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Abstract

Measurements of the physical outputs of speech—vocal tract geometry and acoustic

energy—are high-dimensional, but linguistic theories posit a low-dimensional set of catego-

ries such as phonemes and phrase types. How can it be determined when and where in

high-dimensional articulatory and acoustic signals there is information related to theoretical

categories? For a variety of reasons, it is problematic to directly quantify mutual information

between hypothesized categories and signals. To address this issue, a multi-scale analysis

method is proposed for localizing category-related information in an ensemble of speech

signals using machine learning algorithms. By analyzing how classification accuracy on

unseen data varies as the temporal extent of training input is systematically restricted, infer-

ences can be drawn regarding the temporal distribution of category-related information. The

method can also be used to investigate redundancy between subsets of signal dimensions.

Two types of theoretical categories are examined in this paper: phonemic/gestural catego-

ries and syntactic relative clause categories. Moreover, two different machine learning algo-

rithms were examined: linear discriminant analysis and neural networks with long short-term

memory units. Both algorithms detected category-related information earlier and later in sig-

nals than would be expected given standard theoretical assumptions about when linguistic

categories should influence speech. The neural network algorithm was able to identify cate-

gory-related information to a greater extent than the discriminant analyses.

Introduction

What does it mean to “localize” category-related information in speech, and why is this a

worthwhile goal? Theoretical models of speech often posit discrete categories, such as phones,

articulatory gestures, syllables, moras, words, pitch accents, a hierarchy of phrase types, etc.

Yet none of these theoretical entities is self-evidently “present” at any given point in time in

acoustic or articulatory signals. How can we test whether speech signals contain evidence for

these theoretical constructs, and if they do, how can we determine when in time that evidence

is located? This is not a trivial problem and it requires some careful attention to our assump-

tions about the nature of speech and the concept of information.

One unavoidable issue in detecting evidence for theoretical categories in speech signals is

that decisions must be made regarding the period of time in which to look for the relevant
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evidence. In this study, we propose a multi-scale analysis approach that does not require

potentially arbitrary decisions regarding the period of time which is analyzed. Instead, analyses

are conducted over a range of windows which are varied systematically in size and location.

For each analysis window, a machine learning algorithm is trained to learn input-output map-

pings, and classification accuracy on unseen data is recorded. This training-testing procedure

is repeated many times. In principle, any machine learning algorithm that is suitable for multi-

dimensional continuous input variables and categorical outputs can be used. Here we examine

two such algorithms: linear discriminant analysis (LDA) and deep neural network classifica-

tion using two layers of bidirectional long short-term memory units (biLSTM).

To demonstrate the generality of the multi-scale analysis method, it is applied to two differ-

ent datasets from separate experiments: a syllable production experiment and a relative clause

production experiment. In both experiments, acoustic data were collected along with articula-

tory data, using electromagnetic articulography. In the syllable production experiment [1], a

small set of consonant-vowel-consonant (CVC) syllables (e.g. pop, pot, top, tot, op, . . .) were

repeatedly elicited from participants. The multi-scale analysis was used to infer when in these

signals there is evidence for the onset consonant categories (p, t, and Ø = no onset). In the rela-

tive clause production experiment [2], two different types of relative clauses were elicited:

restrictive relative clauses (RRC), e.g. The Mr.Hobb [who knows Mr. Robb] often plays tennis;
and non-restrictive relative clauses (NRRC), e.g. AMr.Hobb, [who knows Mr. Robb], often
plays tennis. Multi-scale analyses were used to infer when in time there is evidence for the two

relative clause types (RRC, NRRC).

The results show that category-related information is present in signals earlier and also

later than is commonly assumed. In some cases, participants in the experiments exhibited dis-

tinct temporal distributions of category-related information. Furthermore, the neural network

algorithm performed better than the linear discriminant analysis, particularly for shorter tem-

poral windows. Below we elaborate on the notion of category-related information that is

adopted in this paper and explain how the classification accuracy of a learning algorithm can

be used in the localization task. We then describe the datasets and present the results and

methods in detail. Finally, we discuss the implications of the findings and the potential uses of

the multi-scale analysis method, along with its limitations.

Category-related information

What do we mean by “category-related information” and how can such information be “local-

ized”? Although not commonly described as such, there already exist speech analysis methods

which in effect localize category-related information. A very common example is phone-based

Hidden Markov Model (HMM) speech recognition [3–5]. The algorithms used in this context

presuppose that speech is comprised of mutually exclusive, non-overlapping units called

phones. These hypothesized units are hidden states of the model. The algorithms provide, for

each frame of speech, the probability that the frame was produced (emitted) by each member

of the set of possible phones (hidden states). The "frames" of speech in this case are small win-

dows of the acoustic signal which have been transformed into feature vectors which encode

spectral information. The focus of such algorithms is usually on the most probable segment,

but the time-varying probabilities of the phone categories could be used to draw inferences

regarding where in time those categories have a substantial influence on (i.e. “are present in”)

the acoustic signal. For instance, in the word teapot during the vowel /i/ of tea, /i/ may be the

most probable phone, but the upcoming phone /p/ may have some non-zero probability.

Based on this hidden state probability, one could infer where in time (during which analysis

frames) there is “evidence” for the /p/ category. Thus in speech recognition, HMM models
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implicitly perform a temporal localization, and this holds for more commonly used triphone-

based models and models with additional levels of representation. However, HMM-based rec-

ognition models are probably not optimal for the localization task because of how they are

trained: the information used for training is derived from a priori assumptions about where

category-related information might be located in time.

Here we conceptualize the localization task from an information-theoretic perspective,

where joint observations of categories and acoustic/articulatory signals could be assessed with

regard to the mutual information between the categories and signals. This approach ultimately

cannot be applied to speech without making problematic assumptions, but it is nonetheless

instructive to relate the information-based conceptualization to the analyses that we conduct.

Assume that we are observing one category out of some finite set of mutually exclusive catego-

ries. The act of observing a category produces information [6]. For a finite set of categories Y =

{y1, y2, . . ., yN}, the information produced is the Shannon entropy of the probability distribu-

tion of categories, i.e. H(Y) = −∑i p(yi)log p (yi), where p(yi) is the probability of category yi.

For example, if the category members are the onset segments /p/, /t/, and /k/ in productions of

the syllables /pa/, /ta/, and /ka/, and the probabilities of observing these segments are

Pr =p=ð Þ ¼ Pr =t=ð Þ ¼ Pr =k=ð Þ ¼ 1

3
, then the entropy of the distribution is � 1

3
log 1

3

� �
�

1

3
log 1

3

� �
� 1

3
log 1

3

� �
¼ 1:58 bits. In a phenomenological sense, entropy is a quantification of

uncertainty. When we observe a specific instantiation of the category, uncertainty is decreased

to 0. Hence 1.58 bits of information is produced by observing a category in the above example

—information is always associated with the resolution of uncertainty.

Consider, however, that the above reasoning presupposes that a category can be “observed”,

which seems to contradict our claim that such entities are not self-evidently present in speech

signals. The notion that categories can be observed must be interpreted as a hypothesis of a

theoretical model, and in general we would like to evaluate the usefulness of such hypotheses.

We hold that the extent to which “observing” a category provides information regarding other

observations (such as speech signals) can be used to assess those hypotheses; likewise, the

extent to which speech signals provide information regarding hypothesized categories can be

viewed as a test of the hypotheses.

The quantity that we would like to be able to calculate for these assessments—mutual infor-

mation between hypothesized categories and signals—requires estimation of not only the

entropy of the categories, but also the entropy of the signals and the joint entropy of the signals

and categories. The mutual information between signals and categories is illustrated graphi-

cally in Fig 1 as the region of overlap between the information produced by observing the cate-

gories (Y) independently and the information produced by observing the signals (X)

independently. The calculation of entropy for the theoretical categories is shown in Fig 1A,

and the calculation of entropy for the signals is shown in Fig 1B, where probability functions

are assumed to be high-dimensional and continuous.

