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ABSTRACT

An effective response to DNA damaging agents
involves modulating numerous facets of cellular
homeostasis in addition to DNA repair and cell-cycle
checkpoint pathways. Fluorescence microscopy-
based imaging offers the opportunity to simultan-
eously interrogate changes in both protein level and
subcellular localization in response to DNA damaging
agents at the single-cell level. We report here results
from screening the yeast Green Fluorescent Protein
(GFP)-fusion library to investigate global cellular
protein reorganization on exposure to the alkylating
agent methyl methanesulfonate (MMS). Broad groups
of induced, repressed, nucleus- and cytoplasm-
enriched proteins were identified. Gene Ontology
and interactome analyses revealed the underlying
cellular processes. Transcription factor (TF) analysis
identified principal regulators of the response, and
targets of all major stress-responsive TFs were
enriched amongst the induced proteins. An unex-
pected partitioning of biological function according
to the number of TFs targeting individual genes was
revealed. Finally, differential modulation of ribosomal
proteins depending on methyl methanesulfonate dose
was shown to correlate with cell growth and with the
translocation of the Sfp1 TF. We conclude that cellular
responses can navigate different routes according to
the extent of damage, relying on both expression and
localization changes of specific proteins.

INTRODUCTION

Several DNA repair and cell-cycle checkpoint pathways
have evolved to cope with damage to the genome that
can arise from endogenous and exogenous sources (1,2).

It is well established that effective cellular responses to
DNA damaging agents involve not only modulation of
canonical DNA repair and cell-cycle regulation proteins
but also modulation of a large number of seemingly un-
related cellular processes (3). Previous studies identified a
number of these pathways using ‘transcriptional profiling’
and ‘genomic phenotyping’ in Saccharomyces cerevisiae
(4–9). Transcriptional profiling quantified global changes
in mRNA levels in response to genotoxic stress using
microarrays, whereas genomic phenotyping investigated
the sensitivity to DNA damaging agents for almost 6000
S. cerevisiae strains, each deficient in a single gene
product. A consensus emerged from these and other
studies (9,10) that a general shutdown of protein synthesis
occurs under conditions of DNA damage because the
transcription of ribosomal protein (RP) genes is repressed
under conditions of genotoxic stress. Later studies
demonstrated a concomitant preferential translation of
specific damage-responsive proteins under conditions
of genotoxic stress (11–13), arguing for translational
regulation playing a role in the cellular response to
DNA damaging agents. Finally, a number of post-
transcriptional protein modifications are known to
orchestrate the DNA damage response, including phos-
phorylation, ubiquitylation and sumoylation (1,14).

To probe response pathways at the single-cell level, we
developed a quantitative high-throughput fluorescence
imaging approach to assess not only changes in protein
levels but also changes in nuclear versus cytoplasmic lo-
calization in response to the DNA damaging agent methyl
methanesulfonate (MMS). This assay was performed for
>4000 S. cerevisiae strains expressing individual GFP-
tagged fusion-proteins, representing nearly 70% of the
yeast proteome (15). Importantly, fusion proteins in this
library are expressed from their native promoters, thereby
closely reflecting the response of their corresponding genes
on MMS exposure.
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Previously, this library was used to study genome-wide
protein localization using fluorescence microscopy (15)
and overall expression levels using flow cytometry (16).
Here, we use the library to identify proteins whose expres-
sion level is induced or repressed in response to MMS, as
well as proteins that concentrate in either the nuclear or
cytoplasmic compartment in response to MMS. Analysis
of Gene Ontology (GO) and protein–protein interaction
networks reveal damage-induced changes in levels and/or
localizations for proteins and complexes involved in chro-
matin remodeling, mRNA processing, RNA polymerase
II transcription, proteolysis, ribosome biogenesis, metab-
olism, lipid synthesis, plus a number of other pathways, in
addition to canonical DNA repair and cell-cycle regula-
tion. Further, we characterize the transcription factor
(TF) networks linked to changes in protein abundance,
revealing a differential regulation of metabolic versus
DNA-related processes. Finally, we further investigate
the unexpected induction response of RPs, finding a dif-
ferential response depending on the extent of damage,
cellular growth rate and nuclear-to-cytoplasmic transloca-
tion of the TF Sfp1 that targets the RP genes (17).

MATERIALS AND METHODS

Cell growth and culture conditions

We used the budding yeast GFP fusion library developed
by Huh and colleagues (15). The haploid parent yeast strain
was ATCC 201388: MATahis3D1leu2D0met15D0ura3D0.
This strain is called wild-type (WT) throughout the manu-
script. Cells were cultured in minimal SD medium (MP
Biomedicals) supplemented with amino acids His, Leu,
Ura and Met. Cells were grown at 30�C. Cells were
cultured to stationary phase for 3 days and then diluted
in fresh medium and allowed to grow overnight in triplicate
cultures. Log-phase cultures were incubated in growth
medium with or without 0.02% MMS for 3 h. Details of
plate preparation for High Content Imaging are presented
in the Supplementary Information. For the initial purposes
of identifying a better fixation method, either one of two
protocols adapted from previous studies was followed
(18,19) (Supplementary Information, Supplementary
Figures S1–S7). For all subsequent experiments, the
second fixation method (called Fix 2) was followed, as it
caused lesser loss of GFP fluorescence and also did not
introduce any additional autofluorescence (Supplementary
Figures S3–S5). Plates for the screen were prepared in trip-
licate on a Tecan liquid handling robot (Männedorf,
Switzerland) running on EVOware software.

Cell processing for flow cytometry and fluorescence
microscopy

Cells were treated with 1 mg/ml 40,6-diamidino-2-phenyl-
indole (DAPI) and 2.5mg/ml Concanavalin A-Alexa647
(both from Invitrogen Life Technologies) for 30min to
stain DNA and the cell-wall, respectively. Cells used for
flow cytometry were resuspended in phosphate buffered
saline, whereas cells used for imaging were mounted on
concanavalin A-coated 96-well plates to allow adhesion of
the cells onto the bottom of the well. Excess cells were

washed off and the remaining cells were mounted in
30% glycerol in phosphate buffered saline. Samples were
prepared in triplicate for both control untreated and
MMS-treated samples.

