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Male breast cancer, while uncommon, is a highly malignant disease. Monocyte
chemotactic protein-1 (MCP-1) is an adipokine; its concentration in adipose tissue is
elevated in obesity. This study tested the hypothesis that adipose-derived MCP-1
contributes to male breast cancer. In a 2x2 design, male MMTV-PyMT mice with or
without adipose-specific Mcp-1 knockout [designated as Mcp-1-/- or wild-type (WT)]
were fed the AIN93G standard diet or a high-fat diet (HFD) for 25 weeks. Mcp-1-/- mice
had lower adipose Mcp-1 expression than WT mice. Adipose Mcp-1 deficiency reduced
plasma concentrations of MCP-1 in mice fed the HFD compared to their WT
counterparts. Mcp-1-/- mice had a longer tumor latency (25.2 weeks vs. 18.0 weeks)
and lower tumor incidence (19% vs. 56%), tumor progression (2317% vs. 4792%), and
tumor weight (0.23 g vs. 0.64 g) than WT mice. Plasma metabolomics analysis identified
56 metabolites that differed among the four dietary groups, including 22 differed
between Mcp-1-/- and WT mice. Pathway and network analyses along with
discriminant analysis showed that pathways of amino acid and carbohydrate
metabolisms are the most disturbed in MMTV-PyMT mice. In conclusion, adipose-
derived MCP-1 contributes to mammary tumorigenesis in male MMTV-PyMT. The
potential involvement of adipose-derived MCP-1 in metabolomics warrants further
investigation on its role in causal relationships between cancer metabolism and
mammary tumorigenesis in this male MMTV-PyMT model.

Keywords: adipose MCP-1, MMTV-PyMT, plasma metabolome, diet, male, mice
INTRODUCTION

Breast cancer in men accounts for roughly 1% of all breast cancer cases (1). However, breast cancer
is an aggressive disease in men. Approximately, 90% of all breast cancer diagnosed in men are
invasive carcinoma (2), and 25% of male breast cancer patients have distant metastasis at the time of
clinical presentation (3). Additionally, results from the Surveillance, Epidemiology, and End Results
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(SEER) program show that improvements in breast cancer
survival for men lag behind that for women (4).

Similar to female breast cancer, male breast cancer is classified
into various subtypes including luminal b (5), an aggressive
subtype of a higher grade with poorer prognosis (6) that accounts
for 21% of breast cancer in men (5). The mouse mammary tumor
virus-polyoma middle T antigen (MMTV-PyMT) model is a
commonly used model in research of luminal b breast cancer (7).
The MMTV-PyMT model conserves many of the defining
characteristics of human subtypes (7). Compared to females,
male MMTV-PyMT mice exhibit a delayed onset of palpable
mammary tumors with a lower penetrance of metastasis (8). This
delayed onset mimics clinical observations that breast cancer in
men occurs approximately five to 10 years later than the average
age of breast cancer occurrence in women (9).

Obesity is a major risk factor for breast cancer. Obese breast
cancer patients often present high-grade lesions, elevated risk of
recurrence, and increased incidence of lymph node involvement
and metastasis (10, 11). Body fat accumulation, a hallmark of
obesity (12, 13), may account for this association. Adipose tissue
produces proinflammatory adipokines, including monocyte
chemotactic protein-1 (MCP-1), that are elevated by obesity
and contribute to obesity-related diseases.

MCP-1 is a major member of the adipokine family (14). In
response to obesity, adipocytes increase the production of MCP-
1 leading to obesity-induced inflammation (14–16). Clinical
studies show that an elevation in MCP-1 occurs with cancer
progression and has prognostic value for breast cancer. Poor
outcomes and short disease-free intervals are related to high
levels of MCP-1 in breast cancer patients (10, 17, 18). Silencing
the expression of Mcp-1 or its receptor protects mice against
obesity-mediated inflammation in visceral adipose tissue (19, 20)
and inhibits mammary tumor growth and metastasis in MDA-
MB-231 mice (21). Depletion of MCP-1 reduces mammary
tumorigenesis in C3(1)/SV40Tag mice (22) and spontaneous
metastasis of Lewis lung carcinoma in C57BL/6 mice (23).

We have reported that adipose specific Mcp-1 knockout
reduces high-fat diet-enhanced mammary tumorigenesis in
female mice (24) and metastasis of Lewis lung carcinoma (25)
in male mice. However, the role of adipose-derived MCP-1 in
male breast cancer remains unelucidated. We hypothesized that
adipose-derived MCP-1 contributes to mammary tumorigenesis
in male mice. The present study tested this hypothesis by
investigating the effects of adipose specific MCP-1 deficiency
on mammary tumorigenesis in male MMTV-PyMT mice fed a
high-fat diet.
MATERIALS AND METHODS