However, estimating the entropy of multi-dimensional articulatory and acoustic speech sig-

nals over a period of time is problematic, for several reasons. First, the quality of the estimate

depends on whether there is a sufficiently large ensemble of signals to accurately estimate

probability distributions. Second, although there are many ways to obtain estimates of the rele-

vant probability distributions [7, 8], these depend on smoothing or binning parameters. With

high-dimensional signals many observations are needed for accurate estimation—unless bins

are very large, much of the observation space will be unoccupied and estimates of the joint dis-

tribution will be unreliable. Third, the Shannon entropy does not take into account the

dynamical evolution of processes, and thus is not wholly appropriate for time series in which

current states depend on previous states. Schreiber [9] developed transfer entropy to
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incorporate transition probabilities from past states, and there are many extended conceptions

of entropy for time-varying signals [10–12]. Transfer entropy is also equivalent to conditional

mutual information computed on signals which have been subjected to time-delay embedding

[13, 14]. However, in many cases such approaches assume the signals to be stationary (i.e. the

statistical properties of the processes generating the signal do not change over time). In gen-

eral, entropy estimation methods are most effective when time series are relatively long or

when numerous observation sequences are available. Nonetheless, there are many novel

approaches to analysis of time series which are designed to be suitable for nonstationary sig-

nals [12, 15, 16] or which do not require large datasets [14, 17, 18]. Although we do not apply

such methods here, we suspect that it would be valuable to investigate their utility in relation

to the goal of identifying speech categories.

Unlike other types of physiological signals (e.g. heart rhythms, gait, posture), speech signals

collected in experiments are typically short and highly non-stationary. Thus it may not be

appropriate to attempt to estimate the probability distributions that are required for calculat-

ing entropies. Moreover, signals observed from different speakers can have very different sta-

tistical properties, which entails that observations should not be combined across speakers,

thereby resulting in practical limitations on the size of datasets that could be used for entropy

estimation. For these reasons, the methods we examine here do not directly quantify informa-

tion. However, it is worth pointing out there has been some success in applying methods that

do in fact directly quantify information. One example is Iskarous et al. (2013) [19], where

mutual information was used to measure coarticulation between adjacent segments. Such

methods are most feasible when the probability estimates on which they are based are relatively

accurate.

Classification accuracy: An indirect solution

Instead of calculating information-theoretic measures, a more indirect but perhaps more

robust approach is to use machine learning to infer the presence of category-related

Fig 1. Information-theoretic interpretation of the task of localizing categories and signals. (a) Information produced by observing a category. (b)

Information produced by observing signals. (c) Mutual information between categories and signals is calculated as the information produced by observing the

signals and categories independently minus the information produced by observing them jointly. (c’) Because it is difficult to estimate the information of the

signals, the classification accuracy of a learning algorithm with signals as input is treated as a proxy for mutual information.

https://doi.org/10.1371/journal.pone.0258178.g001
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information. This inference is based on the ability of the learning algorithms to correctly clas-

sify categories in unseen data, after they have been trained on acoustic and articulatory signals

which are hypothesized to be associated with those same categories. One way to motivate this

machine learning approach is to assert that the "learning" that occurs is in and of itself a form

of evidence that there exists some correspondence between observed signals and hypothesized

categories. In other words, the fact that such algorithms can learn representations and trans-

formations that allow for successful prediction with unobserved input signals and output cate-

gories constitutes evidence of correspondence between the signals and categories. Yet when

reflecting on the meaning of "learning" and "representations" in this context, and on the condi-

tions under which such learning is possible, we are drawn back to an information theoretic

interpretation of learning in the classification task: the thing that is learned can be interpreted

as a mapping between information in two domains, and the mapping that is learned is only

generalizable when there exists mutual information between those domains. Of course, others

researchers have drawn connections between machine learning and information theory (see

e.g. [20]) and machine learning textbooks draw heavily on information-theoretic concepts,

typically framing the learning process as one in which inputs are "information" [21]. We char-

acterize our approach as indirect only because it does not involve an estimation of informa-

tion-theoretic quantities, but at a fundamental level, the machine learning algorithms we are

aware of can be interpreted from this perspective.

In our approach the presence of category-related information is assessed by whether algo-

rithms learn generalizable mappings from high dimensional continuous input to low dimen-

sional categories. Here we examine two different methods, linear discriminant analysis (LDA)

and neural networks with bidirectional long short term memory units. It is not assumed that

these are the optimal learning algorithms for current purposes, nor that the architecture and

training parameters we use are optimal. To the contrary, we assume that these methods are

sub-optimal and thus provide only lower bounds on the temporal extent of category-related

information. Note that we use the phrase category-related information here because the rele-

vant information that the algorithms use to classify inputs should be interpreted as informa-

tion which is related to distinguishing theoretical categories. The method is agnostic regarding

the causal mechanisms that are responsible for associations between hypothesized categories

and signals, and there is no reason to assume that the relevant information is specific to the

hypothesized categories.

The machine learning methods we employ to obtain classification accuracies can be given

an information-based interpretation, even if the relation between classification accuracy and

mutual information is ultimately indirect. In the case of LDA, the algorithm assumes each

input dimension is Gaussian distributed and learns a function to divide the input space into

regions associated with categories, such that the likelihood of the data given the categories is

maximized. Consequently, the information produced by observing a category is minimized, if

one already knows the data and the discriminant functions. In the case of the neural network

algorithm, the information-based interpretation is less straightforward. It is not unusual to

interpret the input-output mappings of neural networks from an information-theoretic per-

spective; indeed, it is common parlance to describe an “information flow” through the layers

of a network (see for example [22]). Furthermore, it has been argued that classification net-

works are approximations to conditional distribution functions, albeit with a large number of

parameters, and training such networks has been related to estimating maximal mutual infor-

mation [23, 24]. Moreover, recent research has explicitly considered maximization of mutual

information between input and output as a goal of network training [25, 26]. Thus the infer-

ences we draw from network classification accuracy about category-related information are

not wholly novel. It is also worth mentioning that our approach bears some similarities to the
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temporal generalization method developed in [27] and used recently in [28], although our

approach differs by emphasizing analyses across a range of time scales and by restricting gen-

eralization to equivalent time epochs across signal observations.

The output of the method is a multi-scale analysis that we refer to as an accuracy scalogram,

which is a representation of the average accuracy of a classification algorithm as a function of

the center and size (i.e. scale) of the window of signal provided as input to the network. The

term scalogram is borrowed from wavelet analyses, where wavelet transformations are applied

to an input signal over a range of scales and locations. Some might consider this an abuse of

terminology, but we suggest that the term is appropriate for this context as well. In all cases the

analyses involve accuracy on unseen test data, thereby ensuring that the algorithms learn

input-output mappings that are generalizable and not the result of overfitting.

An overview of the procedure for generating accuracy scalograms is shown in Fig 2 with the

following steps. Note that a more detailed description is provided in theMethods section. Step (1):

an ensemble of multi-dimensional signals is collected, each of which is associated with a category

(in this example phones, /p/ and /t/). The signals are aligned across observations to a common ref-

erence event that occurs in each observation. Step (2): the temporal and/or spatial dimensions of

the input are restricted. The temporal restriction involves selecting a temporal window of the sig-

nal, which is defined by a center time tc and a window size T (or, scale). The spatial restriction

involves selecting a subspace of signal dimensions. Step (3): the observations are randomly parti-

tioned into test and training subsets; categories are balanced in both sets. Step (4): a classifier is

trained to classify the categories of the signals in the training subset. Step (5): after training, classi-

fication accuracy on the test subset (i.e. unseen data) is calculated. Steps (3)-(5) are repeated multi-

ple times for a given analysis window, and the average classification accuracy on test data is

calculated for that analysis window. Step (6): the procedure is repeated for a range of window cen-

ters and scales, and the mean accuracy for each window is presented in a scalogram.