Flow cytometry and fluorescence microscopy

Flow cytometry was performed on an Accuri C6 Flow
Cytometer (Accuri Cytometers Inc., Ann Arbor, MI),
unless otherwise mentioned. Imaging was performed on
a Cellomics Arrayscan VTi (Thermo Fisher Scientific,
Pittsburgh, PA), using the XF93 filter to image GFP,
DAPI and Alexa 647 fluorescence. A 40� 0.75 Numerical
aperture (N.A.) air objective was used for imaging. High-
resolution imaging was performed on an Observer Z1
microscope (Carl Zeiss, Jena, Germany) with a 100� 1.4
N.A. oil immersion objective.

Image analysis

Image analysis was performed using MATLAB
(MathWorks Inc., Natick, MA) using custom-written
routines for the detection of cellular boundaries from
images of the cell-wall stained with Alexa 647 conjugated
Concanavalin A. Clusters of cells were eliminated from
calculations because nuclear versus cytoplasmic localiza-
tions could not be correctly computed for these. DAPI-
stained images of DNA were used for computing nuclear
positions by thresholding out the nuclei after elimination
of cells, which showed uniform DAPI staining by setting
cutoff conditions of intensity and area. Masks of nuclei
thus obtained were used as a mask on the GFP image to
compute GFP fluorescence levels in the nucleus. The rest
of the cell was treated as cytoplasm, enabling the compu-
tation of nuclear to cytoplasmic ratios. In our approach,
the mean GFP intensities are evaluated in the whole cell,
nuclear and cytoplasmic masks. This is distinct from a
previous work that used an expanded nuclear mask to
evaluate cytoplasmic fluorescence (20). All raw images,
data analysis programs and single cell level files associated
with this study can be accessed at: http://yeastgfpscreen.
mit.edu/.

Data analysis

Experiments were performed in triplicate and the mean of
each replicate was calculated. The WT control was used to
estimate the autofluorescence level, which was subtracted
from all the measured strains in that experiment. WT
controls were present in every plate. We found that for
many low-expressing strains when the measured intensity
is close to autofluorescence, there can be spuriously high
estimates of fold-changes. Such strains with fluorescence
levels close to autofluorescence in the control samples
were retained in the analysis because the expression of a
protein may be turned on by MMS treatment. To avoid
spuriously high fold-changes, we added a constant value, c
(equal to the width of the autofluorescence histogram), to
every measured value. Although this leads us to underesti-
mate the fold-changes, this ensures that only substantial
changes are scored as true responders. Thus, fold-change
for an experimental strain is calculated as, f= [IMMS �

(IWT � c)]/[IControl � (IWT � c)], where I denotes mean
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intensity from triplicate samples, and the subscripts
denote the conditions and strains. The autofluorescence
estimated from the WT strain [as also done in a
previous study (21)] is only a ballpark value, and there
can be a strain-to-strain variability of true autofluo-
rescence (16). This approach ensures that changes in
expression due solely to differences in autofluorescence
are not scored as responders. However, because
experiments are performed in triplicate, statistical
confidence can be attributed even to relatively small
changes when they pass the thresholds used. The individ-
ual means, obtained from the three experiments,
were compared by Student’s t-tests at P� 0.05 and
f� 1.5 (for induced proteins) or f� 0.75 (for repressed
proteins). For nuclear-to-cytoplasmic ratio (NCR)
changes by t-tests, P� 0.05 and I�NCRI� 0.1 were
used. �NCR=NCRControl�NCRMMS, and a negative
sign indicates nuclear enrichment, whereas a positive
sign indicates cytoplasmic enrichment. Typically
hundreds to thousands of cells were measured for each
strain. If for any particular well the cell count was �50,
that well was eliminated from all calculations.
Protein intensity distributions over cells are often non-

Gaussian. However, the means arising from repeated
measurements of such distributions are normally dis-
tributed, and thus Student’s t-test can be used for
comparing the means obtained from such measurements.
This assumption of normality does not hold true when
comparing the underlying distributions of protein inten-
sities over cells, in which case a non-parametric test is
preferable. We used the Kolmogorov–Smirnov (KS) test
for determining responders in terms of levels and localiza-
tion. A strain was considered to be a responder in terms of
abundance if KSstat� 0.3 for at least two of the three rep-
licates and f� 1.5 (for induced proteins) or f� 0.75 (for
repressed proteins). KSstat� 0.3 for at least two of the
three replicates was also used for NCR changes. For KS
tests replicates were compared pairwise. For protein levels,
no AF correction is performed it is not possible to deter-
mine AF for each cell. We also kept track of fold changes
and subcellular localization as scored by Huh et al. (15) so
that true translocations and NCR changes due to abun-
dance changes can be distinguished.
The Cytoscape program was used for all network

analyses (22,23). GO analyses were performed using the
ClueGO plugin in Cytoscape (24). The YEASTRACT
website was used for TF analyses (http://www.yeastract.
com/) (25,26). Further details of statistical methods used
can be found in the Supplementary Information File.

RESULTS

Sample preparation and analyses

We set out to monitor expression and localization changes
for 4159 GFP-tagged proteins in the same number of
S. cerevisiae strains after 3 h of exposure to 0.02%
MMS, a relatively non-toxic dose (4,8). In the parental
strain, cells showed an expected S-phase arrest and were
largely viable at this time point, although the culture
showed a �40% decrease in colony forming ability

(Supplementary Figure S8–S10). To address a specific
timepoint across large numbers of samples using multi-
spectral fluorescence imaging of distinct cellular compart-
ments, we developed a fixation strategy to minimize the
typical attenuation of GFP signal resulting from standard
yeast fixation protocols. This was particularly important
to detect changes in expression levels for low copy-number
proteins that are otherwise obscured by cellular autofluor-
escence. In a previous study of the 4159 strains expressing
the GFP-tagged proteins, only 2700 proteins could be
reliably detected using live-cell flow cytometry (16), and
of these, the vast majority (85%) of GFP levels resided at
the low-end of the expression range (16) (Supplementary
Figure S1). We therefore developed an optimized
aldehyde-based fixation protocol that minimized intensity
loss and, importantly, exhibited a linear relation between
fixed and live cell intensities across the entire range of
GFP expression so that relative changes upon MMS
exposure could be accurately measured (Supplementary
Figures S2–S7). Strains were grown in minimal media in
triplicate using a robotic liquid handler (see ‘Materials and
Methods’ section for details). The importance of replicate
measurements for generating greater statistical confidence
in results from high-throughput screens has previously
been emphasized (27), especially for detecting small but
biologically significant responses.

