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Alzheimer’s disease (AD) is an irreversible brain disease that severely damages human

thinking and memory. Early diagnosis plays an important part in the prevention and

treatment of AD. Neuroimaging-based computer-aided diagnosis (CAD) has shown

that deep learning methods using multimodal images are beneficial to guide AD

detection. In recent years, many methods based on multimodal feature learning

have been proposed to extract and fuse latent representation information from

different neuroimaging modalities including magnetic resonance imaging (MRI) and

18-fluorodeoxyglucose positron emission tomography (FDG-PET). However, these

methods lack the interpretability required to clearly explain the specific meaning of the

extracted information. To make the multimodal fusion process more persuasive, we

propose an image fusion method to aid AD diagnosis. Specifically, we fuse the gray

matter (GM) tissue area of brain MRI and FDG-PET images by registration and mask

coding to obtain a new fused modality called “GM-PET.” The resulting single composite

image emphasizes the GM area that is critical for AD diagnosis, while retaining both

the contour and metabolic characteristics of the subject’s brain tissue. In addition, we

use the three-dimensional simple convolutional neural network (3D Simple CNN) and

3D Multi-Scale CNN to evaluate the effectiveness of our image fusion method in binary

classification and multi-classification tasks. Experiments on the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset indicate that the proposed image fusion method

achieves better overall performance than unimodal and feature fusion methods, and that

it outperforms state-of-the-art methods for AD diagnosis.

Keywords: Alzheimer’s disease, multimodal image fusion, MRI, FDG-PET, convolutional neural networks,

multi-class classification

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive brain disorder and the most common cause of dementia
in later life. It causes cognitive deterioration, eventually resulting in inability to carry out activities
of daily life. AD not only severely degrades patients’ quality of life but also causes additional distress
for caregivers (1). At least 50 million people worldwide are likely to suffer from AD or other
dementias. Total payments in 2020 for health care, long-term care, and hospice services for people
aged 65 and older with dementia are estimated to be $305 billion (2). And the number of AD
patients is estimated to be 115 million by 2050. Therefore, accurate early diagnosis and treatment
of AD is of great importance.

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://www.frontiersin.org/journals/digital-health#editorial-board
https://doi.org/10.3389/fdgth.2021.637386
http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2021.637386&domain=pdf&date_stamp=2021-02-26
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gmzhu@xidian.edu.cn
https://doi.org/10.3389/fdgth.2021.637386
https://www.frontiersin.org/articles/10.3389/fdgth.2021.637386/full


Song et al. Image Fusion for AD Diagnosis

Currently, the pathogenesis of AD is not fully understood.
The academic community generally believes that AD is related
to neurofibrillary tangles and extracellular amyloid-β (Aβ)
deposition, which cause loss or damage of neurons and synapses
(3, 4). In general, the AD diagnostic system classifies a subject
into one of three categories: AD, mild cognitive impairment
(MCI), and normal control (NC). The main clinical examination
methods for AD include neuropsychological examination
and neuroimaging examination (5), in which computer-aided
diagnosis is of great help in screening at-risk individuals.
Psychological auxiliary diagnosis of AD uses the Mini-Mental
State Examination (MMSE) and Clinical Dementia Rating (CDR)
to help clinicians determine the severity of dementia. With the
rapid development of neuroimaging technology, neuroimaging
diagnosis has become an indispensable diagnostic method for
AD. In particular, magnetic resonance imaging (MRI) and
positron emission tomography (PET) are popular and non-
invasive techniques used to capture brain tissue characteristics.

Structural MRI has become a commonly used structural
neuroimaging in AD diagnosis because of its high resolution
for soft tissue and its ability to present brain anatomical details.
Progression of AD results in gross atrophy of the affected regions,
including degeneration in the temporal lobe and parietal lobe, as
well as parts of the frontal cortex and cingulate gyrus (6). Brain
ventricles, which produce cerebrospinal fluid (CSF), become
larger in AD patients. And the brain cortex shrivels up, with
severe shrinkage occurring particularly in the hippocampus area.
MRI, which provides three-dimensional (3D) images of brain
tissues, enables clear observation of these structural changes in
the patient’s brain. Notable results were reported by a number
of studies of clinical diagnosis of AD using MRI. Klöppel et al.
(7) first segmented the whole brain into gray matter (GM), white
matter (WM), and CSF, and used GM voxels as features of
MR images to train a support vector machine to discriminate
between AD and NC subjects. Owing to the strong relationship
of GM with AD diagnosis, compared with WM and CSF (8, 9)
only considered spatially normalized GM volumes, called GM
tissue densities, for classification. Similarly, Zhu et al. (10) only
computed the volume of GM as a feature for each region of
the 93 regions of interest in the labeled MR image and used
multiple-kernel learning to classify the neuroimaging data. These
studies indicate that GM tissue is the most important area for AD
classification using MRI (11, 12).