Animals and Diets
The Grand Forks Human Nutrition Research Center vivarium
provided mice for this study. The breeders were obtained from
The Jackson Laboratory (Bar Harbor, ME, USA). Hemizygous
male MMTV-PyMT mice on an FVB background were bred to
female C57BL/6 mice with both alleles of the MCP-1 exons 2-3
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flanked by loxP sites (MCP-1fl/fl). Adipose tissue-specific
knockout of MCP-1 was achieved by breeding male mice
homozygous for MCP-1fl/fl and heterozygous for the PyMT
oncogene (MMTV-PyMT+/MCP-1fl/fl) with female MCP-1fl/fl

mice expressing Cre recombinase driven by the adiponectin
promoter (MCP-1fl/fl/Adipoq-Cre+). Male mice heterozygous for
the PyMT oncogene carrying two floxed MCP-1 alleles and positive
for Cre expression (MMTV-PyMT+/MCP-1fl/fl/Adipoq-Cre+) were
designated as adipose Mcp-1 knockout (Mcp-1-/-) mice. Male
littermates that were negative for Cre expression (MMTV-
PyMT+/MCP-1fl/fl/Adipoq-Cre-) served as wild-type (WT)
controls. All mice used in this study were on a combination of
the FVB and C57BL/6 backgrounds. Mice were maintained in
a pathogen-free room on a 12:12-hour light/dark cycle with a
temperature of 22 ± 1°C. The standard AIN93G diet (26) and a
high-fat diet (HFD) providing 16% and 45% of energy from
soybean oil, respectively, were used in this study (Table 1). Both
diets were powder diets and were stored at −20°C until feeding. The
study was performed in accordance with the Guide for the Care and
Use of Laboratory Animals by the National Institutes of Health (27).

Experimental Design
Mice were weaned onto the AIN93G diet at three weeks of age.
Following one week of acclimation with the AIN93G diet, WT
and Mcp-1-/- mice each were randomly assigned into one of four
groups (32 per group for WT and 34 per group forMcp-1-/- mice
fed the AIN93G and HFD, respectively). Mice were housed two
per cage to avoid stress related to single housing and weighed
weekly. Food intake (12 mice per group) was recorded daily for
three consecutive weeks one week after the initiation of the HFD.
Body composition of conscious, immobilized mice was assessed
one week prior to the end of the study by using the Echo Whole
Body Composition Analyzer (Model 100, Echo Medical Systems,
TABLE 1 | Composition of diets.

Ingredient AIN93G High-fat

g/kg g/kg

Corn Starch 397.5 42.5
Casein 200 239
Dextrin 132 239
Sucrose 100 120
Soybean oil 70 239
Cellulose 50 60
AIN93 mineral mix 35 42
AIN93 vitamin mix 10 12
L-Cystine 3 3.6
Choline bitartrate 2.5 3
t-Butylhydroquinone 0.014 0.017
Total 1000 1000

Energy % %
Protein 20 20
Fat 16 45
Carbohydrate 64 35

Analyzed gross energy
kcal/ga

4.3 ± 0.1 5.2 ± 0.1
Septemb
er 2021 | Volume 11 | Artic
aValues are means ± SEM of three samples analyzed from each diet using oxygen bomb
calorimeter (Model 6200; Oxygen Bomb Calorimeter, Parr Instrument, Moline, IL, USA).
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Houston, TX, USA). The percent body fat mass was calculated by
using the formula: (fat mass/body mass) x 100; the percent body
lean mass was obtained by using the formula: (lean mass/body
mass) x 100.

Measurement of Mammary Tumors
Mice were palpated for mammary tumors twice weekly. Tumor
latency was defined as the age at which the first mammary tumor
was detected (28). Palpable tumors were measured weekly by using
a digital caliper (Fred V Fowler Company, Newton, MA, USA).
Tumor volume was calculated by using the formula: length x width2

x 0.5 (28). Tumor progression was defined as the percentage change
in tumor volume over time and calculated by using the formula:
[(end volume – start volume)/start volume] x 100 (29). End volume
was the tumor volume measured at the end of the study; start
volume was the volume of the palpable tumor when it was
first detected.

Tissue Harvest
At termination, mice were fasted for six hours before they were
euthanized with an intraperitoneal injection of a mixture of
ketamine and xylazine followed by exsanguination. Mammary
tumors were collected and weighed. Epididymal adipose tissue
and plasma were harvested and stored at -80°C. Lungs were
collected and fixed in Bouin’s solution for assessing the extent of
metastasis (30).

RNA Isolation and Real-Time
Quantitative PCR
Total RNAwas isolated from epididymal adipose tissue by using the
RNeasy Lipid TissueMini Kit following themanufacturer’s protocol
(Qiagen, Germantown, MD, USA). The quality and quantity of
RNA were analyzed by using Nanodrop 8000 Spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). cDNA was synthesized
by using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Waltham, MA, USA) following the
manufacturer’s protocol. Real-time qPCR of Mcp-1 was analyzed
and normalized to the 18s rRNA by using the TaqMan Assay of
Demand primers on the ABI QuantStudio 12K-Flex Real-time PCR
system (Applied Biosystems). The 2-DDCT method was used to
calculate the relative changes in gene expression (31).

Quantification of MCP-1 in Plasma
Sandwich enzyme-linked immunosorbent assay (ELISA) kit was
used to quantify MCP-1 (R&D Systems, Minneapolis, MN, USA)
in plasma following the manufacturer’s protocol. Samples were
read within the linear range of the assay. The accuracy of the
analysis was confirmed by using the controls provided in the kit.

Metabolomics Analyses
Metabolomics analysis was conducted on plasma samples from
mice without palpable mammary tumors (n = 10 per group) (32,
33). This was because few mice developed palpable tumors,
particularly Mcp-1-/- mice. Samples were extracted and
derivatized by silylation methyloximation and analyzed by gas
chromatography time-of-flight mass spectrometry (GC-TOF-
MS) for untargeted metabolomics of primary metabolism. The
Frontiers in Oncology | www.frontiersin.org 3
analysis was performed and obtained data were processed by
using the BinBase database (34) at the West Coast Metabolomics
Center (University of California-Davis, Davis, CA, USA).
Unidentified peaks were removed from the dataset and
excluded from the subsequent analysis. For the remaining
identified compounds, quantifier ion peak heights were
normalized to the sum intensities of all known compounds.
Compounds representing less than 0.02% of total signal intensity
for identified compounds were excluded from statistical analysis.
Additional compounds were excluded if they could not be
identified as either an intermediate species or metabolic
endpoint common to mammalian metabolism based upon the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Database or
the Human Metabolome Database (35–37).