Early log-phase cultures were incubated in control
medium or medium containing 0.02% MMS for 3 h.
Cell were then fixed, and nuclei and cell-walls were
stained. (Figure 1A). Custom-written image analysis
programs were used to quantify GFP fluorescence in seg-
mented cytoplasmic and nuclear compartments (Figure
1B, ‘Materials and Methods’ section). The computed
intensities from fixed cells in this work compared well
with previous studies on live cells (Supplementary
Figures S11 and S12). Finally, statistical analyses were
performed to identify ‘responders’ defined as strains for
which protein levels were significantly induced or re-
pressed, as well as strains for which proteins were
enriched in the nucleus or cytoplasm as quantified by
their NCR. Significant differences in mean expression or
NCR were determined using a Student’s t-test with
significance value of P < 0.05 (Figure 1C). However,
because the comparison of mean values alone does not
reveal differences in the underlying protein distributions
themselves, the KS test was also employed (28–31). The
KS statistic has been shown to be significantly more
sensitive in detecting differences in population responses
compared with the comparison of mean responses (29).
The KS statistic represents the maximum distance
between two cumulative histograms, where values equal
to or greater than 0.2 are suggested to denote biological
significance in the context of HCS (28,29). In addition to
t-tests comparing mean responses over replicates, we used
the KS statistic to identify responders in terms of abun-
dance or NCR changes (Figure 1C and D; ‘Materials and
Methods’ section). ‘Hit-lists’ for induced and repressed
proteins, as well as nucleus- or cytoplasm-enriched
proteins, are provided in Supplementary Table S1 as
measured by both t-tests and KS tests, with a summary
of some major responders presented in Table 1. Also listed
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is the subcellular localization of each protein, as previ-
ously determined (15), and its function as listed in the
Saccharomyces Genome Database. Overall, 415 induced
proteins, 174 repressed proteins, 133 nuclear-enriched pro-
teins and 10 cytoplasm-enriched proteins were identified.
Supplementary Table S2 documents intensity and NCR
measurements for every strain measured.

Induced proteins and their interaction networks represent
a wide range of cellular processes including DNA repair,
proteolysis, chromatin remodeling and ribosome biogenesis

GO functional enrichment analysis for the 415 induced
proteins using the ClueGO plugin in Cytoscape (22–24)
revealed an expected enrichment of GO-terms related to
DNA damage response, DNA repair and cellular stress, as
well as other GO-terms related to cellular metabolism,
protein degradation, chromatin remodeling, RNA poly-
merase II transcription, mRNA processing and ribosome
biogenesis (Supplementary Table S3 and Figure 2A).
Although the absolute number of genes associated with
some GO terms can be low, they may still be scored as
significant when they represent a large fraction of the total

genes associated with that term. For example, 8/14 (57%)
proteins associated with the ubiquitin-independent
proteasomal machinery, and 5/7 (71%) proteins
associated with trehalose metabolism are induced by
MMS treatment (Figure 2A). The first indication that
proteasome function is enhanced and that trehalose me-
tabolism is affected upon/by MMS exposure came from
transcriptional profiling studies (6,7). Subsequent work
has now shown that proteasome-mediated responses are
directly involved in DNA repair (32), and that trehalose
protects cells against different DNA damaging agents
(33–35). Thus, although these and the other GO-
enriched processes may initially seem disparate, taken
together they represent a coordinated response to
cellular insult by MMS.
Mapping responders onto a previously compiled yeast

interactome (36) enabled identification of functional
networks of induced proteins. The full interactome anno-
tates physical, genetic and TF interactions. The smaller
network that resulted from mapping MMS-induced
proteins onto the full interactome had higher connectivity,
higher clustering coefficient, and a greater ‘Large
Connected Component’ (LCC) than random networks of

A

C D

B

Figure 1. Overview of sample preparation and analysis. Plates are prepared in triplicate for control and MMS-treated samples (0.02%, 3 h). (A)
Samples are fixed and stained with DAPI to mark nuclei and Alexa-647-conjugated Concanavalin A to mark cell walls. Automated imaging is
performed on a Cellomics HCSTM fluorescence microscope. A typical raw image is shown for the Rnr4-GFP strain. Scalebar 5mm. (B) Schematic of
image analysis protocol. Raw cell-wall and DNA fluorescence images are used to segment cellular and nuclear boundaries. Mean GFP pixel intensity
is evaluated in the full cellular image mask to determine relative protein abundance. The ratio of intensities between the nuclear and cytoplasmic
masks is used to determine the NCR on a cell-by-cell basis. (C) Mean response of Rnr4-GFP to DNA damage in terms of both levels and
localization. Protein is induced as measure by autofluorescence (AF)-corrected levels and the NCR decreases significantly indicating that the
Rnr4-GFP translocates to the cytoplasm on damage. Error bars are standard deviations of the means from the three replicates. P-values are
determined using a Student’s t-test. (D) Mean response over cells does not account for the distinct distributions over cell populations. Thus, the
same sample as in (C) is evaluated using the KS statistic. The KS statistic is a measure of the maximum distance between the normalized cumulative
distribution histograms (indicated by the black double-headed arrows). The KS statistic is independently evaluated for each sample pair. Again, a
significantly higher expression and cytoplasmic translocation of Rnr4-GFP is seen with DNA damage by MMS. In all instances, a KS-statistic cutoff
of 0.3 is used. At least 200 cells are measured for each curve here.
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similar size (Supplementary Figure S13). These general
features were previously observed in network analyses of
toxicity modulating genes in genomic phenotyping studies
(37). Although the protein–protein and genetic interaction
maps revealed a number of clusters that were expected
from the GO functional enrichment analysis (namely,
DNA damage response, ribosome biogenesis, chromatin
remodeling, RNAPII transcription and proteolysis), such
mapping also highlighted additional functions that were
not represented in the GO analysis (Figure 2B). For
example, all four proteins known to be associated with
the cohesin complex (38) are induced. This group was
not represented in the GO analysis because the number
of proteins in the cohesin complex is so small that it falls
below the threshold used for filtering GO terms. It turns
out that previous studies also demonstrated a role for the
cohesin complex in DNA damage response beyond its
conventional role in sister-chromatid cohesion (39–41).
We also identified a distinct cluster of heat shock
proteins (Figure 2B), consistent with recent studies that
demonstrate links between heat shock and DNA damage
responses (42,43). Finally, a group of proteins involved in
mRNA processing was present among the subnetworks of
induced proteins. Interestingly, a recent genomic
phenotyping study involving both essential and non-essen-
tial genes also highlighted the importance of mRNA pro-
cessing and splicing proteins in governing sensitivity to the
toxic effects of MMS (8). MMS also induces damage to
proteins, RNA and other cellular components, in addition
to DNA. The modulation of a large number of RNA pro-
cessing and ribosomal genes may also be signaled from
protein and RNA damage in conjunction with the direct
DNA damage response.