PET imaging has a critical role as a functional technique
that enables clinicians to observe activities related to the human
brain quickly and precisely, with particular applications in early
AD detection (13). As stated in (14), PET images captured via
diffusion of radioactive 18-fluorodeoxyglucose (FDG) have been
used to obtain sensitive measurements of cerebral metabolic
rates of glucose (CMRglc). CMRglc can be used to distinguish
AD from other dementias, predict and track decline from
NC to AD, and screen at-risk individuals prior to the onset
of cognitive symptoms. FDG-PET is particularly useful when
changes in physiological and pathological anatomy are difficult
to distinguish (15). For instance, the volume of brain structures
commonly decreases with age (e.g., in individuals older than 75
years), making it difficult to determine whether a person’s brain

is in a normal or diseased state only using the brain anatomical
changes observed byMRI. In such cases, PET canmore effectively
detect the disease status of subjects.

Structural MRI can reflect the changes of brain structure,
whereas functional PET images can capture the characteristics
of brain metabolism to enhance the ability to find lesions
(16). Therefore, it has been proposed that multimodal methods
combining MRI and PET images could improve the accuracy
of AD classification (17–19). Feature fusion strategies are
commonly used in multimodal learning tasks, combining high-
dimensional semantic features extracted from different unimodal
data (20, 21). For example, Shi et al. (22) used two stacked deep
polynomial networks (SDPNs) to learn high-level features ofMRI
and PET images, respectively, which were then fed to another
SDPN to fuse the multimodal neuroimaging information.
Similarly, Lu et al. (23) used six independent deep neural
networks (DNN) to extract corresponding features from different
scales of unimodal images (such as those obtained by MRI or
PET); the features were then fused by another DNN. Related
studies show that a feature fusion strategy can indeed achieve
better experimental performance than use of unimodal data
alone (24, 25). However, such a method is a “black box,” lacking
sufficient interpretability to explain the exact reason for better
or worse results in a particular case. In addition, deep learning
methods based on feature fusion always greatly increase the
number ofmodel parameters, as amulti-channel input network is
used to extract heterogeneous features from different modalities.

Compared with feature fusion strategies, multimodal medical
image fusion is a more intuitive approach that integrates relevant
and complementary information frommultiple input images into
a single fused image in order to facilitate more precise diagnosis
and better treatment (26). The fused images have not only
richer modal characteristics but also more powerful information
representation. Besides, GM is the most important tissue for
AD auxiliary diagnosis, which can show the brain’s anatomical
changes in MRI scans and the overall level of brain metabolism
in PET scans. Motivated by these factors, we propose an image
fusion method that fuses GM tissue information from MRI and
FDG-PET images into a new GM-PET modality. During the
fusion process, only the key GM areas are preserved, instead of
the full MRI and PET information, to reduce noise and irrelevant
information in the fused image and enable the subsequent feature
extraction to focus on the crucial characteristics.

The main contributions of this work are two-fold. (1) A
novel image fusion method is proposed for AD diagnosis to
enhance the information representation ability of neuroimaging
modalities by fusing the key GM information from MRI and
PET scans into a single composite image. (2) We propose
two 3D CNN for AD diagnosis, i.e., 3D Simple CNN and
3D Multi-Scale CNN, to evaluate the performance of different
modalities in AD classification tasks. We also prove that
the proposed fused modality with its powerful information
representation can provide better diagnostic performance and
adapt to different CNN.

The rest of this paper is organized as follows. section 2
describes the dataset used and our image fusion method. Our 3D
Simple CNN and 3D Multi-Scale CNN are introduced in section
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2.3 to extract the features and perform classification based on
the neuroimaging data. In section 3, classification experiments
for AD vs. NC, MCI vs. NC, AD vs. MCI, and AD vs. MCI vs.
NC are conducted to evaluate the effectiveness of our proposed
image fusion in an AD diagnostic framework. The discussion and
conclusion are presented in sections 4 and 5, respectively.

2. MATERIALS AND METHODS

2.1. Datasets
The data used in the study were acquired from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
(https://adni.loni.usc.edu/). ADNI is a longitudinal multicenter
study designed to develop clinical, imaging, genetic, and
biochemical biomarkers for the early detection and tracking of
AD. ADNI makes all data and samples available for scientists
worldwide to promote AD diagnosis and treatment (27, 28).
The ADNI researchers have collected and integrated analyses
of multimodal data, mainly from North American participants.
The dataset contains data from different AD stages. In this study,
subjects were selected who had both T1-weighted MRI and
FDG-PET scans captured in the same period. MRI scans labeled
as MPRAGE were selected as these are considered the best with
respect to quality ratings. A total of 381 subjects from the ADNI
were selected, comprising 95 AD subjects, 160 MCI subjects, and
126 NC subjects. Clinical information for the selected subjects is
shown in Table 1.

The MRI and FDG-PET images in ADNI have undergone
several processing steps. In detail, the MRI images are processed
by the following steps: Gradwarp, B1 non-uniformity, and
N3. Gradwarp corrects image geometry distortion caused by
the gradient model, and B1 non-uniformity corrects image
intensity non-uniformity using B1 calibration scans. Finally, an
N3 histogram peak-sharpening algorithm is applied to reduce
the non-uniformity of intensity. The need to perform the
image pre-processing corrections outlined above varies among
manufacturers and system RF coil configurations. We used the
fully pre-processed data in our experiments.