Statistical Analyses
Two-way analysis of variance (ANOVA) and Tukey contrasts
were performed to examine the effects of diet (AIN93G or HFD),
genotype (WT or Mcp-1-/-), and their interactions on Mcp-1
expression in adipose tissue, MCP-1 concentration in plasma,
body weight, body composition, and energy intake among the
four dietary groups. The LIFEREG procedure was used to fit the
Lognormal model to latency data. The LIFETEST procedure was
used to produce the Kaplan-Meier plots. Results are reported as
means ± standard error of the mean (SEM); tumor latency is
reported as medians and 95% confidence intervals (95% CI).
Data were analyzed by using SAS 9.4 (SAS Institute, Cary, NC,
USA). Differences with a p ≤ 0.05 are considered significant.

Metabolomics analyses were performed by using
MetaboAnalyst 5.0 (McGill University, Sainte Anne de
Bellevue, Quebec, Canada). Data were scaled by Pareto scaling
method and analyzed by sparse partial least square-discriminant
analysis (sPLSDA) (38, 39). Hierarchical clustering heatmap was
constructed by using the normalized peak intensity with
Euclidean distance for distance measurement and the Ward
error sum of squares hierarchical clustering methods for
Cluster algorithm. Group averages were reported for the top 25
metabolites identified. The MACRO procedure (SAS 9.4) was
used to examine effects of diet, genotype, and their interactions
on changes in plasma metabolites with the false discovery rate-
corrected p-values reported. Results of metabolomics analyses
from treatment groups are presented as fold changes in
comparison to the WT control group fed the AIN93G diet.

Pathway and network analyses were performed by using
MetaboAnalyst 5.0 (40). Pathway analysis of alterations in
metabolic pathways in MMTV-PyMT mice was performed by
using the pathway library for Mus musculus according to the
KEGG database (41). Pathway enrichment analysis coupled with
pathway topology analysis was performed to identify the altered
metabolic pathways. Obtained p values from the pathway
enrichment analysis were adjusted by the Holm method (42).
Network analysis was performed to map the functional
relationships of identified metabolites between the AIN93G
and HFD, between WT and Mcp-1-/- mice, and between WT
and Mcp-1-/- mice fed the HFD by using the KEGG Global
Metabolic Network and the Metabolite-Metabolite Interaction
Network. Differences with a p ≤ 0.05 are considered significant.
September 2021 | Volume 11 | Article 667843
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RESULTS

Body Weight, Adipose Mcp-1 Expression,
and Plasma MCP-1 Concentrations
Mice fed the HFD were heavier than mice fed the AIN93G diet,
regardless of genotype (Figure 1A). The difference was
significant after three weeks on the HFD and remained for the
remainder of the study (p < 0.05) (Figure 1A). Mcp-1-/- mice fed
the AIN93G diet were smaller than their WT counterparts; the
difference was significant in the last four weeks of the study (p <
0.05) (Figure 1A).

The HFD elevated Mcp-1 expression in adipose tissue by
166% compared to the AIN93G diet, regardless of genotype
(Figure 1B). Adipose Mcp-1 knockout diminished Mcp-1
elevation by 61% compared to WT mice, regardless of diet
(Figure 1B). Plasma concentrations of MCP-1 from WT mice
fed the HFD were 95% higher than that from WT mice fed the
AIN93G diet (Figure 1C). Adipose Mcp-1 deficiency
prevented plasma MCP-1 elevation in HFD-fed Mcp-1-/-

mice, which did not differ from that of AIN93G-fed Mcp-1-/-

mice (Figure 1C).
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Body Composition and Energy Intake
Regardless of genotype, the percent body fat mass of mice fed the
HFD was 37% greater than that of mice fed the AIN93G diet
(28.8 ± 0.9% vs. 21.1 ± 0.9%) (Figure 2A). The percent body lean
mass of the HFD-fed mice was 11% less than that of the
AIN93G-fed mice (69.7 ± 0.9% vs. 77.9 ± 0.9%) (Figure 2B).
The absolute lean mass of mice fed the HFD was slightly higher
than that of mice fed the AIN93G diet (28.5 ± 0.4 g vs. 26.6 ± 0.4
g) (Figure 2C). Energy intake of the HFD-fed mice was 7%
higher than that of the AIN93G-fed mice (39.4 ± 0.7 kcal per day
vs. 37.0 ± 0.7 kcal per day) (Figure 2D). There were no
significant differences in percent body fat mass, percent body
lean mass, absolute lean mass, and energy intake between WT
and Mcp-1-/- mice, regardless of diet (Figures 2A–D).

Mammary Tumorigenesis
and Lung Metastasis
Fewer Mcp-1-/- mice developed palpable mammary tumors than
WT mice. The tumor incidence was 19% for Mcp-1-/- mice (13
out of 68 mice) and 56% for WT mice (36 out of 64 mice) (p <
0.01), regardless of diet. There was no difference in tumor
A

B C

FIGURE 1 | Body weight (A), adipose Mcp-1 expression (B), and plasma concentrations of MCP-1 (C) in MMTV-PyMT mice with or without adipose monocyte
chemotactic protein-1 knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD). Mice fed the HFD were heavier than mice fed the AIN93G
diet; the difference was significant three weeks after the HFD (p < 0.05). Mcp-1-/- mice fed the AIN93G diet were smaller than their WT counterparts; the difference
was significant for the last four weeks of the study (p < 0.05). Values are means ± SEM [n = 32 per group for WT mice, n = 34 per group for Mcp-1-/- mice for
(A); n = 10 per group for (B); n = 16 per group for (C)]. Values with different letters are significant at p ≤ 0.05 for (C).
September 2021 | Volume 11 | Article 667843
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incidence between the HFD (26 out of 66 mice) and the AIN93G
diet (23 out of 66 mice), regardless of genotype.