Partitioning of biological function among induced proteins
according to number of upstream TFs

In addition to physical and genetic interactions, we
examined TF interactions by mapping induced proteins
onto the global TF network constructed from the

YEASTRACT database (25,26,36), thereby identifying
eight TFs that are themselves induced (Yap1, Cst6,
Cin5, Dot6, Xbp1, Pho2, Dal81, War1—circled in green
in Figure 3A); these eight TFs collectively have the poten-
tial to regulate the expression of 54% of the induced
proteins (Figure 3A). Deletion mutants for five of the
eight TFs (Yap1, Cst6, Cin5, Dot6, Dal81—see red text
in Figure 3A) showed MMS sensitivity in the genomic
phenotyping assay (5), and Xbp1 is known to be a
stress-responsive TF. In general, 11% of all possible
targets for these eight TFs are represented among the
induced proteins. Although this is higher than the 6.5%
that would be expected for random networks of the same
size, it is still a relatively small fraction of all possible
targets. Although this may be due in part to the fact
that the GFP library represents only 70% of the yeast
genome, it more likely indicates a tendency for cells to
require combinations of TFs to modulate gene expression
in response to environmental challenges, rather than
allowing promiscuous non-specific upregulation of all
possible targets for a single TF. Although a number of
the induced proteins are targeted by more than one of
the eight TFs (i.e. have an indegree >1, Figure 3A),
these eight MMS-induced TFs by no means represent all
of the TFs that are potentially capable of regulating the
induced proteins.

To obtain a comprehensive picture of all TFs that might
govern the expression of induced proteins, irrespective of
whether the TFs themselves were induced, we used the
updated YEASTRACT database that documents all
known major TF interactions in the yeast genome
(25,26). This analysis identified 59 TFs, each of which po-
tentially governs the expression of at least 5% of the
induced proteins. Most induced genes were governed by
more than one of the 59 TFs, with four as the median
value of node in-degree, which represents the number
of TFs governing the expression of a target protein
(Figure 3B).

Table 1. Some major responders in all investigated categories

Induced proteins Hug1, Rnr3, Rps11a, Trf4, Tps1, Ssa4, Rnr4, Snu71, YGR219W, Hsp31, Hsp12, Yhb1, Oye2, Hxk1, Pdc5,
Hsp26, Lap4, YHR087W, Cep3, Ddr48

Hug1, Rnr3, Rps11a, Trf4, Tps1, Ssa4, Faf1, Rnr4, Snu71, Hsp31, Hsp12, Yhb1, Oye2, Hxk1, Hsp26, Lap4,
Atc1, YHR087W, Cep3, Ddr48

Repressed proteins YDL089W, Erg5, Pho3, Far1, Icl2, Fmp48, YKR077W, YOL047C, Cyc2, Ade5,7, Ecm2, Fmp33, YMR114C,
Cak1, Ast1, Ymc2, YDR065W, Tna1, YMR166C, Pex27

YBR235W, Erg11, YDL089W, Erg5, Pho3, Far1, Icl2, Fmp48, YOL047C, Cyc2, YKR077W, Ade5,7, Ecm2,
Cak1, Tna1, YMR166C, Ast1, YDR065W, Aah1, Pex27

Nucleus-enriched proteins Rfa2, Htb1, Tkl1, Rfa3, Npl3, Pob3, Rsc9, Nhp6a, Bdf1, Ncl1, Rsc8, Nop10, Top2, Puf6, Taf14, Aro4,
Rpb7, Sth1, Pds5, Acs2

Nab2, Rfa2, Rsc9, Top2, Rfa3, Pob3, Pop5, Pds5, Rpb7, Taf6, Ies6, Snu71, Npl6, Rlr1, Sth1, Taf14,
YLR108C, Sfh1, Spt7, Abf1

Cytoplasm-enriched proteins Rpt5, Wtm1, Rnr4
Tdh3, Wtm1, Rnr4, Wtm2, Nup2, Aah1, Gsy2, Rpt5, YLR003C, YDR357C

The top 20 responders (where applicable) in the induced, repressed, nucleus- and cytoplasm-enriched categories are shown. In the blue rows
are significant responders by t-tests, and in the pink rows are the significant responders by KS tests. For the induced and repressed
categories, the responders are arranged according to maximal fold change. For the nucleus- or cytoplasm-enriched categories, responders are
arranged by maximal NCR change for t-tests and by maximal KS statistic for KS tests. For the complete list of responders, see Supplementary
Table S1.
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To test whether the induced protein nodes that can be
governed by a large number of TFs serve distinct biolo-
gical functions compared with more isolated nodes, we
filtered out genes that can be targeted by four or fewer
of the 59 putative TFs (representing proteins that are
regulated by relatively few TFs) from genes that can be
targeted by more than four TFs (representing proteins
that are regulated by many TFs). GO analysis for these
two sets of MMS-induced proteins revealed a clear differ-
ence in functional enrichment, with P-values as low as or
lower than those for the combined set of all induced
proteins shown in Figure 2A (Figure 3C; Supplementary
Table S4). Interestingly, induced proteins associated pri-
marily with metabolic processes were found to be targeted
by five or more TFs, whereas DNA damage response and
chromatin remodeling proteins represent the more isolated
nodes that are targeted by four or fewer TFs. In the full
transcription network, the median value for indegree is
also four, which is similar to the subset of MMS-
induced proteins (Supplementary Figure S14). Not sur-
prisingly, when genes are partitioned as mentioned previ-
ously in the full network, DNA-related processes do not
dominate the more isolated nodes because all cellular

functions are now represented. However, metabolic
processes continue to be over-represented among the
nodes with five or more upstream TFs, indicating that
this may be a generic feature of the transcriptional
network (Supplementary Figure S14).