In order to obtain more uniform PET data among different
systems, the baseline FDG-PET scans are processed by the
following steps. (1) Co-Registered dynamic: six 5-min FDG-
PET frames are acquired within 30–60 min post-injection, each
of which is co-registered to the first extracted frame. The
independent frames are co-registered to one another to lessen
the effects of patient motion. (2) Averaging: six co-registered
frames obtained are averaged. (3) Standardization of image and

TABLE 1 | Demographic information for subjects. Values are presented as mean

± standard deviation.

Subjects Number Male/

Female

Age MMSE CDR

NC 126 71/55 75.25 ± 5.82 29.58 ± 0.66 0.02 ± 0.18

MCI 160 108/52 76.97 ± 8.23 26.14 ± 0.81 1.38 ± 2.00

AD 95 54/41 76.52 ± 6.96 18.56 ± 4.20 2.87 ± 3.60

voxel size: the averaged image is reoriented into a standard 160
× 160 × 96 voxel image grid with 1.5 mm cubic voxels after
anterior commissure–posterior commissure correction, followed
by intensity normalization using a subject-specific mask so that
the average value of voxels within the mask is exactly one. (4)
Uniform resolution: the normalized image is filtered with a
scanner-specific filter to obtain an image with a uniform isotropic
resolution of 8 mm full width at half maximum, in order to
smooth the above-mentioned images.

2.2. Proposed Image Fusion
To make the multimodal fusion process more interpretable, we
propose fusing MRI and PET scans at the image field. The
fused image modality is then fed into a single-channel network
for diagnosis of subjects. This approach greatly reduces the
number of model parameters compared with the multi-channel
input network using feature fusion. Our proposed AD diagnostic
framework with multimodal image fusion method is presented
in Figure 1. It is composed of several parts: image fusion, feature
extraction, and classification. First, our image fusion method can
obtain a new GM-PET modality from the MRI and PET images.
Subsequently, the semantic features are extracted from the GM-
PET images. Finally, the classifier consisting of a fully connected
(FC) layer and a softmax layer is used to classify subjects from
different groups.

The proposed multimodal image fusion can merge
complementary information from different modality images so
that the composite modality conveys a better description of the
information than the individual input images. As depicted in
Figure 2, our proposed image fusion method only extracts the
GM area that is critical for AD diagnosis from FDG-PET, using
the MRI scan as an anatomical mask. The GM-PET modality
contains both structural MRI information and functional PET
information. The details of our image fusion method include the
following steps.

(a) Skull-stripping is performed on structural MRI scans
using the “watershed” module in FreeSurfer 6.0 (29), as shown
in Figure 2A. The watershed segmentation algorithm can strip
skull and other outer non-brain tissue to produce the brain
volume with much less noise and irrelevant information.
As expected, the result, called SS-MRI, preserves only the
intracranial tissue structure and removes areas of irrelevant
anatomical organs.

(b) As shown in Figure 2B, SS-MRI is affine transformed to
MNI152 space (30), a universal brain atlas template, using the
FLIRT (FMRIB’s Linear Image Registration Tool) module (31) in
the FSL package. FLIRT is a fully automated robust and accurate
tool for intra- and inter-modal brain image registration by linear
affine (31, 32). The registration aims to remove any spatial
discrepancies between subjects in the scanner and minimize
translations and rotations from a standard orientation. This helps
to improve the precision of the subsequent tissue segmentation.
This registered MNI-MRI is used as the input modality to
unimodal AD classification tasks.

(c) The GM area is segmented from the MRI scan using
the FAST (FMRIB’s Automated Segmentation Tool) module
(33) in the FSL package. FAST segments a 3D brain image
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FIGURE 1 | Proposed AD diagnostic framework with multimodal image fusion method.

FIGURE 2 | Proposed multimodal image fusion method. In the MRI pipeline, we executed the following steps in sequence: (A) skull-stripping, (B) registration of

SS-MRI to MNI152, and (C) segmentation of MRI tissue. The phased output of the MRI pipeline guided the subsequent processing of PET images, as shown by the

green arrows. In the PET pipeline, we performed the following steps: (D) registration of Origin-PET to MNI-MRI, (E) mapping MNI-PET to GM-MRI, and (F) registration

of MNI-GM-PET to Origin-PET.

into different tissue types, while correcting for spatial intensity
variations (also known as bias field or RF inhomogeneities). The
underlying method is based on a hidden Markov random field
model and an associated expectation-maximization algorithm.

The whole automated process can produce a bias-field-corrected
input image and probabilistic and/or partial volume tissue
segmentation. It is robust and reliable compared with most finite
mixture model-based methods, which are sensitive to noise. As
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shown in Figure 2C, the segmentation output of GM tissue is
called GM-MRI.

