 1000 Hz)
resulting in the morphological changes observed in the images obtained by SEM and
AFM. While the anatase phase was observed in AG, as evidenced by Raman spectroscopy,
using the bands observed in positions in the anatase region [23]. In addition, the anodized
implants showed an increase in the thickness of TiO2 without generating residues through
the anodization process, presenting a different result from that of Pinheiro et al. (2014) [21],
where it was possible to observe the presence of residues in the electrolyte solution.

Impedance measurements reveal the working electrodes in a passive state with varying
degrees of film compaction. In the Bode format, the wide peaks recorded for the phase
angle at intermediate frequencies are very close to 90 degrees for all conditions evaluated
and the slopes of Log (|Z|/Ω) vs. Log (f/Hz) are close to-1 A large peak can be indicative
of the interaction of at least two time constants, related to two simultaneous interfacial
processes [24]. These variations are in line with the previous study [25] and were attributed
to an ideally capacitive behavior.

Among the various techniques for quantifying neoformed bone in bone defects [26],
osseointegration assessed by µCT is convenient, since it does not cause damage to the sam-
ple and allows complete visualization of the bone, being a good tool to assess bone structure
at around the implant [3], considered similar to conventional histomorphometry. Some
studies in the literature performed µCT osseointegration histomorphometry. There are
different methods and parameters to quantify the bone using µCT [3,27]. In this study,
the analyses were performed in cross-sections, as well as the study by Vandeweghe et al.
(2013) [3], data were collected along the axis of the implant at the beginning of the cortical
bone. Based on the results obtained from the analyzed parameters (BV, BV/TV and Tb.Th),
in this study we show that bone repair and BV/TV and Tb.Th osseointegration of the
implants were accelerated in the groups that underwent the process anodizing in both
periods. Bone repair in animals starts in the first week after the defect is made and ends in
about 3–4 weeks. The use of studies with different periods of euthanasia [22], as well as
this study, allows the comparison of the influence of biomaterials surfaces at the beginning
of tissue repair with the stability of the implant in relation to its bioactivity. As demon-
strated by Badrand El-Hadary (2007) [28] after longer periods of osseointegration, bone
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repair reaches a balance, where it is observed that histologically the tissue and vascular
architecture remain constant.

The verification of bone fixation to the implant was obtained through the reverse
torque test [22]. As in this study, changes in the properties of the oxide present on the
surface of titanium implants have demonstrated significant positive effects on bone-implant
fixation over a 3-week period [22].

Here, we use pre-osteoblastic cells from the skull of newborn rats to avoid misun-
derstandings in differentiating bone marrow stem cells in culture. It is an important
experimental model for studies of bone metabolism, compatibility of biomaterials and
bone integration [13]. Li et al. (2014) [29], after comparing the cell viability by MTT of
commercially pure Ti samples submitted to anodization, demonstrated that a positive effect
on bone cell differentiation and proliferation was attributed to the high roughness and
hydrophilicity of the anodized surface. The increase in the percentage of viable cells in
the longer evaluated periods observed in this study, was like that reported in previous
studies [29,30]. It was also possible to observe that none of the implant groups showed
toxicity to the cells, in both monitoring periods.

5. Conclusions

In this study, we evaluated the performance of nanotopography of titanium implants
subjected to the anodizing process in bone repair in the osseointegration process. The re-
sults obtained from the sample characterization tests showed that the anodized group
showed changes in the chemical and structural composition of the titanium oxide film,
favorable to osteogenic activity. It was also possible to observe, through the micrographs
obtained in the SEM, a nanotextured surface in this experimental group, which provided
greater bone formation. None of the observed groups showed in vitro cell cytotoxicity.
The AG group showed improvement in mechanical properties and bone repair around
implants evaluated in vivo, in which there was an improvement in bone volume when
compared to CG and SG group. From these results it is suggested that the process of
anodizing the surfaces is beneficial and can be used in dental practice.
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