Enrichment of lipid biosynthesis and membrane trafficking
processes among repressed proteins and networks

In addition to induced genes, transcriptional profiling
studies have revealed many genes whose transcripts are
downregulated by MMS (6,7,9). At the protein level,
one might expect fewer repression responders due to the
longer half-lives of proteins compared with mRNAs,
except in the case of targeted protein degradation. In
other words, even for a gene that is transcriptionally
silenced, its protein products may remain in the cell for
some time, particularly under conditions of inhibited
growth. In our screen, 174 repressed proteins were
identified, even with a lower cut-off threshold of 25% re-
duction compared with the 415-induced proteins that
showed >50% induction. P-values for GO-function
enrichment were generally larger for repressed versus
induced proteins (Supplementary Table S3 and

A B

Figure 2. Functional enrichment and protein–protein interactions of induced proteins. Proteins that showed fold change, f� 1.5 and passed the
statistical criteria were used. (A) The top 15 functional categories as determined by a GO analysis using Cytoscape are shown. Negative logarithms to
the base 10 of the P-values for the GO terms are plotted. Numbers in parentheses show the percentage of genes associated with a GO term, which are
found to be induced. The dashed line shows the position of P=0.05 in all figures. (B) Induced proteins are projected onto a yeast interactome. Blue
lines denote physical protein–protein interactions, and red lines denote genetic interactions. The weakest edges have been removed to parse out
isolated modules. Isolated single nodes are not shown. The text on the network is color coded to represent the broad cellular processes represented by
the corresponding nodes. Gray nodes do not conform to these categories but are still not isolated single nodes.
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Figure 4A), and the network of repressed proteins had
lower connectivity than the induced proteins as
measured by their connectivity that was comparable
with random networks of the same size (Supplementary
Figure S15). However, cellular membrane organization,
secretion, trafficking and peroxisome organization were
significantly over-represented among the repressed
proteins (Figure 4A and B). Also, the single repressed
TF, Phd1, is known to control a number of sterol biosyn-
thesis genes known to be important for lipid and
membrane biosynthesis (Figure 4C). Finally, several
proteins involved in chromatin remodeling and regulation
of the mitotic cell-cycle were also part of the network of
repressed proteins (Figure 4B), even though none of these
processes was significantly enriched in the GO analysis
(Figure 4A).
We used the YEASTRACT database to identify 52 TFs

that can target the expression of 5% or more of the

repressed proteins. Most of these (47/52) are found
among the TFs that target genes for the induced
proteins, presumably because some of these TFs (e.g.
Yap1, Sfp1 and Ste12) have high numbers of targets in
the genome (Figure 4D). However, although we observed
highly significant enrichment of the targets of these TFs
for the induced proteins (P=1.8� 10�18 overall, Figure
4G), the enrichment was not nearly so high
(P=9.4� 10�4 overall, Figure 4G) for repressed
proteins (Figure 4E–G). The number of targets for each
TF in both lists was divided by the number of targets
expected by random chance from the whole genome, to
assess specific enrichment of the targets for a given TF in
each list. This measures the normalized occurrence for
each TF (thus a normalized occurrence of 1.5 indicates
that 50% more targets are present in the induced or re-
pressed list when compared with random lists of the same
size that exhibit a mean normalized occurrence of 1). This

A

B

C

Figure 3. TF network of induced proteins. (A) The TF network filtered from the yeast interactome (36) with induced proteins projected onto it.
Arrows point away from TFs towards their targets, and the size of nodes relate to their outdegree or number of arrows pointing away from a node.
Thus, larger nodes are upstream TFs that target the expression of many of the induced proteins. The eight largest nodes are correspondingly
indicated by large font and are circled in green. Deletion mutants of the five TFs marked with red font showed sensitivity in the genomic
phenotyping study (5). The color of a node relates to indegree, representing the number of incoming arrows at a node and therefore indicating
the number of TFs that target the node. Warmer colored nodes are targeted by multiple TFs. Isolated nodes are not shown. (B) Fifty-nine major
TFs, each of which target at least 5% of the induced proteins, were identified. Their targets mapped onto the TF network of induced proteins. As
before, node indegree indicates the number of TFs controlling the expression of an induced protein, with node indegree distribution shown here. The
black dashed line indicates the median of the distribution at four. (C) GO analyses were performed separately on the 234 proteins with indegree less
than or equal to four, representing the relatively sparser nodes and the 176 proteins with indegree greater than four representing targets controlled by
many TFs. The first group was enriched in DNA-related processes, whereas the second show a clear enrichment for metabolic processes. The top 15
GO categories are shown.
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analysis revealed the targets of TFs for all three major
stress-responsive pathways in yeast [genes with heat
shock elements, stress response elements or AP-1 respon-
sive elements (6,9,44–46)] to be particularly enriched
among the induced proteins. TFs Yap1, Msn2, Msn4,
Rpn4, Hsf1, Met4 all exhibit a high normalized occur-
rence among the induced proteins (Figure 4E, dotted
circle). There were other TFs that showed yet higher
normalized occurrence, but the absolute number of
targets for these TFs in the genome was low, and in
effect, they targeted only several of the induced genes.

Signatures of translational regulation of induced proteins

Cells use both transcription and translation to regulate
gene expression. Transcriptional responses to DNA

damaging agents are well documented (6,9), and recent
studies have unveiled a translational component to such
responses (12,13). The study by Begley et al. (2007) com-
putationally identified a set of 425 genes with a skewed
codon usage pattern such that their translation would be
promoted by the Trm9 tRNA methyltransferase that cata-
lyzes specific tRNA modifications that change codon-anti-
codon affinity. Such modifications affect the efficiency of
translation for a subset of transcripts rich in specific
codons, especially under conditions of DNA damage
(13). Ribosomal, metabolism and stress response genes
were enriched in this group of 425 potential preferentially
translated (PPT) genes. However, belonging to the PPT
group does not ensure induction under conditions of
damage, for transcriptional components can offset trans-
lational responses. Despite this, we find 57 PPT proteins