Palpable mammary tumors were detected later in Mcp-1-/-

mice than in WT mice. Tumor latency of Mcp-1-/- mice fed the
AIN93G and HFD was 25.2 weeks and 25.1 weeks, respectively
(Figure 3A). Tumor latency of WT mice fed the AIN93G and
HFD was 17.4 weeks and 18.5 weeks, respectively (Figure 3A).
The difference between Mcp-1-/- and WT mice was significant
(p < 0.01), regardless of diet (Figure 3A).

Mice fed the HFD had greater tumor progression than mice fed
the AIN93G diet (4679 ± 786% vs. 2430 ± 700%), regardless of
genotype (Figure 3B). The tumor progression of Mcp-1-/- mice
was lower than that of WT mice (2317 ± 901% vs. 4792 ± 545%),
regardless of diet (Figure 3B). At the end of the study, mammary
tumors from Mcp-1-/- mice weighed 64% less than that from WT
mice (0.23 ± 0.15 g vs. 0.64 ± 0.09 g), regardless of diet
(Figure 3C). There was no significant difference in tumor
weight between the two diets, regardless of genotype (Figure 3C).

Few tumor-bearing mice in each group had detectable
metastases in the lungs. The incidence of metastasis was 38%
for Mcp-1-/- mice (5 out of 13 mice) and 39% for WT mice
Frontiers in Oncology | www.frontiersin.org 5
(14 out of 36 mice), regardless of diet. The incidence of
metastasis was 50% for the HFD (13 out of 26 mice) and 26%
for the AIN93G diet (6 out of 23 mice) regardless of genotype.
There were no significant differences in these comparisons.

Plasma Metabolomics Analysis
Plasma metabolomics analysis was performed to investigate
effects of adipose MCP-1 deficiency and HFD on metabolome.
Because few mice developed palpable mammary tumors,
particularly Mcp-1-/- mice, the analysis was performed by
using plasma samples from mice that did not develop palpable
tumors. We identified 127 compounds from 467 discrete
signals detected in plasma by the GC-TOF-MS. Eighty-seven of
the 127 compounds met the criteria for statistical analysis
(Supplementary Table 1). Fifty-six of these 87 compounds
differed significantly among the four groups, including 22
differed by diet, 22 by genotype, and 34 by diet and genotype
interactions (Tables 2–4).

The heatmap analysis of plasma metabolites provided
intuitive visualization of the results. It produced five responsive
clusters, 1) those that elevated in WT mice fed the HFD, 2) those
A B

C D

FIGURE 2 | The percent body fat mass (A), percent body lean mass (B), absolute lean mass (C), and energy intake (D) of MMTV-PyMT mice with or without
adipose monocyte chemotactic protein-1 knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD). Values are means ± SEM [n = 32 per
group for WT mice, n = 34 per group for Mcp-1-/- mice for (A–C); n = 12 mice per group for (D)].
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that elevated in Mcp-1-/- mice regardless of diet, 3) those that
remained relatively high in mice fed the AIN93G diet regardless
of genotype, 4) those that elevated in Mcp-1-/- mice fed the
AIN93G diet and WT mice fed the HFD, and 5) those that were
higher in Mcp-1-/- mice fed the AIN93G diet compared to other
groups (Figure 4).

The sPLSDA scores plot showed separations by diet and
genotype (Figures 5, 6). Along the x-axis, component 1
showed that WT mice fed the HFD and Mcp-1-/- mice fed
the AIN93G diet were separated from WT mice fed the
AIN93G diet whereas Mcp-1-/- mice fed the HFD remained
similar to WT mice fed the AIN93G diet (Figure 5A). The
loadings plot for component 1 identified the amino acids
(alanine, isoleucine, leucine, phenylalanine, threonine, and
valine) and carbohydrate metabolites (fumaric acid,
glucuronic acid, hexuronic acid, and malic acid) as major
determinants of separation (Figure 6A).

Along the y-axis, component 2 separated the groups into two
categories based upon the diet, mice fed the AIN93G diet and
mice fed the HFD, regardless of genotype (Figure 5A). The
loadings plot for component 2 identified carbohydrate
metabolites (1,5-anhydroglucitol, glucose, and phosphate),
Frontiers in Oncology | www.frontiersin.org 6
cholesterol, fatty acids (myristic acid, oleic acid, and
palmitoleic acid), and amino acid derivatives (2-aminobutyric
acid, aminomalonate, and 2-ketoisocapronic acid) as major
determinants of separation (Figure 6B).

Along the x-axis, component 3 separated HFD-fed mice, but
not AIN93G-fed mice, by genotype (Figure 5B). The loadings
plot for component 3 identified amino acids (lysine and
tyrosine), carbohydrate metabolites (phosphate and sorbitol),
cholesterol, linoleic acid, lipid metabolites (glycerol and 1-
monoolein), vitamin a-tocopherol and uric acid as major
determinants of separation (Figure 6C).