(d) MNI-PET is obtained by co-registering the FDG-PET
image to its respective MNI-MRI image using the FSL FLIRT
module, as shown in Figure 2D. This gives the FDG-PET image
the same spatial orientation, image size (for example, 182 × 218
× 182), and voxel dimensions (for example, 1.0 × 1.0 × 1.0
mm) as the MNI-MRI. After co-registration, the MNI-PET and
MNI-MRI obtained are in the same sample space.

(e) The GM-MRI obtained in step (c) is used as an anatomical
mask to cover the full MNI-PET image. MNI-GM-PET is
obtained by a mapping operation, as illustrated in Figure 2E.
So far, we have obtained the anatomical structure of GM
on FDG-PET images. Nevertheless, compared with Origin-
PET from coronal-axis and transverse-axis views, the mapped
grayscale values in MNI-GM-PET images change significantly
after MNI152 spatial registration; thus, they cannot reflect the
true metabolic information as the Origin-PET does.

(f) In order to solve the grayscale deviation problem
mentioned above, MNI-GM-PET is co-registered to the
corresponding Origin-PET image, using the FSL FLIRT module,
to obtain the GM-PET image, as shown in Figure 2F. On the
one hand, this registration operation eliminates the deviation
caused by affine transformation and preserves the true grayscale
distribution of the original PET image; on the other hand,
it ensures that the GM-PET has the same spatial size as the
Origin-PET, that is, the MNI-GM-PET size of 182 × 218 × 182
is reduced to the original PET size of 160 × 160 × 96. This
resolution reduction could also save computational time and
memory costs.

2.3. Networks
At present, CNN is attracting increasing attention owing to its
significant advantages in medical image classification tasks. In
two-dimensional (2D) CNN approaches, where the 3D medical
image is processed slice-by-slice, the anatomical context in
directions orthogonal to the 2D plane is completely discarded.
As discussed recently by (34), 3D CNN can greatly improve
performance by considering the 3D data as a whole input,
although the computational complexity and memory cost are
increased owing to the larger number of parameters. To evaluate
the effectiveness of the fused GM-PET modality in different
CNNs, this paper introduces the 3D Simple CNN and 3D Multi-
Scale CNN, designed by observing the characteristics of AD
classification tasks, which will be explained in detail below.

2.3.1. 3D Simple CNN

Considering the tradeoffs between the feature capture capabilities
of 3D CNN and the potential overfitting risk caused by a small
dataset, we propose a 3D Simple CNN to capture AD features
from medical images. As shown in Figure 3, the 3D Simple CNN
contains 11 layers, of which there are only four convolutional
layers. Compared with deeper networks, the 3D Simple CNN has
far fewer parameters and can better alleviate overfitting problems.

Specifically, the base building block, called Conv-block(s, n),
consists of three serial operations: Conv3D(s, n), which stands for
3D convolution with n filters of s× s× s size, batch normalization

(35), and a rectifier linear unit (ReLU). In this architecture, the
“Feature Extraction” module is mainly composed of four Conv-
blocks with parameters (3,8), (3,16), (3,32), and (3,64). That is,
the convolution kernel sizes are (3, 3, 3), and the number of
channels doubles in turn. There is also a 3D max-pooling layer
with a pooling size of (2, 2, 2) between every two Conv-blocks.
Besides, we add a global average pooling (GAP) layer and a
dropout layer with a rate of 0.6 to avoid overfitting. After the
Feature Extractionmodule, we connect an FC layer and a softmax
layer for AD classification. In general, the 3D Simple CNN can be
regarded as a baseline network for evaluating our image fusion
method because of its plain structural composition.

2.3.2. 3D Multi-Scale CNN

Numerous UNet-based networks have been proven effective in
biomedical image recognition tasks (36–38), as the U-shaped
network architecture with skip connections can obtain both
relevant context information and precise location information.
Motivated by the observation that features both from low-level
image volumes and high-level semantic information can be
obtained at different resolution scales, a 3D Multi-Scale CNN is
proposed for AD classification, as shown in Figure 4.

The Feature Extraction module is used to extract and merge
multi-scale features, and a classifier module consisting of an
FC layer and a softmax layer predicts the group labels. The
Feature Extraction module consists of seven convolutional
layers (Conv1–Conv7) where the first four convolutional layers
generate feature maps in a coarse-to-fine manner, and the last
two layers (Conv6 and Conv7) are obtained by up-sampling the
combined output of the “skip connection.” These convolutional
layers are designed using a conventional CNN structure with
kernel sizes of (3, 3, 3) and channel numbers as shown in
Figure 4. Taking into account the overfitting problem, we
properly reduce the channel numbers of convolutional layers.
Detailed image features are often related to shallow layers,
whereas semantically strong features are often associated with
deep layers. It is desirable to obtain both types of features for AD
classification by integrating information from different scales.
Hence, the skip connection is used to combine features from
both shallow and deep convolutional layers. More specifically,
the down-sampled outputs of convolutional layers 1 and 2 are
combined with the outputs of convolutional layers 7 and 6,
respectively. Besides, the outputs of convolutional layers 4 and 5
are concatenated. Owing to the limitations of GPUmemory when
using 3D scans as inputs, three scales are used here. For each scale
feature, we apply a GAP layer and a dropout layer to retain multi-
resolution features, after which the outputs are concatenated
to feed the following classifier. It is expected that multi-scale
features with different levels of information will contribute to the
diagnosis of AD.