D E F G

A B C

Figure 4. Functional enrichment, protein interactions of the repressed proteins and comparison of TF interactions with induction responders.
Proteins that showed fold change, f� 0.75 and passed the statistical criteria were used. (A) Top 15 GO categories; (B) Protein–protein interaction
networks; and (C) TF interaction networks for the repressed protein responders. The weakest links by edge weight have not been removed in the
interaction network in (B), otherwise all representations are similar to Figure 2. Numbers in parentheses illustrate the percentage of genes associated
with a GO term. (D) Fifty-two TFs, each of which controls the expression of at least 5% of the repressed proteins, were identified. Major TFs that
target the repressed proteins are largely similar to those that target the induced proteins (47/52 TFs). The percentages of targets for TFs in the
induction and repression responder lists are plotted against the percentage of targets from the whole genome. Each dot represents a TF, with the
solid black line illustrating the 1:1 line expected by random chance. The percentage of targets in the responder lists are divided by the percentage
targets in the whole genome for these TFs factors for the (E) Induced and (F) Repressed proteins. This ‘normalized occurrence’ should be one in the
absence of specific enrichment or depletion of the targets of a TF in a list of genes. For comparison, we generated five random networks of the same
size as the Induced or Repressed protein lists and analyzed them similarly for targets of the chosen major TFs. The means and standard deviations of
these random samples are plotted in black. For many TFs, the normalized occurrence in Inductions lies beyond the standard deviation of the
normalized occurrence of the random samples. TFs with higher percentage of targets among the induced or repressed proteins are on the right. The
dashed circle marks TFs that have both high normalized occurrence and a large number of targets in the genome (Yap1, Met4, Rpn4, Msn2, Msn4,
Hsf1 and Pdr3). Many of these are stress-responsive TFs. (G) The mean and standard deviation of normalized occurrence from (E) and (F) for all
TFs are plotted. The dashed line shows the expected value for random networks.
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among the MMS-induced proteins, approximately twice
the number that is expected by random chance
(Supplementary Figure S16A). These 57 proteins form a
close network with several RP genes; GO analysis reveals
enrichment of processes related to carbohydrate and tre-
halose metabolism, ribosome biogenesis, oxidative stress
and deoxyribonucleotide production (Supplementary
Figure S16B and C).

Nucleus and cytoplasm enriched proteins and networks

The list of proteins that become enriched in the nucleus in
response to MMS includes two categories: (i) nuclear
proteins whose relative expression increases in response
to MMS and (ii) proteins that translocate from the cyto-
plasm to the nucleus. Although not all induced nuclear
proteins are represented in this list, instances where the
NCR increases simply reflects the induction of a protein
were retained because they captured subtle expression in-
creases in the nucleus not represented in the total list of
induced proteins (Supplementary Table S1). For example,
Ubi4, yeast ubiquitin, is scored as both an induction and a
nuclear enrichment responder, but Rxt2, a subunit of the
histone deacetylase Rpd3 complex implicated in the acti-
vation of DNA damage induced genes (47) is found only
in the nuclear enrichment list. Remarkably, GO analysis
of this relatively small list of proteins (133) produced
extraordinarily high-significance values for functional en-
richments, and perhaps not surprisingly, most of the
nuclear-enriched functional categories pertained to DNA
and RNAPII-related processes, with a notable absence of
the metabolic, proteasomal and ribosomal processes seen
in the total list of inductions. P-values for functional en-
richment (Supplementary Table S3 and Figure 5A) were
substantially lower even than those for the induced
proteins as a whole (Figure 2A), and the network of
nuclear-enriched proteins exhibited connectivity far
greater than what would be expected for similarly sized
random networks, reflecting the close functional inter-
actions among these proteins (Supplementary Figure
S17). For several GO terms associated with the nuclear-
enriched proteins, >25% of all associated proteins were
represented (Figure 5A). The physical and genetic protein
interaction networks were dominated by components of
chromatin remodeling, RNAP II-dependent transcription,
plus mRNA and snoRNA processing proteins.
Components of the cohesin complex were also present
among the nuclear-enriched proteins.
TF network analysis identified three nuclear-enriched

TFs (Ste12, Abf1, Dot6) that regulate a number of
proteins in the list of nuclear-enriched proteins.
Although other TFs such as Ixr1 previously implicated
in the DNA damage response (48,49) were not part of
this network, they were present in the list of nuclear en-
richments (Supplementary Table S1). These are instances
of subtle inductions that were only seen in the nucleus but
missed in the total list of induced proteins. Conversely,
two proteins that are a part of the induction list and
known to be nuclear-enriched upon damage (Ubc13,
Yap1) were not found in this study. Although Yap1
with a KS-statistic value of 0.28 lay just below the cutoff

of 0.3 for nuclear enrichment, it should be noted that in
previous work, more than a 10-fold higher MMS dose was
used to induce its nuclear translocation, compared with
the present study (50). Thus, nuclear enrichment of a
protein can be dose-dependent.

Evidence from several distinct lines of work have
demonstrated connections between chromatin remodeling
and the DNA damage response in eukaryotes
(4,6,7,9,47,51–53). Our data (Figures 2B and 5B) also
indicate extensive changes in proteins for the remodeling
of chromatin and for nucleosome disassembly that are
mobilized on exposure to MMS, presumably to allow
repair machinery access to sites of DNA lesions.

Surprisingly, few cytoplasmic enrichments (10 proteins)
were identified in our screen (Supplementary Table S1).
This may in part be due to the fact that the cytoplasmic
volume is significantly larger than the nuclear volume,
rendering it difficult to detect translocation of low-ex-
pressed proteins. However, even amongst this small
number of proteins, interesting features stand out. For
example, we find that the Wtm1 and Wtm2 proteins trans-
locate out of the nucleus into the cytoplasm in response to
MMS, as does Rnr4 (Figure 5D and E). Wtm proteins are
involved in nuclear anchoring of the RNR small-subunits
(54–57), with one study previously implicating the Wtm
proteins in the control of RNR transcription (58). It
appears that controlling the subcellular localization of
the Wtm proteins may provide an additional mode of
RNR regulation.

RP response to MMS is dose dependent

A surprising GO category for induced proteins was
ribosome biogenesis and components of the ribosomal
machinery because previous studies from several groups
have shown that ribosomal genes are generally transcrip-
tionally repressed under conditions of DNA damage
(6,7,9,10). The regulation of ribosomal genes is thought
to be primarily at the level of transcription in yeast (59),
but almost 90% of all RP genes are also found in the list
of PPT genes (13), suggesting cells use both transcription
and translation to tune ribosome numbers (also see
Supplementary Figure S16). A recent study similar to
ours (discussed in more detail later in the text) also
identified this group among induced proteins (20). To in-
vestigate this apparent discrepancy, we examined two such
induced RPs (Rpl7a-GFP and Rps22a-GFP) using live-
cell flow cytometry. We found that at moderate doses of
MMS (0.02%, 2 h), both proteins were induced, whereas
at higher MMS dose (0.1%, 2 h), there was a small but
significant repression of the proteins (Figure 6A). The 2-h
time-point was chosen because it was intermediate
between the 3-h time-point at which the present screen is
performed, and the 1-h time-point of the first transcrip-
tional profiling study that revealed transcriptional repres-
sion of the ribosomal genes at 0.1% MMS (7). This
suggests, not surprisingly, that cellular response differs
according to the extent of damage, presumably depending
on whether the cell can repair damage and proceed
through the cell-cycle, or whether growth halts com-
pletely. A similar pattern of induction was seen in
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Tandem Affinity Purification (TAP)-tagged strains of
Rpl7a and Rps22a (Supplementary Figure S18). Because
ribosome biogenesis is intimately linked with cell growth,
we investigated how cell growth characteristics differ at
the two MMS doses.