Interpreting scalograms

Here we illustrate some aspects of scalograms that are relevant to their interpretation. The

upper left panel of Fig 3 shows a smoothed and interpolated version of the scalogram in Fig 2.

Fig 2. Overview of multi-scale analysis procedure. (1) observations of category-associated multi-dimensional time series are collected and aligned to a common event.

(2) a window scale/center and spatial dimensions are selected. (3) observations are randomly assigned to training and test sets. (4) a discriminant classifier or neural

network is trained to classify observations. (5) accuracy on the test set is recorded. Steps (3)-(5) are iterated for a range of window centers and scales, allowing for an

accuracy scalogram to be constructed (6).

https://doi.org/10.1371/journal.pone.0258178.g002
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The shading of the scalogram represents the average classification accuracy on test data, for

analyses conducted at each combination of window size (vertical dimension) and window cen-

ter (horizontal dimension). In this particular example, we have used a grayscale colormap to

represent accuracy, and chance performance is 1/3. The uniform gray triangular regions on

the left and right of the scalogram represent analyses that are not conducted because they

would require zero-padding of the input. The four lines labeled (a)-(d) in the scalogram repre-

sent slices of the scalogram in which some property of the analysis window is constant. For

each slice, five points have been marked in the scalogram and the analysis windows corre-

sponding to each of those points are indicated by the colored portions of the signals in the pan-

els on the right. Specifically, in the constant scale slice (a), which corresponds to a horizontal

line in the scalogram, window scale is the same for all analyses; hence each of the five windows

shown in panel (a) is the same size (here 0.200 s). Note that in each of the panels (a)-(d) which

show example windows, the same set of three-dimensional input signals is repeated five times,

and the colored portions indicate the extent of signal that would be used for the particular win-

dow centers and scales indicated by the dots shown in the scalogram. The accuracy along slice

(a) is shown in the lower left of Fig 3 (blue line). Notice that the accuracy along this slice is

slightly above chance for analysis windows that occur early, falls to chance for windows that

are centered a bit later, rises to near 100% accuracy around time 0.0, and then falls back down

again. From this pattern we can infer that there is a lot of category-related information in the

input around time 0.0, which is the alignment point in this example. We can also infer that

there is some category-related information in the beginning of the signals.

Fig 3. Example scalogram and interpretation. Top left: a smoothed, interpolated scalogram with four slices labelled (a)-(d), along with 35% and 75% accuracy

contours. Bottom left: accuracies along each slice. Right panels (a)-(d): examples of signal windows for each of the five points in each slice.

https://doi.org/10.1371/journal.pone.0258178.g003
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Other slices in the figure illustrate alternative ways in which some aspect of the analysis

window can be held constant. In the constant center slice (b), which corresponds to a vertical

line in the scalogram, the center time of all windows is the same but their size is varied. By

examining the accuracy along this slice, it is evident that as the window size increases, more

category-related information is present. In the constant right edge slice (c), which corresponds

to a line of negative slope in the scalogram, all analysis windows end at the same point in the

time, but their centers and sizes vary. This is useful, for example, if one wants to know whether

there is information regarding hypothesized categories that occurs before a particular time; in

panel (c), observe that the example windows end at -0.250 s. If analyses conducted at any cen-

ter/scale along this slice obtain above chance accuracy, we can infer that there is category

related information prior to time -0.250 s. Similarly, slice (d) corresponds to a set of analysis

windows which begin at the same time; this is useful for drawing inferences regarding the pres-

ence of category related information that is present after a particular time.

A general point to make regarding why the "multi-scale" nature of the scalogram is particu-

larly appropriate for speech analysis derives from the fact that in many theoretical approaches,

hypothesized linguistic units are hierarchically structured [29–32]. Because of this, categories

have the potential to manifest across a range of temporal scales. For instance, it is a widely held

belief that speech can be analyzed as a sequence of sounds (i.e. phonemes or segments) which

are grouped into syllables, and in turn these are grouped into feet, which comprise words that

are grouped into one or several phrasal levels, which in turn comprise utterances. Production

models which attempt to describe mechanisms which operate across these scales [33, 34] at

least in principle may allow for bidirectional interactions across scales. Scalographic analyses

are well-suited to investigating such interactions because they do not require strong a priori
assumptions about the relevant time scales over which the interactions might manifest.

There are a number of points that are useful to keep in mind when interpreting accuracy

scalograms. A detailed discussion of these is provided in the section "General Discussion".

Here we note the two most important ones. First, the machine learning algorithms we use can-

not obtain reliably above-chance accuracy on test data when no category-related information

exists in training inputs. In other words, the results are not due to overfitting. Second, the

accuracies we obtain are necessarily lower bounds, because we cannot be sure that the analysis

parameters are optimal. The space of parameters defining network architecture, training, and

input signals is too large to conduct a systematic hyperparameter analysis; thus it is likely that

for any given analysis, there is in fact a more optimal one which would obtain higher accuracy.

Datasets and analyses

Two datasets are analyzed, one from a syllable production experiment [1], the other from a rela-

tive clause production experiment [2]. Limited analyses of category-related information in these

datasets using neural networks have been reported in [1, 35]; here we present more comprehen-

sive analyses which employ identical analysis parameters and more similar inputs, in order to

facilitate more direct comparisons and to illustrate additional applications of the method. We

also conducted linear discriminant analyses for comparison. In both datasets, acoustic and artic-

ulatory data were collected; articulatory data were obtained from electromagnetic articulography,

which is an articulatory tracking method in which the positions of sensors adhered to articula-

tors are recorded with high spatial and temporal resolution. Here the articulators included are

upper lip (UL), lower lip (LL), jaw (JAW), tongue tip (TT), and tongue body (TB). The inputs to

the learning algorithms are Mel-frequency cepstral coefficients (MFCCs) obtained from the

acoustic signal, and articulator positions in the midsagittal plane; first differences of both signals

are included as well. Further details regarding these inputs are in theMethods section.
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For the syllable production dataset, the analyses focus on the identity of the pre-vocalic con-

sonant, which belonged to one of three categories: {/p/, /t/, Ø}. The “Ø” refers to the absence

of a phone in pre-vocalic position. The phone categories /p/ and /t/ are distinct with respect to

the articulators that are used to form an oral closure: the lips for the /p/ and the tongue tip for

/t/; the jaw is recruited for both sounds and the vocal folds are abducted when the sounds are

in word-initial position. There were six participants in the experiment, all native speakers of

English. On each experimental trial, production of a CVC syllable was cued by a visual signal,

where C = {/p/, /t/, Ø} and V = /a/. Thus there were nine different targets, orthographically

represented as: pop, pot, pah, top, tot, tah, op, ot, ah. Each target production was also preceded

by the production of a prolonged /i/ vowel (for about 1.5 s), during which time the participant

was informed of the identity of the target. It is important to keep in mind that prior to and dur-

ing the pre-response vowel, participants were aware of the upcoming target. Participants per-

formed 15 or 16 blocks of 36 trials, resulting in a total of 540 or 576 trials (50 or 54 trials per

target form) per participant. The order of target forms was randomized within blocks. Further

details regarding the experimental design can be found in [1].

The alignment point for the inputs in the syllable production analyses was the time of maxi-

mum tongue body speed associated with the tongue lowering/retraction from /i/ to /a/ pos-

tures. This event is a convenient alignment point because it is a relatively high velocity

movement and is robustly detectable on all experimental trials. In the scalograms presented

below, the alignment point is always defined as time 0. The leading edge of analysis windows

which contain the point in time when the onset consonantal gesture has been initiated on 5%

of trials is shown as well.

For the relative clause dataset, analyses focus on the identity of the relative clause category.