3. EXPERIMENT AND RESULTS

3.1. Pre-processing
As inputs to CNN, 3D data with a generally high resolution
would consume more computing resources during network
training. Therefore, we process the input data using cropping and

Frontiers in Digital Health | www.frontiersin.org 5 February 2021 | Volume 3 | Article 637386

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Song et al. Image Fusion for AD Diagnosis

FIGURE 3 | 3D Simple CNN architecture for AD classification.

FIGURE 4 | 3D Multi-Scale CNN architecture for AD classification.

sampling operations to speed up the calculation of singleton data.
(1) Cropping: As shown in Figure 2, there are many background
areas with a pixel value of 0 outside the brain tissue area in
each modality image. Without affecting the brain tissue regions,
we appropriately reduce these meaningless background areas to
decrease the size of the input data. Specifically, MRI is cropped
from 182 × 218 × 182 to 176 × 208 × 176. In addition, PET
and GM-PET are both cropped from 160 × 160 × 96 to 112
× 128 × 96. (2) Sampling: Each sample is divided into two by
taking every other slice along the transverse axis. Concretely, the
sizes of the MRI, PET, and GM-PET images become 176 × 208
× 88, 112 × 128 × 48, and 112 × 128 × 48, respectively. This
can double the number of samples while reducing the resolution,
which is conducive to better iteration and optimization of the
network model.

3.2. Experimental Setup
In this paper, the networks involved are implemented in the
Tensorflow (39) deep learning framework. We execute four
classification tasks, i.e., AD vs. NC, AD vs. MCI, MCI vs. NC, and
AD vs. MCI vs. NC, whereas previous studies such as (40) and
(41) only classified AD vs. NC, which are the easiest groups to

distinguish. We conduct comparative experiments on unimodal
and multimodal data. For the network optimizer, Adam with
an initial learning rate of 1e-4 is used to update the weights
during training. The binary cross-entropy is applied as the loss
function in the binary-classification task, whereas the categorical
cross-entropy is used in the three-classification task.

We adopt a 10-fold cross-validation strategy to calculate the
measures, so as to obtain a fairer performance comparison. We
randomly divide the subjects in the dataset into 10 subsets,
with one subset used as the test set, another subset used as
the validation set, and the remaining eight subsets used as the
training set. We train each experiment during 500 epochs and
use two strategies to update the learning rate. (1) When the loss
in the validation set does not decrease within 30 epochs, the
learning rate drops to one-tenth of the current level. (2) When
the accuracy in the validation set does not increase within 20
epochs, the learning rate is reduced by half. At the same time, an
early stopping strategy is applied. That is, the training is stopped
if the loss on validation does not decrease within 50 epochs. The
classification accuracy (ACC), sensitivity (SEN), and specificity
(SPE) are selected as the evaluation measures. We report the
results as themean± SD (standard deviation) of the 10-fold tests.
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We aim to comprehensively evaluate the effectiveness of our
image fusion method in the proposed diagnostic framework
for AD classification tasks. In addition to considering other
unimodal scans (for example, MRI and PET) as inputs, we
present an AD diagnostic framework with the feature fusion
method as a benchmark. As shown in Figure 5, the Feature
Extraction module is used to obtain semantic information from
the 3D volumes of MRI and PET images, respectively. After
the extracted features are concatenated, three FC layers with
unit numbers of 64, 32, and 16, respectively, perform the
correlation fusion. Moreover, a GAP layer and a dropout layer
are applied to avoid overfitting. Finally, the classification module,
which consists of an FC layer and a softmax layer, predict the
group labels.

3.3. Performance
3.3.1. Results for AD vs. NC

In the classification of AD vs. NC, Table 2 shows the results of
unimodal and multimodal modalities with different networks.
The multi-modality-based methods such as the feature fusion
method and the proposed image fusion method achieve better
performance, because they successfully fuse MRI and PET
information. Between the two multimodal methods, our image
fusion method has better overall indicators. With the 3D Simple
CNN, our image fusion method obtained the best classification
accuracy of 94.11 ± 6.0% and specificity of 95.04 ± 5.7%,

and the second best sensitivity of 92.22 ± 6.7%. The feature
fusion method achieved the best sensitivity of 94.44 ± 7.9%
but showed lower accuracy and specificity. With the 3D Multi-
Scale CNN, the proposed image fusion method for AD diagnosis
achieved the best classification accuracy of 94.11 ± 4.0%,
sensitivity of 93.33 ± 7.8%, and specificity of 94.27 ± 6.3%.
Moreover, it showed improvements in classification accuracy,
sensitivity, and specificity over the unimodal methods of at least
4.75, 6.27, and 3.46%, respectively. Overall, our image fusion
method achieved the overall best performance in the AD vs. NC
classification task.