Using both liquid and agar assays, we found that at
0.02%, MMS cells proceed through the cell-cycle, albeit
slowly, whereas at 0.1%, MMS cell growth is abrogated
entirely (Figure 6B and C, Supplementary Figure S19).
Conditions of general cellular stress inhibit growth, and
at the same time, ribosome biogenesis in a Target of
Rapamycin (TOR)-dependent manner (17,59). The TOR
pathway has also been shown to control DNA damage
responses by controlling dNTP production (60), and the
TOR pathway effectors Sch9 and Sfp1 are known to be
involved in both ribosome biogenesis and stress responses
(17,61,62). Sfp1 is a nuclear-localized TF that regulates
RP expression and translocates to the cytoplasm in
response to various stresses including DNA damage by
MMS (0.1%), thus turning off RP gene expression (17).
Sfp1 itself is also induced by MMS damage, which may
appear to conflict with the aim of shutting down ribosome

biogenesis (63). We therefore investigated the levels and
localization of Sfp1-GFP in response to moderate and
high doses of MMS. At both doses, Sfp1-GFP was
induced as assessed by live-cell flow cytometry (Figure
6D). Indeed, although Sfp1-GFP showed only a 27%
increase in the original screen, and was not scored as
induced (only proteins with >50% increase in expression
were considered to be responders), this small increase was
significant (P=0.003). Expression of Sfp1-GFP in the
absence of damage is low, making estimations of fold
change difficult. Our conservative estimates of fold
change in the global screen are systematically
underestimated when the fluorescence signal is close to
cellular autofluorescence (see ‘Materials and Methods’
section), causing Sfp1-GFP to be absent from the list of
induced proteins. However, when observed with higher
resolution microscopy, at the moderate MMS dose
(0.02%), Sfp1-GFP was induced and clearly nuclear,
thus being available to upregulate the expression of RP
genes. At the higher dose (0.1% MMS), Sfp1-GFP, al-
though still present at induced levels, became cytoplasmic,
concomitant with the repression of ribosomal genes. This

A

C

D

B

E

Figure 5. Functional enrichment and protein–protein and TF interactions of the nuclear or cytoplasmic enrichment responders. (A) The nuclear
enriched protein list exhibits very significant enrichment of DNA-related terms, despite being smaller in size than both induction and repression
responder lists. Top 15 GO terms are shown. The numbers in parentheses show the percentage of genes associated with a GO term. (B) The protein–
protein interaction networks too show functionally clustered modules. The weakest links have been removed like the induced proteins. In addition to
DNA damage responsive proteins, a large number of chromatin remodelers, transcription components and mRNA processing proteins make up this
network. (C) The TF network identifies two additional TFs, Ste12 and Abf1. (D) Rnr4, Wtm1, Wtm2 make a close connected network in the few
cytoplasm-enriched proteins. (E) The cytoplasmic translocation of Wtm1-GFP or Wtm2-GFP shown with high resolution 100� 1.4 N.A. images. The
cell wall is shown in red, whereas the GFP-tagged protein is shown in green. Many cells show cytoplasmic protein upon MMS treatment, whereas
some still have nuclear protein. The scalebar is 2 mm. Representations in (B), (C) and (D) are similar to Figure 2.
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provides a clear example where tuning both the abundance
and the nuclear-versus-cytoplasmic localization of a
protein can be used by cells to effect induction and repres-
sion of gene expression.

DISCUSSION

Identification of repressed proteins

The present study provides a comprehensive single-cell-
level view of an orchestrated cellular response to damage
induced by MMS. Previous studies using the yeast GFP
fusion library to interrogate protein level changes in
response to MMS, by imaging (20) or flow cytometry
(21) used a single replicate of live cells. Here, fixation of
cells was essential to ensure a specific and consistent
exposure time to the damaging agent, as well as unam-
biguous identification of the cell nucleus and cell-wall
without expression of an additional fluorescent protein
as a nuclear marker. In previous studies (20,21), no
proteins met the cutoff set for downregulation, even

though many genes are known to be transcriptionally re-
pressed in response to MMS (6,7,9). As discussed, protein
level repressions may manifest as small changes at early
time points after damage exposure, and hence replicate
measurements may be necessary to identify them
reliably. Similar doses and time points were used in all
these studies: Lee et al. used 0.02% MMS for 4 h; Tkach
et al. used 0.03% MMS for 2 h, whereas we use 0.02%
MMS for 3 h. Here, triplicate measurements enabled the
identification of a number of proteins whose expressions
are reduced on DNA damage. Processes of membrane-
trafficking, lipid synthesis and peroxisome function were
enriched among the repressed proteins. In breast cancer
models, mutations in the critical tumor suppressor protein
p53 have been associated with expression of sterol biosyn-
thesis genes (64). In mouse liver, activation of the protein
Nrf2 by oxidative stress has been shown to be associated
with downregulation of lipid biosynthesis, to allow the
scavenging of reactive oxygen species (ROS) by reduced
nicotinamide adenine dinucleotide phosphate (NADPH)
that functions both in lipid metabolism pathways and in