Six native speakers of English participated in the experiment. The sessions alternated between

blocks of trials in which one of two different types of relative clauses were elicited: a restrictive

relative clause (RRC), e.g. The Mr.Hobb [who knows Mr. Robb] often plays tennis, or a non-

restrictive relative clause (NRRC), e.g. AMr.Hobb, [who knows Mr. Robb], often plays tennis.
The sentences were always the same except for the pre-boundary names (Hobb, Robb, Lobb,

Hodd, Rodd, Lodd) and the utterance final nouns, which were randomized from trial to trial.

Cues were also presented to induce variation in speech rate in the experiment. The RRC vs.

NRRC contrast may be associated with a difference in prosodic phrase structure that is mani-

fested in pre- and post-clause boundaries. Specifically, it has been hypothesized that the NRRC

is associated with a higher-level prosodic phrase than the RRC. Such phrasal differences are

usually manifested in articulatory and acoustic changes in the temporal vicinity of phrase

boundaries [36–39]. Further details regarding the experimental design are in [2].

The alignment points for inputs in the relative clause analyses were the pre-clausal and

post-clausal boundaries, which were determined from forced alignment of the acoustic signal.

Separate scalographic analyses were conducted for the pre- and post-clausal boundaries.

Because speech rate was manipulated in the relative clause production experiment, the degree

to which signals become misaligned with distance from the alignment point is greater than it is

for the syllable production task. Hence the temporal range of analyses of the relative clause

data is smaller.

For both datasets, all analyses are conducted within participant, in order to allow for better

classifier performance. The motivation for conducting only within participant analyses is that

there is substantial variation in vocal tract geometry between speakers, and this leads to varia-

tion in both articulatory and acoustic signals. This form of variation would likely have a nega-

tive impact on classification accuracy if the data were grouped across participants, although it

remains to be determined how large this impact might be. Note that chance accuracy is 1/3 in
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the syllable production dataset because there are three categories (/p/, /t/, Ø), and 1/2 in the

relative clause dataset because there are two categories (RRC, NRRC).

Results and discussion

In the following presentation of results, we first compare the neural network and linear dis-

criminant analyses on the syllable production dataset. Because the network-based classification

algorithm outperformed the discriminant based one, subsequent analyses of temporal localiza-

tion and signal dimension redundancy focus on the network-based results.

Comparison of classification algorithms

The neural network algorithm modestly outperformed linear discriminant analyses, but only

for small to medium window sizes. At relatively large window sizes the neural network perfor-

mance degraded. Fig 4 shows scalographic summaries of neural network and discriminant

accuracies from two participants in the syllable production dataset, along with the difference

between these accuracies. Here and elsewhere we present smoothed, interpolated scalograms

obtained using procedures described in the Methods Section. Contour lines for 0.4, 0.75, and

0.95 accuracies are shown in the scalograms. As expected, in both analyses, the highest accu-

racy for a given scale (a horizontal slice) is achieved in the temporal vicinity of the onset of the

vocalic movement (time 0), which is often about halfway between the formation and release of

the consonantal closures for /p/ and /t/.

The panels on the right side of the figure show the difference between analyses (network—

LDA), where blue corresponds to a positive difference, i.e. higher accuracy for the network

Fig 4. Scalographic comparison of neural network and LDA algorithms. Top and bottom panels are from participants sy01 and sy06 respectively in the syllable

production dataset. Light gray areas are analyses which are not conducted because they would extend beyond the range of available signal. Left: scalograms of neural

network and LDA analyses. Right: difference between neural network and LDA accuracies; where blue indicates that the neural networks achieved higher accuracy

than LDA.

https://doi.org/10.1371/journal.pone.0258178.g004
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analyses. At medium scales (up to about 1 s), it is evident that the network analysis achieved

somewhat higher accuracy. For some windows, the differences approached 10%. However, at

larger scales (near 1.5 s) network accuracy degrades substantially in comparison to the dis-

criminant analysis. As we discuss later, this degradation is likely due to the network architec-

ture and/or training procedures (section 3.4), and we note that for scales above 1.5 s (not

shown in Fig 4) this degradation was quite substantial.

To further illustrate differences between network and discriminant analyses, accuracy func-

tions from both analyses are plotted for each participant in Fig 5. The panels on the left show

accuracies as a function of window center for a fixed analysis scale of 0.500 s (i.e. a horizontal

slice through the raw scalogram). The panels on the right show accuracies as a function of win-

dow scale for windows centered on time t = -0.500 (i.e. a vertical slice through the scalograms).

Note that the accuracy functions shown here are not smoothed and interpolated.

For the constant-scale accuracy functions (Fig 5, left), it is clear that biggest advantages of

the network analyses over LDA are present before and after the alignment point. For the con-

stant center functions (Fig 5, right), the network outperforms LDA over the range of scales

from 0.200–0.800 s.

Temporal distribution of category-related information

Multi-scale analyses are useful for drawing inferences regarding the temporal distribution of

category-related information. Scalograms of neural network accuracy for all six participants in

the syllable production dataset are shown in Fig 6. In each panel, the horizontal dimension is

Fig 5. Comparison of accuracies of neural network and discriminant analyses for fixed scale and center. All six participants from the syllable production dataset are

shown. Left: average accuracies as a function of window center, at scale 0.500 s. Right: accuracies as a function of window scale, at center -0.500 s. Blue line: network

accuracy; orange line: linear discriminant accuracy.

https://doi.org/10.1371/journal.pone.0258178.g005
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window center and the vertical dimension is window scale. The pairs of dotted and dashed

lines in each panel indicate the centers of windows whose edges align with the 5th and 95th per-

centiles of distributions of movement initiation times associated with the onset consonants /p/

and /t/. The pair of dotted and dashed lines on the left of each panel is associated with centers

of windows whose endpoints are located at the movement initiation percentiles, and the pair

of dotted and dashed lines on the right is associated with windows whose start points are

located at the 5th and 95th percentiles. In other words, the dotted lines on the left represent

analyses of signals that precede movement initiation on 95% of trials, and the dotted lines on

the right represent analyses which begin at movement initiation or earlier on 95% of trials (see

Fig 3 for additional explanation of how to interpret these lines). Regions of the scalograms

where the 95% confidence interval is below chance accuracy (< 1/3) are shaded dark gray.

There are a number of interesting inferences that can be drawn from visual inspection of

the scalograms. First, in all cases the network classifier can achieve substantially above-chance

accuracy using signal windows that precede the 5th percentile of the movement onsets. To

reinforce this point, Fig 7 (left) shows accuracies as a function of scale, for windows whose

right edge is located at the 5th percentile of movement initiation for each speaker. In all cases

these analyses exhibit above-chance accuracy. This is unexpected from conventional

approaches to analysis of articulatory movements, such as the Task Dynamic model [1, 40], in

which constriction movement onset should be the earliest observable correlate of an onset con-

sonant. It is also unexpected in the DIVA model, in which acoustic effects of segments cannot

Fig 6. Accuracy scalograms for all six speakers in the syllable production dataset. Scalograms are smoothed and interpolated. Dark gray areas indicate where

accuracy is not significantly above chance (1/3). The pairs of dotted and dashed lines in each panel show the centers of windows whose right or left edges align with

the 5th and 95th percentiles of distributions of onset consonant movement initiation. The dotted lines on the left are associated with windows that end before the time

of movement initiation, and the dotted lines on the right are associated with windows that begin at the time of movement initiation.

https://doi.org/10.1371/journal.pone.0258178.g006
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occur before they exert influences on motor commands [41]. One plausible interpretation of

this effect is that speakers are adjusting the posture of their vocal tract in a response-specific

way, well before the canonical onset of movement. Of course, the existence of long-distance

coarticulatory phenomena and phonological patterns [42–46] suggests that such effects should

exist. Nonetheless, models of articulatory control have not yet attempted to account for them

[34, 46].