Pathway Analysis
Pathway analysis was conducted to determine metabolic pathways
that were altered in MMTV-PyMT mice. The identified
metabolites (Supplementary Table 2) were mapped into 55
metabolic pathways according to the KEGG database (35, 41).
Six pathways were altered the most (Table 5 and Figure 7).
These included aminoacyl-tRNA biosynthesis, arginine
biosynthesis, valine, leucine and isoleucine biosynthesis,
alanine, aspartate and glutamate metabolism, glyoxylate and
dicarboxylate metabolism, and citrate cycle (Table 5).
A

B C

FIGURE 3 | Mammary tumor latency (A), tumor progression (B), and tumor weight (C) of MMTV-PyMT mice with or without adipose monocyte chemotactic
protein-1 knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD). Values are means ± SEM [(n = 5-22 per group) for (B, C)]. N = 32-34
per group for (A).
September 2021 | Volume 11 | Article 667843
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Network Analysis
Network analysis of plasma metabolites by using the KEGG
Global Metabolic Network identified 9 metabolic pathways that
differed between the AIN93G diet and HFD, regardless of
genotype (Table 6). These pathways were glycine, serine, and
Frontiers in Oncology | www.frontiersin.org 7
threonine metabolism, valine, leucine, and isoleucine biosynthesis,
arginine biosynthesis, citrate cycle, pyruvate metabolism, glycolysis/
gluconeogenesis, alanine, aspartate, and glutamine metabolism,
glyoxylate and dicarboxylate metabolism, and cysteine and
methionine metabolism (Table 6). Nine pathways differed
TABLE 2 | Identified plasma metabolites related to amino acid metabolism that differed in MMTV-PyMT mice with or without adipose monocyte chemotactic protein-1
knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- Diet, p Gene, p Diet x Gene, p

Proteinogenic amino acids
Alanine 1.00 ± 0.15b 1.74 ± 0.15a 1.24 ± 0.12b 1.19 ± 0.07b 0.21 0.01 <0.01
Glycine 1.00 ± 0.08 1.18 ± 0.07 0.97 ± 0.06 0.90 ± 0.08 0.04 0.45 0.09
Isoleucine 1.00 ± 0.07b 1.38 ± 0.09a 1.29 ± 0.06a 0.87 ± 0.04b 0.09 0.80 <0.01
Leucine 1.00 ± 0.07b 1.28 ± 0.08a 1.34 ± 0.08a 0.84 ± 0.05b 0.48 0.13 <0.01
Lysine 1.00 ± 0.12 1.40 ± 0.11 0.86 ± 0.06 1.25 ± 0.15 0.22 <0.01 0.99
Phenylalanine 1.00 ± 0.08b 1.37 ± 0.08a 1.25 ± 0.06ab 0.98 ± 0.09b 0.34 0.52 <0.01
Methionine 1.00 ± 0.06b 1.33 ± 0.08a 0.99 ± 0.07b 0.91 ± 0.10b 0.01 0.12 0.01
Proline 1.00 ± 0.20b 1.87 ± 0.27a 1.19 ± 0.20ab 0.92 ± 0.15b 0.08 0.16 0.01
Serine 1.00 ± 0.06 1.28 ± 0.08 0.96 ± 0.04 1.07 ± 0.10 0.09 0.01 0.24
Threonine 1.00 ± 0.09b 1.65 ± 0.16a 1.02 ± 0.07b 1.00 ± 0.08b <0.01 <0.01 <0.01
Tyrosine 1.00 ± 0.06 1.30 ± 0.08 1.00 ± 0.04 1.35 ± 0.12 0.74 <0.01 0.77
Valine 1.00 ± 0.06b 1.43 ± 0.08a 1.28 ± 0.05a 0.92 ± 0.06b 0.09 0.59 <0.01
Nonproteinogenic amino acids and derivatives
2-Aminobutyric acid 1.00 ± 0.24 1.61 ± 0.22 0.67 ± 0.06 0.69 ± 0.07 <0.01 0.07 0.08
Aminomalonate 1.00 ± 0.09 0.91 ± 0.11 0.66 ± 0.07 0.84 ± 0.10 0.04 0.66 0.15
2-Hydroxybutanoic acid 1.00 ± 0.17a 0.41 ± 0.05b 0.60 ± 0.15ab 0.70 ± 0.15ab 0.70 0.84 0.02
Indole-3-propionic acid 1.00 ± 0.37 1.81 ± 0.47 0.59 ± 0.15 0.52 ± 0.12 0.01 0.25 0.17
2-Ketoisocaproic acid 1.00 ± 0.14 1.13 ± 0.13 0.86 ± 0.06 0.65 ± 0.05 <0.01 0.71 0.11
Oxoproline 1.00 ± 0.07 1.17 ± 0.07 1.23 ± 0.06 1.01 ± 0.06 0.59 0.74 0.01
Taurine 1.00 ± 0.16 1.82 ± 0.32 1.78 ± 0.23 1.41 ± 0.19 0.44 0.33 0.01
Urea cycle metabolites
Citrulline 1.00 ± 0.07 1.25 ± 0.09 0.89 ± 0.09 0.92 ± 0.06 0.01 0.08 0.17
Urea 1.00 ± 0.04a 0.42 ± 0.17b 0.47 ± 0.16b 0.79 ± 0.11ab 0.52 0.32 <0.01
Septem
ber 2021 |
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Values of treatment groups are standardized to that of the AIN93G WT group. Values (means ± SEM) in the same row with different letters are significant at p ≤ 0.05 (false discovery rate-
adjusted p values) (n = 10 per group).
TABLE 3 | Identified plasma metabolites related to carbohydrate metabolism that differed in MMTV-PyMT mice with or without adipose monocyte chemotactic protein-1
knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- Diet, p Gene, p Diet x Gene, p