A
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Figure 6. Differential response of RPs to different levels of MMS damage. The response of two candidate induced RPs (Rpl7a-GFP, Rps22a-GFP)
to MMS damage was investigated with live-cell flow cytometry, at 2 h. (A) At 0.02% MMS, the RPs are induced, whereas at the higher dose (0.1%),
they are repressed. (B) Parental BY4741 cells were subjected to similar treatments, and culture densities (events/ml) were determined by flow
cytometry (optical density measurements are expected to be not accurate at these early time points, as MMS arrest can cause an increase in cell-
size). For three early log-phase cultures, initial densities were measured, and a third of each culture was subjected to 0, 0.02%, 0.1% MMS treatment.
All densities at 2 h are normalized by the density of the initial cultures. 0.02% MMS significantly retards growth, but does not abrogate it altogether,
whereas there is almost no growth in the presence of 0.1% MMS. (C) In a different assay from liquid cultures, even for cells growing on agar-pads
with or without MMS, there is slow growth with 0.02% MMS, whereas no growth is seen at 0.1% MMS. Images of the same fields at 0 and 15 h are
shown. (D) The GFP-tagged TF Sfp1, which controls RP gene expression, is induced at both doses of MMS as determined by live-cell flow
cytometry. AF-corrected intensities are plotted; however, the expression of the protein is low in the absence of damage, making estimations of
fold change difficult. (E) At 0.02% MMS, the protein is still nuclear, whereas at 0.1% MMS, it is clearly cytoplasmic, concomitant with the
induction and repression of the RP proteins. Live cells were imaged with a 100� oil-immersion objective, given the low expression of the protein.
Overlays of GFP and phase images are presented. The scalebar is 5 mm.
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ROS scavenging (65,66). Peroxisomes may act as a source
of ROS that affect nucleic acids, proteins and lipid, and
they are kept under tight control in yeast (67); indeed,
peroxisome proliferation causes oxidative DNA damage
in rat livers and plays a role in hepatocarcinogensis (68).
Although these findings span a number of distinct model
systems, they provide plausible explanations for the genes
repressed by MMS treatment, as seen in this study, and
indicate that these may be general features of regulation
under conditions of damage.

Comparisons with other studies

Despite the attenuation of GFP signals on fixation, the
intensities measured in fixed cells in this work compared
well with previous studies on live cells performed with
both flow cytometry and imaging methods (16,20)
(Supplementary Figures S11 and S12). Further, MMS-
induced protein groups are largely similar between this
study and that by Tkach et al. (20). In terms of protein
localization, manual annotation of protein localization in
the prior study allowed finer discrimination of subcellular
localization into organelles, but at the cost of replicate
measurements. In comparison, here, we measure broad
nuclear versus cytoplasmic localization in a fully auto-
mated manner and identify several highly nuclear-
enriched DNA-related processes, as well as abundance
changes that span a wide variety of cellular responses.
Although we lose detail in the granularity of subcellular
organelles, we detect GFP intensity automatically in the
full nuclear and cytoplasmic masks, combined with
greater statistical confidence from replicate measurements.

The number of responders identified in this study is
substantially fewer than the transcriptional profiling
studies. However, comparison with an early transcrip-
tional profiling study from our laboratory (7) reveals
that 62% of all the induced proteins are also transcrip-
tionally induced in response to MMS. In contrast, only
6.3% of the repressed proteins were found to be transcrip-
tionally repressed. Indeed, although correlations between
transcript and protein levels in unperturbed cell popula-
tions are poor (69,70), it has recently been shown that
under conditions of environmental stress, transcript in-
duction correlates well with protein induction, but tran-
script reduction produces negligible change in protein
levels (71). Protein level repression under conditions of
DNA damage presumably occurs due to targeted degrad-
ation (72) instead of transcriptional repression. Several
studies from our laboratory, including the present one,
have indicated a key link between the proteasomal ma-
chinery and response to MMS-induced damage (6,73).

TF network analysis

Extensive TF analyses identified Yap1 as a major induced
TF. Yap1 has many targets in the yeast genome, and its
role in stress responses is well-established (45,50,74). In
addition to causing direct alkylation damage, MMS can
also elicit an oxidative stress response in cells, and Yap1
was recently shown to be a major regulator of this
response (74). We also found specific enrichment of the
targets of several other major stress-responsive TFs

(Rpn4, Msn2, Msn4, Hsf1 and Met4) among the
induced proteins. Combinations of a large number of
TFs were upstream of the observed metabolic response
genes, whereas fewer TFs directly targeted genes for
DNA-related processes.
It should be borne in mind that the network analyses

performed here projects responders onto static protein–
protein, genetic and TF interaction networks. It is
thought that genetic interactions may shift on DNA
damage, whereas physical interactions remain largely un-
changed (75). TF combinations affecting a gene may also
shift on DNA damage (49), and the periodically updated
YEASTRACT database documents most known TF
interactions under various conditions from different
sources, based on both bioinformatic and experimental
data. However, under any one condition, only a subset
of the targets is likely to be active for a given TF.

DNA-related processes in nuclear-enriched proteins

Interestingly, nuclear-enriched proteins are found to form
a closely connected network, with a corresponding signifi-
cant enrichment of DNA-related processes that include
transcription, chromatin remodeling and DNA repair,
and a notable absence of proteins of the metabolic, ribo-
somal and proteolytic machinery. Thus, the list of nuclear-
enriched proteins clearly segregates the central DNA level
responses from the other cellular processes that together
orchestrate the total cellular response to MMS insult.

Differential response of RPs according to MMS dose

Finally, differing responses for several RPs were observed
depending on the MMS dose. These responses correlated
with altered cell growth and the cytoplasmic translocation
of the Sfp1 TF that results in shutting off RP gene expres-
sion. Although Sfp1 is a central player for RP gene ex-
pression, other factors also affect decisions to either stall
growth or to repair damage and proceed through the cell-
cycle. Recently, proteins of the cohesin complex have been
shown to be involved in RP gene regulation (76), in
addition to direct DNA damage responses (39,40). The
cohesin complex proteins are upregulated under the con-
ditions of damage used here, which could in turn feed
back onto RP expression. Future work will explore
whether the upregulation of specific RPs is for the replace-
ment of damaged ribosomal components (77,78) or to
make functionally specialized stress-specific ribosomes
(79,80) or perhaps both.

Outlook

Taken together, our work presents a global systems-level
proteomic view of the cellular response to MMS damage.
Transcription may represent the first level of regulation,
but now, we reveal the protein responders in terms of
levels and broad subcellular localization. Although
focused studies investigate a few genes in isolation, intri-
cate connections within the yeast proteome suggest that
no response can be isolated from cascading effects within
the network. Yet, despite the seemingly daunting complex-
ity, the overall picture that emerges reveals a coordinated
response in terms of DNA repair, chromatin remodeling,
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proteolysis and cell growth, indicating that the system is
tuned to buffer a fairly large range of genotoxic
challenges.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [81–95].
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