Second, for most of the speakers, there is an unexpected region of above-chance accuracy

obtained from analyses of early portions of the input. For instance, if one examines a horizon-

tal slice at a scale of 0.250 s, accuracy is higher at the earliest windows (circa -2.0 s), decreases

to chance levels between -1.5 to -1.0 s, and subsequently increases. To illustrate this more

clearly, Fig 7 (right) shows accuracy as a function of window center, for analyses with a win-

dow size of 0.250 (i.e. a constant scale slice). This pattern suggests that the influence of the tar-

get onset consonant on the pre-response vowel is stronger earlier in the pre-response vowel.

This is unexpected because the initiation of the response is about two seconds in the future for

the earliest windows. This effect could be due to the fact that the target stimulus has become

visible more recently during very early windows, or because the earlier portion of the pre-

response vowel is more susceptible to an influence of the upcoming target.

Third, for all speakers substantially above-chance accuracy is obtained subsequent to the

onset consonant, in most cases up to 1.0 s after the vocalic movement has been initiated. This

indicates that the onset consonant in a CVC syllable can have effects on the coda consonant

and beyond. It is worth noting that such effects—i.e. onset-coda interactions within a syllable

Fig 7. Accuracy slices for all six speakers in the syllable production dataset. Left: accuracy as a function of scale for windows whose right edge is aligned with the 5th

percentile of onset consonant movement initiation (dotted lines in Fig 6). Right: accuracy as a function of window center with constant scale of 0.250 seconds.

https://doi.org/10.1371/journal.pone.0258178.g007
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—have rarely been investigated phonetically and are not well accommodated by current mod-

els (see [1] for further discussion of this point).

Another way in which the distribution of information can be characterized from scalo-

graphic analysis relates to temporal asymmetries in accuracy. Scalograms of network accuracy

at the pre-clause and post-clause boundaries for all participants in the relative clause dataset

are shown in Fig 8. Significantly above-chance accuracy (> 1/2) was observed in all analysis

windows within ±0.500 s of the boundary (time 0); however, near-maximum accuracy was

never achieved. In comparison with the syllable production analyses, it is tempting to infer

that there is “less information” regarding relative clause categories in the acoustic and articula-

tory signals than there was for the onset categories; however, this interpretation is not justified

because there is no guarantee that the network algorithm performs equally well in both

Fig 8. Accuracy scalograms for all speakers in the relative clause dataset. Scalograms are smoothed and interpolated. The alignment points (time 0) are the pre-

and post-clause boundaries, for example: AMr.Hobb |pre who know Mr. Rodd |post often plays tennis. The dotted lines in each panel show the centers of windows

whose edges align with the boundaries.

https://doi.org/10.1371/journal.pone.0258178.g008
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datasets. A more justifiable inference that can be drawn in this case involves temporal asym-

metries in network accuracy within the relative clause dataset. For example, accuracies for

rc02 and rc05 are generally higher in analysis windows that follow the pre- and post-clause

boundaries than they in windows that precede those boundaries. In contrast, for rc01 accura-

cies are higher in windows that precede the pre- and post-clause boundaries.

The temporal asymmetries in the distribution of relative clause related information are

shown more directly in Fig 9, which plots the average accuracies of windows whose right and

left edges align with the pre-clause boundary (top) and post-clause boundary (bottom). These

are the analyses along the diagonal lines in Fig 8. The panels on the right of Fig 9 show the dif-

ference of the average accuracies. Note that at very small scales, the window centers are close

in time and hence have very similar accuracies.

As is evident from Fig 9, for two speakers (rc02, rc05) higher accuracies are obtained in

windows that follow both boundaries. This suggests that for these speakers, the phonetic mani-

festations of the syntactic contrast are expressed after boundaries to a greater extent than they

are before the boundaries. For one speaker (rc01), pre-boundary windows provide higher

accuracy. This suggests that for this speaker, more relevant information was present prior to

the beginning of the relative clause than subsequent to the beginning of the clause, and likewise

more information was present before the end of the clause than after the end of the clause. For

rc06, differences become more evident as analysis scale increases and are dissociated between

boundaries: more information precedes than follow the pre-clause boundary, but the reverse

holds for the post-clause boundary. The interspeaker differences are of theoretical interest

Fig 9. Comparison of accuracies before and after clause boundaries. Left panels: average accuracies as a function of scale for windows whose right or left edges (RE/

LE) align with the pre- or post-clause phrase boundary. Filled regions are ±1.0 standard error. Right panels: difference in average accuracies (RE aligned windows–LE

aligned windows). The alignment points (time 0) are the pre- and post-clause boundaries, for example: AMr.Hobb |pre who knowMr. Rodd |post often plays tennis.

https://doi.org/10.1371/journal.pone.0258178.g009
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because they indicate that speakers may adopt different strategies for prosodically cueing syn-

tactic contrasts.

By-category accuracy analyses

Accuracy scalograms can be used to infer whether there are between-category differences in

the temporal distribution of category-related information. Fig 10 shows differences in by-cate-

gory accuracy and total accuracy for each of the three categories in the syllable production

dataset. These comparisons suggest that /t/-related information is present before movement

initiation to a greater extent than /p/- or /Ø/-related information. A possible explanation for

this involves the fact that the primary articulators for /t/ and /p/ are the tongue tip and lips,

and the primary articulator for the pre-response vowel is the tongue body (recall that speakers

produce a prolonged /i/ before the target). The tongue tip interacts more strongly with the ton-

gue body than the lips, due to their biomechanical coupling; hence more /t/-related informa-

tion might be expected prior to the target response.

Signal dimension redundancy

The scalographic analyses can be used to draw inferences regarding redundancy of signal

dimensions. An example from the syllable production dataset is provided in Fig 11, which

shows changes in accuracy associated with removal of the set of all channels related to a single

Fig 10. By-category analysis with accuracy scalograms from speaker sy01 of the syllable production dataset. Scalograms have been smoothed and interpolated.

Upper left): mean accuracy. Other panels: difference between category-specific accuracy and total accuracy. Blue areas indicate higher within category accuracy than

total accuracy.

https://doi.org/10.1371/journal.pone.0258178.g010
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articulator or pair of articulators, relative to the network accuracy obtained with all of the artic-

ulatory dimensions. The sets of dimensions removed singly or in pairs were those associated

with the upper lip (UL), lower lip (LL), mandible (JAW), tongue tip (TT), or tongue body

(TB). This analysis accomplishes a “spatial” localization of information, in the sense that signal

dimensions constitute a high-dimensional space and particular subspaces correspond to physi-

cal parameters of the geometry of the vocal tract. Removing TT dimensions has the largest

effect on accuracy, suggesting that the information in TT dimensions has the least redundancy

with information in the other dimensions.

In the relative clause dataset, signal dimension redundancy was investigated in relation to

acoustic vs. articulatory subsets of signal dimensions. Fig 12 shows scalograms in which accu-

racies obtained with only articulatory or acoustic dimensions are subtracted from accuracies

obtained with both dimensions. It also shows the difference between analyses restricted to

articulatory or acoustic dimensions. There are two participants (rc01, rc05) who show a sub-

stantial accuracy reduction when articulatory dimensions were excluded but not when acous-

tic ones were; we may thus infer that, for these participants, the information in acoustic signals

is mostly redundant with information in articulatory signals but not vice versa. Conversely,

two other participants (rc02, rc03) exhibited substantial accuracy reduction with acoustic sig-

nal removal but not articulatory signal removal. A third pattern (rc06) shows similar accuracy

reduction for both cases, suggesting either a greater degree of redundancy between acoustic

and articulatory signals and/or complementarity between the two domains. These patterns are

Fig 11. Differences of scalograms showing loss of classification accuracy obtained from paring subsets of signal dimensions. Accuracies from pared datasets are

subtracted from the accuracy on the dataset with all articulatory signal dimensions included. Blue corresponds to a loss of accuracy. Contour lines indicate 10% accuracy

differences. Top row: dimensions associated with a single articulator were pared. Middle, bottom rows: dimensions associated with two articulators were pared.

https://doi.org/10.1371/journal.pone.0258178.g011
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also evident when the difference of the articulatory and acoustic analyses are plotted, as in the

bottom row of Fig 12.