1,5-Anhydroglucitol 1.00 ± 0.07a 0.79 ± 0.06a 0.34 ± 0.06b 0.40 ± 0.05b <0.01 0.22 0.03
Erythritol 1.00 ± 0.09 1.32 ± 0.10 1.31 ± 0.11 1.09 ± 0.04 0.67 0.58 <0.01
Fumaric acid 1.00 ± 0.17b 2.48 ± 0.36a 1.35 ± 0.19b 1.11 ± 0.14b 0.03 0.01 <0.01
Glucose 1.00 ± 0.07b 0.98 ± 0.03b 1.05 ± 0.03b 1.24 ± 0.05a <0.01 0.09 0.03
Glucose-1-phosphate 1.00 ± 0.14 0.79 ± 0.05 0.81 ± 0.07 1.23 ± 0.18 0.31 0.39 0.01
Glucuronic acid 1.00 ± 0.21b 3.59 ± 0.86a 1.13 ± 0.13b 1.09 ± 0.14b 0.01 0.01 0.01
Glycerol-a-phosphate 1.00 ± 0.11 1.09 ± 0.15 1.45 ± 0.12 1.06 ± 0.10 0.09 0.22 0.05
Glyceric acid 1.00 ± 0.18 1.74 ± 0.22 1.62 ± 0.23 1.28 ± 0.16 0.69 0.32 0.01
Hexuronic acid 1 1.00 ± 0.26b 3.63 ± 0.90a 1.11 ± 0.17b 1.04 ± 0.18b 0.02 0.01 0.01
Hexuronic acid 2 1.00 ± 0.10b 1.88 ± 0.33a 1.05 ± 0.04b 1.17 ± 0.08ab 0.07 0.01 0.04
3-Hydroxybutyric acid 1.00 ± 0.27 0.87 ± 0.13 1.03 ± 0.11 0.43 ± 0.06 0.22 0.03 0.16
Isocitric acid 1.00 ± 0.09ab 1.30 ± 0.13a 1.03 ± 0.12ab 0.83 ± 0.07b 0.04 0.62 0.03
Lactic acid 1.00 ± 0.28 1.65 ± 0.37 0.62 ± 0.06 0.57 ± 0.09 <0.01 0.21 0.16
Malic acid 1.00 ± 0.22b 2.52 ± 0.40a 1.07 ± 0.23b 1.00 ± 0.23b 0.01 0.01 0.01
Mannose 1.00 ± 0.07 1.08 ± 0.06 1.16 ± 0.07 0.94 ± 0.03 0.87 0.28 0.02
Myoinositol 1.00 ± 0.07ab 1.32 ± 0.09a 1.05 ± 0.11ab 0.95 ± 0.05b 0.07 0.21 0.02
Phosphate 1.00 ± 0.06b 1.07 ± 0.07b 1.49 ± 0.10a 0.95 ± 0.05b 0.02 <0.01 <0.01
Pyruvic acid 1.00 ± 0.20 1.42 ± 0.16 0.69 ± 0.10 0.88 ± 0.13 0.01 0.05 0.46
Sorbitol 1.00 ± 0.16 1.74 ± 0.21 1.07 ± 0.16 1.49 ± 0.09 0.57 <0.01 0.33
Succinic acid 1.00 ± 0.20 1.35 ± 0.21 1.54 ± 0.34 0.76 ± 0.14 0.91 0.37 0.02
Xylose 1.00 ± 0.04b 1.11 ± 0.07ab 1.26 ± 0.08a 1.03 ± 0.05ab 0.18 0.36 0.01
Values of treatment groups are standardized to that of the AIN93G WT group. Values (means ± SEM) in the same row with different letters are significant at p ≤ 0.05 (false discovery rate-
adjusted p values) (n = 10 per group).
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between WT and Mcp-1-/- mice, regardless of diet (Table 6). These
included alanine, aspartate, and glutamine metabolism, glycine,
serine, and threonine metabolism, tyrosine metabolism, citrate
cycle, pyruvate metabolism, galactose metabolism, phenylalanine,
tyrosine, and tryptophan biosynthesis, linoleic metabolism, and
biotin metabolism (Table 6). Three pathways differed when HFD-
fed Mcp-1-/- mice were compared to HFD-fed WT mice (Table 6).
They were valine, leucine, and isoleucine biosynthesis, valine,
leucine, and isoleucine degradation, and pantothenate and CoA
biosynthesis (Table 6). Networks of the metabolites mapped by the
Metabolite-Metabolite Interaction Network between AIN93G diet
and HFD, between WT and Mcp-1-/- mice, and between the HFD-
fedMcp-1-/- and the HFD-fedWTmice are in Figures 8A, B, and 9,
respectively; their network statistics are in Supplementary Table 3.
DISCUSSION

The present study showed that adipose-derived MCP-1
contributed to mammary tumorigenesis in male MMTV-PyMT
mice. We have three important findings with this male breast
cancer model. First, mammary tumorigenesis is slow and less
aggressive in male MMTV-PyMT mice. This is evidenced by a
longer latency before detection of palpable mammary tumors
(17.4 weeks) and a lower tumor incidence (56%) compared to
female MMTV-PyMT mice reported to have a shorter latency
(6 to 8 weeks) and 100% tumor incidence (24, 28, 43). The
observed delay in onset of mammary tumorigenesis is consistent
with a previous report showing a 14-week tumor latency with a
70% tumor incidence in male MMTV-PyMT mice (44). Findings
from this study support clinical observations that breast cancer
occurs late in life in men than that in women (9).