3.3.2. Results for MCI vs. NC

Table 3 shows the results for different modalities in the
classification of MCI vs. NC with different networks. The
proposed image fusion method showed significant performance
superiority. With the 3D Simple CNN, our image fusion
method achieved the best classification accuracy of 88.48 ±

6.5%, sensitivity of 93.44 ± 6.5%, and specificity of 82.18 ±

12.3%. It also showed improvements in classification accuracy,
sensitivity, and specificity over the feature fusion method of at
least 6.11, 1.25, and 11.62%, respectively, indicating that the
proposed image fusion method fuses multimodal information
in a more effective way. When applying the 3D Multi-Scale
CNN, our image fusion method still achieved the best accuracy
of 85.00 ± 9.4% and specificity of 85.60 ± 11.7%, and

FIGURE 5 | AD diagnostic framework with multimodal feature fusion method.

TABLE 2 | Results of different modalities with different networks for AD vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 89.80 ± 4.7 86.31 ± 12.0 91.97 ± 5.5

Unimodal PET 92.10 ± 5.8 89.13 ± 9.7 94.27 ± 4.1

Feature fusion 93.22 ± 3.8 94.44 ± 7.9 91.62 ± 7.5

Proposed image fusion 94.11 ± 6.0 92.22 ± 6.7 95.04 ± 5.7

3D Multi-Scale CNN Unimodal MRI 88.88 ± 6.8 86.11 ± 13.9 90.43 ± 4.5

Unimodal PET 89.36 ± 9.1 87.06 ± 16.3 90.81 ± 7.5

Feature fusion 93.66 ± 5.3 93.33 ± 9.4 93.50 ± 6.3

Proposed image fusion 94.11 ± 4.0 93.33 ± 7.8 94.27 ± 6.3

Bold value mean the best indicator value under the same conditions.
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the second best sensitivity of 84.69 ± 12.5%. In terms of
specificity, our method far exceeded other methods by at least
11.33%. Generally speaking, the proposed image fusion method
achieved the overall best performance in the MCI vs. NC
classification task.

3.3.3. Results for AD vs. MCI

In the classification of AD vs. MCI, Table 4 shows the results
of unimodal and multimodal modalities with different networks.
With the 3D Simple CNN, our image fusion method for AD
diagnosis achieved the best classification accuracy of 84.83 ±

7.8% and specificity of 94.69 ± 6.3%, and the second best
sensitivity of 68.29 ± 19.8%. Moreover, the proposed image
fusion method showed improvements in classification accuracy,
sensitivity, and specificity over the unimodal methods by at least
6.53, 10.83, and 5.00%, respectively. With the 3D Multi-Scale
CNN, our image fusion method obtained the best classification
accuracy of 80.80 ± 5.9% and sensitivity of 71.19 ± 14.6%, and
the second best specificity of 85.94 ± 11.8%. Compared with
the feature fusion method, which achieved the best specificity,
the proposed image fusion method showed improvements in
classification accuracy and sensitivity of 0.33 and 17.78%,
respectively. On the whole, our method outperformed the other
methods and showed the best overall performance in the AD vs.
MCI classification task.

3.3.4. Results for AD vs. MCI vs. NC

Table 5 shows the results of different modalities for the
classification of AD vs. MCI vs. NC with the 3D Simple

CNN and 3D Multi-Scale CNN. As MCI is a transitional state
between AD and NC, many confounding factors are introduced
in the multi-class task. Clearly, the classification task of AD
vs. MCI vs. NC is more difficult than the above binary-
classification tasks. In this case, our image fusion method still
showed the best performance on all evaluation indices, whereas
the unimodal and feature fusion methods were particularly
lacking in power for the three-classification task. With the
3D Simple CNN, the best classification accuracy, sensitivity,
and specificity were 74.54 ± 6.4, 59.41 ± 8.2, and 85.41 ±

4.2%, respectively. Compared with other methods, our image
fusion method showed improvements in classification accuracy,
sensitivity, and specificity of at least 9.06, 10.73, and 6.27%,
respectively. With the 3D Multi-Scale CNN, our image fusion
method achieved the best classification accuracy of 71.52± 5.0%,
sensitivity of 55.67 ± 6.2%, and specificity of 83.40 ± 3.3%.
Furthermore, our image fusionmethod showed improvements in
classification accuracy, sensitivity, and specificity over the other
methods of at least 3.37, 4.03, and 2.37%, respectively. Clearly,
our image fusion method showed significant advantages in the
multi-class task.