Methods

The following methods apply to both datasets, except where otherwise noted. The experimen-

tal designs used for collecting these data were described in section 1.3. The research was

approved by the Cornell University Office of Research Integrity Assurance, under Protocol

ID# 1106002289. Written consent was obtained from human subjects. Additional details not

directly relevant to the current analyses are reported in [1] and [2] for the syllable and relative

clause production tasks, respectively.

Data processing and input

Articulatory data were collected at 400 Hz with an NDI Wave electromagnetic articulograph.

Articulator sensors were located on the upper lip (UL), lower lip (LL), lower incisors (JAW),

tongue tip 1cm from the apex (TT), and tongue body 5–6 cm from the apex (TB). Reference

sensors on the nasion and mastoid processes were used for head movement correction. The

articulator and reference sensors were lowpass filtered at 10 and 5 Hz, respectively (using 4th

order Butterworth filters).

Acoustic data were collected at 22050 Hz and were transformed to MFCC matrices using a

30 ms window and 5 ms time steps. A third-party MATLAB toolbox (Kamil Wojcicki, HTK

Fig 12. Differences of scalograms showing loss of classification accuracy obtained from removing acoustic (mfcc) or articulatory (artic) subsets of signal

dimensions. Top row: articulatory dimensions removed; middle row: acoustic dimensions removed. Blue corresponds to a loss of accuracy. Bottom row: difference in

accuracies between analyses restricted to articulatory or acoustic inputs.

https://doi.org/10.1371/journal.pone.0258178.g012
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MFCC MATLAB) was used to calculate MFCCs, with the following parameter values: fre-

quency range: 300–5000 Hz; number of cepstral coefficients: 12; preemphasis factor: 0.97;

number of filterbank channels: 20; cepstral sine lifter parameter: 22.

The maximal input signals to the networks and discriminant functions contained 24

dimensions of acoustic information (12 MFCC coefficients plus 12 ΔMFCC values) and 20

dimensions of articulator information, which were the horizontal and vertical positions of the

articulator sensors, and the first differences of these. Thus there were 44 total input dimen-

sions. Articulator positions and velocities were sampled at 5ms for network input and matched

to MFCC window centers. All dimensions were z-score normalized by participant.

Signals in both datasets are aligned by participant to a reference point, which is defined as

time 0. For the syllable production dataset, input signals were aligned to the initiation of the

vocalic movement in the target form. This event was defined as the RMS velocity maximum in

the tongue body sensor in the vicinity of the transition from pre-response vowel /i/ to the target

vowel /a/. The beginning and ends of the input signals were determined as the earliest and latest

times that were common to all trials. Movement initiations for onset /p/ and /t/ trials were esti-

mated using standard procedures (see [1]), i.e. using 20% velocity thresholds applied to tongue

tip vertical position for /t/ and lip aperture (Euclidean distance between UL and LL) for /p/.

For the relative clause dataset, input signals were aligned to the ends of the relevant acoustic

intervals demarcating the start and end of the relative clause. For example, consider the sen-

tence: AMr.Hobb, [pre who knows Mr. Rodd] post, often plays tennis. In the case of the pre-

clause boundary, the alignment point is the end of the acoustic interval associated withMr.
Hobb; in the case of the post-clause boundary, the alignment point is the end ofMr. Rodd. The

acoustic intervals were determined by forced alignment with Kaldi [47], using the procedures

described in [2].

Machine learning algorithm parameters

The discriminant analyses used a very simple linear discriminant function which assumes a

Gaussian mixture distribution in the input data, with the same covariance matrix for each

class. The model is trained to minimize the expected classification cost over categories, where

each cost is the product of the posterior probability of the category given the data and the clas-

sification cost (0 for correct classification, 1 for incorrect classification). Prior probabilities of

categories were uniform, and a regularization of γ = 0.5 was used. In an preliminary version of

this manuscript we reported discriminant analyses with no regularization and observed a large

decrease in accuracy at small scales (from 0.050 to 0.100 s). We suspected that this was due to

characteristics of the covariance matrix in such windows, and a reviewer correctly suggested

that mild regularization would solve the issue.

The hyperparameter spaces that define the neural network and its training procedures are

too large to investigate systematically, and we examine issues regarding hyperparameter analy-

sis further in the section General Discussion. Decisions regarding network architecture and

training parameters were made on the basis of experience from previous work [1] and addi-

tional exploratory testing of a small set of parameters on a subset of data. The classification net-

works used here consisted of an input layer followed by two layers of 350 bidirectional LSTM

units. Each biLSTM layer was followed by a 50% dropout layer. The last dropout layer was fol-

lowed by a fully connected layer, a SoftMax layer, and a classification layer with a cross-

entropy loss function.

The network training procedure used an adaptive moment estimation optimizer (Adam)

with the following parameters: gradient threshold: 1.0; initial learning rate: 0.0001; L2 regulari-

zation 0.01. Optimization was limited to a maximum of 1000 epochs, and mini-batch sizes of
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50 were used (an iteration is one step of the optimization algorithm, including weight updates,

applied to a mini-batch, and an epoch is a full pass of the training algorithm over the training

set). The order of sequences and their assignment to mini-batches were shuffled every epoch.

The validation frequency and patience were 5 and 50 iterations, which means that validation

loss is calculated every 5 iterations and training stops if the validation loss does not decrease

over 50 iterations.

Multi-scale analysis procedures and visualization

Network and discriminant analyses are conducted separately for each participant. For the syl-

lable production dataset, analysis windows were centered at 50 ms steps from the beginning of

the signal. For the relative clause dataset, analysis windows were centered at the alignment

point and taken in 50 ms steps up to 500 ms before and after the alignment point. The ±500

ms restriction in the relative clause dataset was imposed due to greater variation in speech rate

in that dataset, which results in greater misalignment further from the alignment point. Win-

dow sizes were chosen by making a list of all window sizes with an odd number of frames,

from 1 frame up to the maximal number, which is determined by the period of time over

which signals are available. Window candidates were restricted to windows with odd numbers

of frames so that signals can be centered exactly on a given frame. The formula isel = ceil[eb(i
−N)] was used to select indices of the list, where i is the index of the list of odd frames, N is the

number of elements of the list, and b is a parameter which controls the exponential growth of

the list indices. A value of 0.1 was used for b, but other values may be useful in different con-

texts. The ceiling function was applied to the output and all unique indices were selected. The

purpose of using an exponential function to select window sizes is to provide more closely

spaced (approximately linearly spaced) window sizes at small scales, while using larger spacing

for larger scales. No windows are analyzed which would extend beyond the available time hori-

zon of the signals and hence would require zero-padding. We avoid this because in pilot work

we observed that zero-padding negatively affected network performance.

For each analysis window, multiple repetitions of the partitioning and training procedures

(steps 2–4 of Fig 2) were conducted. For the scalographic analyses reported the results section,

five repetitions were used, except for the subtractive analyses of the syllable production dataset,

where two repetitions were used. For each repetition, the data were randomly partitioned into

training and test sets. The numbers of each category were exactly balanced in all training and

test sets, with one exception: an oversight in conducting analyses of the syllable production

dataset sometimes led to a difference of one between category counts in the test set. We do not

believe this is problematic because it always constitutes a less than 1% deviation from exact bal-

ance. For the relative clause production dataset, the target category (relative clause type) was

exactly balanced within training and test sets, and the identity of the pre-boundary coda con-

sonant (/b/ or /d/, cf.Mr.Hobb vs.Mr.Hodd) was balanced within target categories.