Second, mammary tumorigenesis in male MMTV-PyMT
mice responds to dietary changes, evidenced by the increased
tumor progression in mice fed the HFD. Mice fed the HFD
TABLE 4 | Identified plasma metabolites related to lipid, nucleotide, and vitamin metabolisms that differed in MMTV-PyMT mice with or without adipose monocyte
chemotactic protein-1 knockout [Mcp-1-/- or wild-type (WT)] and fed the AIN93G or high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- Diet, p Gene, p Diet x Gene, p

Lipid metabolism
Cholesterol 1.00 ± 0.12 0.74 ± 0.08 1.32 ± 0.10 1.05 ± 0.08 <0.01 0.01 0.98
Diglycerol 1.00 ± 0.15 1.28 ± 0.11 1.42 ± 0.14 1.21 ± 0.08 0.16 0.80 0.05
Glycerol 1.00 ± 0.06 0.77 ± 0.05 1.05 ± 0.11 0.84 ± 0.03 0.38 <0.01 0.92
Heptadecanoic acid 1.00 ± 0.09 1.20 ± 0.04 1.27 ± 0.12 1.12 ± 0.05 0.24 0.79 0.04
Linoleic acid 1.00 ± 0.18 0.77 ± 0.09 1.24 ± 0.04 0.78 ± 0.08 0.29 <0.01 0.31
1-Monoolein 1.00 ± 0.13 0.76 ± 0.06 1.40 ± 0.18 0.99 ± 0.07 0.01 0.01 0.51
Myristic acid 1.00 ± 0.08 0.95 ± 0.07 0.88 ± 0.04 0.63 ± 0.08 <0.01 0.03 0.14
Oleic acid 1.00 ± 0.36b 2.37 ± 0.95ab 4.21 ± 0.67a 2.41 ± 0.64ab 0.02 0.75 0.02
Palmitoleic acid 1.00 ± 0.18 0.78 ± 0.10 0.30 ± 0.02 0.16 ± 0.02 <0.01 0.11 0.68
Nucleotides
Pseudo uridine 1.00 ± 0.11 1.25 ± 0.08 1.33 ± 0.13 1.01 ± 0.07 0.66 0.72 0.01
Thymidine 1.00 ± 0.11 1.09 ± 0.10 0.67 ± 0.10 1.01 ± 0.11 0.06 0.05 0.25
Uric acid 1.00 ± 0.17 0.65 ± 0.12 1.06 ± 0.12 0.65 ± 0.08 0.82 0.01 0.82
Vitamins
Threonic acid 1.00 ± 0.15 1.69 ± 0.22 1.76 ± 0.28 1.29 ± 0.12 0.37 0.59 <0.01
a-Tocopherol 1.00 ± 0.19 0.52 ± 0.11 1.50 ± 0.15 0.98 ± 0.15 <0.01 <0.01 0.91
September 202
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Values of treatment groups are standardized to that of the AIN93G WT group. Values (means ± SEM) in the same row with different letters are significant at p ≤ 0.05 (false discovery rate-
adjusted p values) (n = 10 per group).
FIGURE 4 | Hierarchical clustering heatmap of the top 25 plasma metabolites
that differ among the four dietary groups. AIN WT (red): wild-type mice fed the
AIN93G diet; AIN Mcp-1-/- (green): Mcp-1-/- mice fed the AIN93G diet; HFD
WT (blue): wild-type mice fed the high-fat diet; HFD Mcp-1-/- (cyan): Mcp-1-/-

mice fed the high-fat diet. Each cell on the map represents the group average
of a metabolite (n = 10 per group).
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A B

FIGURE 5 | Sparse partial least square discriminant analysis of the plasma metabolome among the four dietary groups. (A) Components 1 vs 2; (B) Components 2
vs 3. AIN WT (red): wild-type mice fed the AIN93G diet; AIN Mcp-1-/- (green): Mcp-1-/- mice fed the AIN93G diet; HFD WT (blue): wild-type mice fed the high-fat diet;
HFD Mcp-1-/- (cyan): Mcp-1-/- mice fed the high-fat diet (n = 10 per group).
A B

C

FIGURE 6 | Loadings plots of the 10 metabolites that are the most influential in treatment separation among the four groups for components 1 (A), 2 (B), and 3 (C)
(n = 10 per group).
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gained body fat mass. Diet-induced obesity enhances mammary
tumorigenesis in female MMTV-PyMT mice (24, 28, 43).
Adipose tissue, considered an endocrine organ, produces
proinflammatory cytokines that can be tumorigenic in rodent
models of cancer, including the MMTV-PyMT model (24, 28,
43). Results from this study suggest that adipose-derived
cytokines may be responsible, at least partly, for the HFD-
enhanced mammary tumorigenesis in male mice.

Third, adipose-derived MCP-1 contributes to mammary
tumorigenesis in male MMTV-PyMT mice. This is
demonstrated by longer latency and lower tumor incidence,
tumor progression, and tumor weight in Mcp-1-/- mice. These
Frontiers in Oncology | www.frontiersin.org 10
observations are MCP-1 specific and independent on body fat,
because there were no differences in body fat mass betweenMcp-1-/-

and WT mice, particularly those fed the HFD. These findings are
consistent with a previous report that adipose MCP-1 deficiency
mitigates mammary tumorigenesis in female MMTV-PyMT
mice (24).