3.3.5. Comparisons With State-of-the-Art Methods

The proposed image fusion method was evaluated and compared
with the state-of-the-art multimodal approaches for each task-
specific classification (Table 6). The results indicate that our
method (Image Fusion + 3D Simple CNN) achieved the highest
accuracy and outperformed other multimodal methods for each
AD diagnostic task. Although our multimodal image fusion

TABLE 3 | Results of different modalities with different networks for MCI vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 79.46 ± 9.4 87.50 ± 16.1 69.15 ± 10.7

Unimodal PET 72.00 ± 7.8 72.81 ± 10.5 70.56 ± 12.2

Feature fusion 82.37 ± 9.0 92.19 ± 13.1 69.74 ± 18.0

Proposed image fusion 88.48 ± 6.5 93.44 ± 6.5 82.18 ± 12.3

3D Multi-Scale CNN Unimodal MRI 76.01 ± 8.8 77.50 ± 13.4 74.27 ± 9.7

Unimodal PET 68.55 ± 5.4 65.94 ± 13.5 70.64 ± 14.8

Feature fusion 83.17 ± 6.5 90.63 ± 15.7 73.55 ± 16.7

Proposed image fusion 85.00 ± 9.4 84.69 ± 12.5 85.60 ± 11.7

Bold value mean the best indicator value under the same conditions.

TABLE 4 | Results of different modalities with different networks for AD vs. MCI (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 72.47 ± 7.8 46.59 ± 18.8 87.50 ± 12.1

Unimodal PET 78.30 ± 10.3 57.46 ± 20.1 89.69 ± 10.9

Feature fusion 81.00 ± 8.1 68.33 ± 15.3 88.75 ± 9.2

Proposed image fusion 84.83 ± 7.8 68.29 ± 19.8 94.69 ± 6.3

3D Multi-Scale CNN Unimodal MRI 68.40 ± 8.4 52.70 ± 19.7 77.50 ± 11.9

Unimodal PET 73.07 ± 15.3 61.90 ± 27.6 79.38 ± 16.9

Feature fusion 80.47 ± 9.4 53.41 ± 25.1 95.94 ± 5.1

Proposed image fusion 80.80 ± 5.9 71.19 ± 14.6 85.94 ± 11.8

Bold value mean the best indicator value under the same conditions.
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TABLE 5 | Results of different modalities with different networks for AD vs. MCI vs. NC (UNIT:%).

Network Modalities ACC SEN SPE

3D Simple CNN Unimodal MRI 64.00 ± 8.6 47.10 ± 9.5 78.08 ± 6.5

Unimodal PET 60.65 ± 9.7 43.50 ± 10.6 75.49 ± 7.3

Feature fusion 65.48 ± 5.9 48.68 ± 6.7 79.14 ± 4.3

Proposed image fusion 74.54 ± 6.4 59.41 ± 8.2 85.41 ± 4.2

3D Multi-Scale CNN Unimodal MRI 66.24 ± 5.9 49.56 ± 6.6 79.72 ± 4.3

Unimodal PET 59.98 ± 7.1 42.83 ± 7.0 74.98 ± 5.9

Feature fusion 68.15 ± 9.4 51.64 ± 10.5 81.03 ± 6.9

Proposed image fusion 71.52 ± 5.0 55.67 ± 6.2 83.40 ± 3.3

Bold value mean the best indicator value under the same conditions.

TABLE 6 | Comparative performance of our classifiers vs. competitors. Numbers in parentheses denote the numbers of AD/MCI/NC subjects in the dataset used.

Approach Dataset Accuracy (%)

AD vs. NC MCI vs. NC AD vs. MCI AD vs. MCI vs. NC

(42) MRI+PET

(85/169/77)

91.4 82.1 – 53.79

(20) MRI+PET

(51/99/52)

91.4 77.4 70.1 –

(21) MRI+PET+CSF+Genetic

(37/75/35)

91.8 79.5 – 60.2

(23) MRI+PET

(238/217/360)

84.59 85.96 – –

(24) MRI+PET

(93/204/100)

93.26 74.34 – –

(10) MRI+PET+CSF

(210/541/160)

88.02 84.14 – –

(43) MRI+PET

(160/187/160)

92.51 82.53 – –

(19) fMRI+SNP

(37/37/35)

81.0 80.0 – –

Our Method

(Image Fusion+3D Simple CNN)

MRI+PET

(95/160/126)

94.11 88.48 84.83 74.54

Bold value mean the best indicator value under the same conditions.

method is time-consuming during the pre-processing steps,
the network parameters are greatly reduced because only the
composite image is fed into the classification network instead
of a set of images of different modalities. In other words,
the computation complexity and the memory cost of the
proposed image fusion method are no higher than those of
competing methods.

3.4. Visualization
To further illustrate the plausibility of our image fusion method,
we visualized origin images and the corresponding features in
different modalities for different subject groups, as shown in
Figure 6. The picture on the left in each cell is a slice of the subject
in different modalities. From the MRI and PET modality slices,
we observed that the AD subject had the most obvious brain
tissue loss and decrease in metabolism, respectively, followed by
the MCI subject, whereas the NC subject had a healthy brain
imaging scan. From the GM-PET slices, we observed that the GM

area was delineated while maintaining the same pattern as that of
the PET modality. GM-PET well-inherited the ability of MRI to
express atrophy of brain tissue and the ability of PET to observe
metabolic levels. As only the GM region was retained, there
was no noise information around the brain tissue in the GM-
PET images; in particular, the irrelevant skull area was cleanly
removed. Based on the richness of the information expressed by
the images, there is no doubt that our proposed image fusion
method achieved better results.