In order to keep the training and test datasets as large as possible, the test data were also

used for validation during training; thus the test data can determine when the training stops,

and may bias the accuracy on classification of the test data. To check that the identity of test

and validation sets did not result in a large bias, we conducted analyses on a subset of analysis

windows for participant sy01 in the syllable production dataset, using a 1/3 split of disjoint

training, validation, and test datasets for each of five repetitions. A paired comparison of aver-

age accuracies found a small difference in accuracy of 0.011 (95% confidence interval: [0.0037,

0.0182]). Hence the use of test data for stopping training may indeed create a bias, but this bias

is relatively small. Future studies which aim to precisely localize temporal distributions of

information should use disjoint test and validation sets.
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To visualize the results of the multi-scale analyses, we plot scalograms, which are pseudoco-

lor plots of matrices of average accuracies. A raw scalogram (i.e. not smoothed, not interpo-

lated) was shown in Fig 2, step 6. Note that because our sampling steps in the window scale

dimension are exponentially spaced, the vertical sizes of pixels in the raw scalogram increase

with scale. In order to smooth the raw scalograms, a 2D-Gaussian filter is applied, with stan-

dard deviations of 100 ms in both the window center and window scale dimensions. These

standard deviation parameters are arbitrary and can be adjusted independently to control the

degree of smoothing in both center and scale dimensions. In order to obtain more finely sam-

pled representations of accuracy, cubic spline interpolation was applied to the smoothed scalo-

gram, using a grid of 1 ms steps in the window center dimension and 5 ms steps in the

window scale dimension. In all cases only points in the scalogram are retained which are

within a polygonal region defined by the original analysis window parameters.

Validation with simulated data

An important point to emphasize is that network architecture and training parameters are

held constant across analyses, and thus are not expected to perform equally well for all scales.

Indeed, a substantial degradation of performance for large analysis windows was observed in

the syllable production dataset. To test whether this degradation was caused by some unknown

aspects of the data, we conducted the analysis procedures on a simulated dataset which mim-

icked the statistical properties of movement onset times in the syllable production dataset. In

this simulated dataset, we constructed input signals such that the categories /p/ and /t/ were

associated with 200 ms intervals in which signal values were ramped up from 0 to 1 and back

down to 0, in the horizontal and vertical UL/LL and TT/TB channels, respectively. The first

differences of these were included as well. The ramping was controlled by a driven, critically

damped harmonic oscillator, which accords with a popular model of articulator kinematics

[40]. All other dimensions were set to zero. An example is shown in Fig 13. The network train-

ing procedures were applied to simulated data, and scalograms were constructed using the

Fig 13. Illustration of decline in network accuracy associated with large window sizes, using simulated data. (a, b) Simulated articulatory signals associated

with simulated /p/ and /t/ onsets. (c) Gaussian kernel smoothed density distributions of movement initiation times matching empirical distributions. (d)

Scalogram showing accuracy decrease at large analysis scales.

https://doi.org/10.1371/journal.pone.0258178.g013
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procedures described above. A reduction in accuracy for large analysis windows was observed,

similar to what is seen with empirical data. The results on simulated data indicate that the low

accuracy for large windows is a consequence of the network architecture or training parame-

ters, rather than being due to some unknown characteristic of the data. It may be possible to

improve the network performance for large windows by using scale-dependent network archi-

tecture/training parameters.

To assess whether accuracies for a given analysis window are reliably above chance, a simple

and straightforward way to obtain a confidence interval is to calculate the standard error of the

accuracy for each window. Fig 14 shows mean accuracy (blue dots) and 99% confidence inter-

vals (± 2.57 s.e.) for analyses of 100 ms windows for speaker sy01 of the syllable production

dataset. In these analyses, 100 training/test repetitions were conducted for each window. The

confidence intervals are quite narrow, indicating that with this many repetitions, the accuracy

can be estimated fairly precisely. It should be noted, however, that this approach assumes a

normally distributed accuracy and is not entirely appropriate when accuracy is close to its ceil-

ing (100%) or in the vicinity of chance. If more exact determination of confidence is desired,

confidence intervals of parameters from a logistic regression could be obtained instead.

In order to verify that accuracy does indeed indicate the presence of category-related infor-

mation, we conducted analyses in which the mappings from inputs to output categories were

randomly scrambled in the training data. We hypothesized that this scrambling would fully

prevent the networks from learning generalizable input-output mappings and thus would

result in chance performance for all windows. As shown in Fig 14 (orange dots), this hypothe-

sis was partly confirmed: no analysis windows exhibited accuracies on test data which were

Fig 14. Accuracy confidence intervals for one speaker and scale (100 ms). Blue dots: analyses conducted on original

data; orange dots: input-output mappings scrambled in training set; yellow dots: frames in each analysis window of

training set randomly permuted. Error bars show 99% confidence intervals. Horizontal dashed line represents chance

accuracy. Vertical dotted line shows the 5% percentile of movement initiation.

https://doi.org/10.1371/journal.pone.0258178.g014
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reliably above chance. However, there is an epoch of marginally below chance performance in

the vicinity of the alignment point. This could be due to the fact that with scrambled input-

output mappings the network learns incorrect mappings, and subsequently is biased to make

incorrect decisions on the test data.

In order to test whether the temporal order of input frames is important for the network to

learn generalizable input-output mappings, we conducted analyses in which the frames in

each analysis window were randomly permuted in the training data. We hypothesized that this

would diminish network accuracy relative to the non-permuted data, but still would result in

above-chance levels of accuracy. The motivation for this prediction is that the same spatial

information regarding the articulatory and acoustic signal dimensions is present in the per-

muted data, despite the fact that the order in which the network receives that information is

random. As can be seen in Fig 14 (yellow dots), the hypothesized impact was indeed observed

during the epoch of time from about 250 ms before to 500 ms after the alignment point. In this

epoch, the target syllable is being produced. However, the temporal scrambling resulted in

chance accuracy in earlier and later windows, where the analyses of non-scrambled, non-per-

muted data obtained substantially above chance accuracy in the original analyses. This unex-

pected result may have the following interpretation: the category-related information which is

present during the pre-response vowel and after the target response may be predominantly or

essentially temporal in nature. In other words, it is not merely information regarding the states

of the vocal tract but rather information regarding the temporal evolution of that state which

the network learns to use to classify the onset consonant categories. This suggests that the

multi-scale analysis procedure we have developed might provide a way to dissociate the contri-

butions of temporal information from spatial information in relation to hypothesized

categories.

General discussion

The results above show that the accuracy scalogram can allow for a variety of theoretically-rele-

vant inferences to be drawn regarding how linguistic categories are manifested in speech sig-

nals. These inferences include aspects of signals that relate to the temporal distribution of

information, asymmetries between information located before vs. after particular events, the

potential scale-dependence of relevant information, and differences in category-related infor-

mation that involve the sources of signals themselves (e.g. acoustic vs. articulatory information,

or different articulators). In particular, it was observed in the syllable dataset that there is infor-

mation which can be used to identify onset consonant categories both well before movement

initiation and also after the production of a syllable. In this case, the multi-scale nature of the

analysis showed that this information is available even on very small scales (see Fig 7, left), and

that increasing analysis scale does not provide additional improvement in classification accu-

racy. In contrast, in the analysis of the relative clause data, a fairly strong scale-dependence of

accuracy was observed: as analysis windows extended further from the clause boundary, accu-

racy increased (see Fig 9). This suggests that additional information relevant to distinguishing

clause types is available at times that are distant from the boundary. These sorts of inferences

depend crucially on conducting analyses across a range of scales, and it stands to reason that

an analysis which arbitrarily examined only a single scale would fail to identify such patterns.

The analysis method is also well-suited to investigating how sources of information in a sig-

nal may differ or interact in the extent to which they provide category-related information.

For example, in the analyses of the syllable production data in which individual articulators

and pairs of articulators were removed, it was observed that removal of tongue tip (TT)-related

channels resulted in the greatest accuracy loss (see Fig 11).
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Another noteworthy aspect of our method is that it in some cases it revealed differences

between speakers. For example, in the analysis of accuracy loss in the relative clause dataset

when either articulatory or acoustic dimensions were removed from the full input (see Fig 12),

it was observed that the effects of paring acoustic/articulatory dimensions is speaker-depen-

dent. One possible explanation for this is that variability and/or stationarity in these subsets of

dimensions may differ between speakers; indeed, speaker-specific differences in acoustic vs.

articulatory variability in production of vowels have been reported in [48]. It is possible that

these differences in variability/stationary have consequences for accuracy that are independent

of mutual dependency, and this constitutes another caveat in interpretation of results.

There are a number of points that are important to keep in mind when interpreting accu-

racy scalograms. First, machine learning algorithms cannot obtain reliably above-chance accu-

racy on test data when no category-related information exists in training inputs. In other

words, the results are not due to overfitting. The qualifier reliably is important because random

variation in partitioning and training procedures results in statistical fluctuations in classifica-

tion accuracy.

Second, the algorithms are in general expected to obtain greater classification accuracy

when more category-related information is present, up to the limit of maximal accuracy. How-

ever, this does not entail that there is a simple functional relation between classification accu-

racy and the amount of mutual information between categories and signals. In fact, we saw

that there are circumstances in which the assumption that more information results in higher

accuracy is clearly invalid; these circumstances may arise when the learning algorithm is not

well-suited for the classification task.

Third, drawing inferences about category-related information from classification accuracy

is only sensible when the hypothesized categories are approximately balanced within both

training and test sets. We focus on classification accuracy because of its interpretability, but it

is worth pointing out that the neural network classifiers are trained by backpropagation of

cross-entropy loss. In cases where there is a substantial imbalance in the numbers of categories

in the data, cross-entropy may be preferable for drawing inferences. In all cases, the training

and test data should have similar distributions of categories, whether those distributions are

balanced or not.

Fourth, inferences regarding the temporal extent of category-related information should be

made relative to an alignment point in the signals. These inferences necessarily depend on

domain-specific assumptions regarding the processes which are responsible for generating the

signals, as well as limitations of the machine learning algorithm that is used. For both of the

datasets we examined, and likely in general for speech data, greater temporal distance from the

alignment point is associated with greater temporal misalignment of the signals and potentially

worse classification accuracy. The biLSTM neural network architecture is more robust to this

misalignment, while the LDA analyses are more adversely affected by it.

Fifth, the analyses can at most provide lower bounds on the temporal extent of category-

related information. No learning algorithm can be proven to be optimal for data of the sort we

examine, i.e. nonstationary speech data with unknown generating processes. Moreover, the

hyperparameter space of the neural network algorithm we use is very large and we cannot

know if the particular parameters we employ are optimal or even close to optimal. Thus classi-

fication accuracies obtained from this algorithm are almost certainly under-estimates of the

presence of category-related information. In other words, there is always a possibility that

there exists a better algorithm. Hence above-chance accuracy in the scalogram should be inter-

preted to provide minimal ranges of the temporal distribution of category-related information

in signals: for a given analysis scale, the range of analysis window centers over which above-

chance accuracy is reliably obtained indicates that category-related information is present;
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however, such information may still be present earlier or later and yet not detected due to sub-

optimality of the classifier. Furthermore, our neural network hyperparameters cannot be

assumed to be equally suboptimal across scales, and hence some of the variation we observe

across analysis scales may be due to differences in how well-suited the hyperparameters are for

a given scale. Below we elaborate further on the potential benefits and challenges that arise in

optimization of hyperparameters. Finally, inferences about the temporal extent of category-

related information from scalograms should be interpreted in relation to a set of observations,

rather than in relation to specific categories. Classification accuracy derives from the ability of

a classifier to learn to distinguish members of set of categories associated with an ensemble of

observations. This is different from identifying information specific to a particular category in

a single observation. The methods can in theory be adapted to this task—for example by exam-

ining the posterior probabilities of the discriminant analysis classification model predictions

for each observation, or alternatively the softmax category outputs of the neural network—but

we do not pursue this application here.

It is important to note that we see no reason to impose restrictions on the particular

machine learning algorithms that might be employed in a scalographic context. Both our neu-

ral network and discriminant analysis approaches are examples of supervised learning, in

which the algorithm is provided information regarding the "correct" (or hypothesized) catego-

ries that are associated with input signals. We used supervised learning techniques because we

believe these can be more directly applied to a specific set of hypothesized categories than

would be the case for alternatives which use unsupervised learning or reinforcement learning.

For example, in an unsupervised learning context, where the algorithm might select some

number of categories by clustering signals, there is no guarantee that the hypothesized catego-

ries of interest are the ones which the algorithm will be most inclined to learn. Indeed, other

sets of categories which may manifest more strongly in the input could easily dominate the

outcome. Thus the supervised approach allows us to focus on just one dimension of categorical

information and ignore others. It would nonetheless be interesting to see how the categories

which are learned in unsupervised approaches vary as a function of analysis window location

and scale, and whether these would in fact correspond to hypothesized categories of interest.

A desirable next step in the pursuit of neural network-based multiscale analysis is to exam-

ine how the optimal network architecture and training hyperparameters vary as a function of

window scale. Knowledge of this variation is desirable because it would further inform the

interpretation of scale-related changes in accuracy. Indeed, to an unknown extent, the effects

of analysis scale that we observe might be attributed to differences in the extent to which the

parameters we use are optimal for a given scale. This suggests that it would be useful to charac-

terize how accuracy is reduced for each scale, compared to the accuracy that might be obtained

with hyperparameters that are optimized for that scale. One way to accomplish this would be

express accuracy for each center/scale, relative to the maximum accuracy that was obtained at

a particular center.

However, there are numerous challenges to obtaining a scale-specific hyperparameter opti-

mization of this sort. First, since there are at least eight parameters of the neural network archi-

tecture and training algorithm, six of which are continuous (see Methods section), a brute

force search of even a very coarse three-point grid in each hyper parameter dimension would

require training many networks. Indeed, three points would be not be sufficient for this search,

particularly in dimensions in which plausible parameter values span orders of magnitude, such

as learning rates or L2 regularization. Second, if we did conduct a brute force search, it might

be quite difficult to interpret the results, since it is likely that many combinations of parameters

will result in effectively the same average accuracy—in effect the optimal parameters occupy a

hypersurface that will be difficult to examine. Third, if we were to restrict the hyperparameter
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analysis to a subspace of parameters and sample with finer resolution, we might draw mislead-

ing inferences by ignoring interactions with non-varied parameters. Any statement regarding

the optimal parameters in a given subspace must be qualified as conditional on specific values

of non-varied parameters. Fourth, even if we did conduct an analysis of the scale dependence

of the optimal hyperparameters on a particular dataset from one speaker, it is unclear whether

it would generalize to other datasets; such analyses would need to be conducted on all datasets,

which is logistically impractical for us. Perhaps some of the logistical issues could be addressed

by optimizing hyperparameters with simulated data, as we did in the section "Validation with

simulated data". This method could be informative but it requires assumptions which are not

tenable regarding equivalence between the simulated data and empirical data.

Conclusion

The multiscale analysis technique presented here was shown to be useful for localizing cate-

gory-related information in articulatory and acoustic signals. The approach allows for lower

limits to be inferred regarding the temporal range of category-related information, and it can

be used to localize information to specific signal dimensions or subsets of dimensions. How-

ever, it is important to emphasize that no analytical relation is derived between network accu-

racy and mutual information between signals and categories, which is ultimately the quantity

of interest; moreover, the analysis is necessarily sub-optimal due to the high dimensionality of

the parameter space for network design and training. Future work may benefit from additional

exploration of hyperparameters or alternative signal dimensions. For example, work in prog-

ress indicates that the autocorrelogram can be used to provide input that relates to characteris-

tics of vocal fold vibration. Moreover, other network architectures or machine-learning

algorithms might be usefully substituted for the biLSTM layers used here. Nonetheless, scalo-

graphic analysis can be generally used to address theoretical questions using empirical data,

and can do so without requiring a priori assumptions about the mechanisms which relate sig-

nals and categories.
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