It was worth investigating whether the multimodal GM-PET
provided the feature extraction module of the CNN with ample
information. We applied 3D Grad-CAM technology (44) to
visualize the region of interest in the second convolutional layer
of the 3D Simple CNN, shown as the right picture of each cell
in Figure 6. The highlighted areas in the output images of Grad-
CAM represent the key areas on which the convolutional layer
focuses. In the outputs of the MRI slices, the focus was on the
contour and edge texture areas, as outlined by the red circles. In
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FIGURE 6 | Examples of different modality images for AD, MCI, and NC subjects. In each of the nine cells (A–I), the picture on the left is a subject slice and the picture

on the right is the Grad-CAM result for that slice. The red circle in the 3D Grad-CAM results outlines the contour areas of common interest in the MRI and GM-PET

images, while the yellow circle outlines the metabolic characteristic areas of common interest in the PET and GM-PET images.

the outputs of the PET slices, the areas of interest were highly
consistent with the areas of high metabolic levels, as represented
by the yellow circles. As expected, the convolutional layer on
GM-PET considered both contour and metabolic information at
the same time. Namely, the GM-PET modality provides more
abundant characteristics for AD diagnosis.

4. DISCUSSION

As multimodal data can provide more comprehensive

pathological information, we propose an image fusion method
to effectively merge the multimodal neuroimaging information

from MRI and PET scans for AD diagnosis. Based on the
observation that GM is the tissue area of most interest in

AD diagnostic researches (10, 11, 45), the proposed fusion
method extracts and fuses the GM tissue of brain MRI and
FDG-PET in the image field so as to obtain a fused GM-PET
modality. As can be seen from the image fusion flow, shown
in Figure 2, the GM-PET image not only reserves the subject’s
brain structure information from MRI but also retains the
corresponding metabolic information from PET. With the
3D Grad-CAM technology, we observe that the convolutional
layer that extracts the GM-PET features can capture both
contour and metabolic information, indicating that the GM-PET
modality can indeed provide richer modality information
for classification tasks. Moreover, our proposed image fusion
method, through its registration operation, better solves the
heterogeneous features alignment problem between multimodal

images, compared with methods based on multimodal
feature learning.

In addition, the 3D Simple CNN and 3D Multi-Scale CNN
are presented to perform four AD classification tasks, comprising
three binary-classification tasks, i.e., AD vs. NC, AD vs. MCI
and MCI vs. NC, and one multi-classification task, AD vs.
MCI vs. NC. The 3D Simple CNN, with a plain structure,
was proposed first as a baseline network. Then we proposed
a 3D Multi-Scale CNN network that combines information
from different scale features while capturing context information
and location information. In order to prevent over-fitting, we
designed these two networks using the following strategies: 1) Use
fewer convolutional layers; (2) reduce the number of channels
of the convolutional layer; (3) use GAP and dropout layers to
reduce redundant information. Furthermore, the proposed AD
diagnostic framework uses a single-input network instead of
the multiple-input network used in feature fusion methods, as
our image fusion method fuses multimodal image scans into a
single composite image. Therefore, our image fusion method can
greatly reduce the number of CNN parameters.

Extensive experiments and analyses were carried out to
evaluate the performance of our proposed image fusion method.
According to the classification results shown in Tables 2–5,
the multimodal methods, including feature fusion and the
proposed image fusion method, achieved better performance
than the unimodal methods, as the multimodal methods
contained abundant and complementary information. Our
image fusion method outperformed the feature fusion method,
especially in the complex three-classification task. Moreover,
both the 3D Simple CNN and 3D Multi-Scale CNN produced
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consistent results indicating that our image fusion method
had the best overall performance, with great adaptability to
different classification networks. And our image fusion method
also achieved better performance compared with the state-
of-the-art multimodal-learning-based methods. Although the
proposed image fusion method always showed the best accuracy,
sometimes its performance was not optimal in terms of sensitivity
and specificity. In order to solve this problem, we will further
focus on WM and CSF tissues and combine their information
with the existing GM information to provide better support for
AD auxiliary diagnosis in the future.

5. CONCLUSION

We propose an image fusion method to combine MRI and PET
scans into a composite GM-PET modality for AD diagnosis. The
GM-PET modality contains both brain anatomic and metabolic
information and eliminates image noise subtly so that the
observer can easily focus on the key characteristics. To further
evaluate the applicability of the proposed image fusion method,
3D Grad-CAM technology was used to visualize the area of
interest of the CNN in each modality, showing that both the
structural and functional characteristics of brain scans were
included in the GM-PET modality. A series of evaluations
based on the 3D Simple CNN and 3D Multi-Scale CNN
confirmed the superiority of the proposed image fusion method.
In terms of experimental performance, our proposed image
fusion method not only overwhelmingly surpassed the unimodal

methods but also outperformed the feature fusion method.

Besides, the image fusion method showed better performance
than other competing multimodal learning methods described in
the literature. Therefore, our image fusion method is an intuitive
and effective approach for fusing multimodal information in AD
classification tasks.
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