In this study, we analyzed plasma metabolome in male
MMTV-PyMT mice. Pathway analysis showed disturbances in
metabolic pathways in MMTV-PyMT mice. The two most
significant alterations are pathways related to amino acid and
carbohydrate metabolisms. The aminoacyl-tRNA biosynthesis
pathway is important in protein synthesis (45). It is a group of
aminoacyl-tRNA synthetases that catalyze aminoacylations by
covalently linking an amino acid to its cognate tRNA in the first
step of protein translation. This includes glycine, serine, and
threonine metabolism, valine, leucine and isoleucine
biosynthesis, arginine biosynthesis, alanine, aspartate and
glutamate metabolism, and phenylalanine, tyrosine, and
tryptophan biosynthesis identified by the network analysis in
MMTV-PyMT mice.

Alteration in the citrate cycle and pyruvate metabolism is an
evidence of disturbed carbohydrate metabolism. However, it is
interest to find the glyoxylate and dicarboxylate metabolism
pathway in MMTV-PyMT mice. The glyoxylate cycle, a
modification of the citrate cycle, was found in plants and some
microorganisms but not in animals because animals lack two key
enzymes of the cycle (isocitrate lyase and malate synthase).
However, available studies have showed that the glyoxylate
cycle occurs in animals (46, 47). The detection of isocitric acid
TABLE 5 | Metabolic pathways identified by the pathway analysis that are
significantly altered in MMTV-PyMT mice.

KEGG pathway Number of
metabolites
identified

pa Impactb

Aminoacyl-tRNA biosynthesis 15 <0.01 0.17
Arginine biosynthesis 7 <0.01 0.41
Valine, leucine and isoleucine biosynthesis 5 <0.01 0
Alanine, aspartate and glutamate
metabolism

8 <0.01 0.36

Glyoxylate and dicarboxylate metabolism 8 0.01 0.26
Citrate cycle 6 0.03 0.30
ap-values are obtained by the over-representation analysis and adjusted by the
Holm method.
bImpact is the pathway impact score obtained by the pathway topology analysis.
FIGURE 7 | Matched metabolic pathway plot by using identified metabolites
in MMTV-PyMT mice. The x-axis marks the pathway impact. The y-axis
marks the pathway enrichment. Each node represents a pathway. The nodes
with larger sizes and darker colors (from yellow to red) positioning towards
top right region represent higher pathway impact values and higher pathway
enrichment. Pathways that are significantly altered are presented with their
names next to their nodes and are in Table 5. All detected metabolic
pathways are presented in Supplementary Table 2.
TABLE 6 | Metabolic pathways identified by the KEGG Global Metabolic
Network that are significantly altered by the diet (AIN93G vs. high-fat diet) and
genotype (wild-type vs. Mcp-1-/-) in MMTV-PyMT mice with or without adipose
monocyte chemotactic protein-1 knockout (Mcp-1-/- or wild-type) and fed the
AIN93G or high-fat diet.

Metabolic pathways p

AIN93G diet vs. high-fat diet, regardless of genotype
Glycine, serine, and threonine metabolism <0.01
Valine, leucine, and isoleucine metabolism <0.01
Arginine biosynthesis <0.01
Citrate cycle 0.01
Pyruvate metabolism 0.01
Glycolysis/gluconeogenesis 0.02
Alanine, aspartate, and glutamate metabolism 0.03
Glyoxylate and dicarboxylate metabolism 0.03
Cysteine and methionine metabolism 0.03

Wild-type mice vs. Mcp-1-/- mice, regardless of diet
Alanine, aspartate, and glutamine metabolism <0.01
Glycine, serine, and threonine metabolism <0.01
Tyrosine metabolism 0.02
Citrate cycle 0.02
Pyruvate metabolism 0.02
Galactose metabolism 0.05
Phenylalanine, tyrosine, and tryptophan biosynthesis 0.05
Linoleic acid metabolism 0.05
Biotin metabolism 0.05

Wild-type mice vs. Mcp-1-/- mice, high-fat diet
Valine, leucine, and isoleucine biosynthesis <0.01
Valine, leucine, and isoleucine degradation <0.01
Pantothenate and CoA biosynthesis 0.05
September 2021 | Volume 11 | Article 6
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and malic acid in plasma of MMTV-PyMT mice support the
existence of the glyoxylate cycle in these mice. The potential
involvement of glyoxylate and dicarboxylate metabolism in
altered carbohydrate metabolism in MMTV-PyMT mice and
its impact on mammary tumorigenesis certainly warrant
further investigation.

Results from the network analysis support findings from the
pathway analysis. It further demonstrates that both the HFD and
adipose MCP-1 deficiency alter amino acid and carbohydrate
metabolisms in male MMTV-PyMT mice. It is particularly
interesting that both branched-chain amino acid (BCAA)
Frontiers in Oncology | www.frontiersin.org 11
biosynthesis and degradation pathways were altered when
HFD-fed Mcp-1-/- mice were compared to their WT
counterparts. Our findings of accelerated BCAA metabolism
support the clinical observations of disturbed BCAA
metabolism in human breast cancer patients (48, 49).

Heatmap analysis illustrates the top 25 metabolites that are
major determinants in separation of the four dietary groups.
The expression of 17 of them was higher in AIN93G-fed Mcp-
1-/- mice than in their WT counterparts. These include essential
amino acids (isoleucine, leucine, lysine, methionine,
phenylalanine, threonine, and valine), nonessential amino
acids (alanine and tyrosine), amino acid metabolites (2-
aminobutyric acid and citrulline), metabolites of carbohydrate
metabolism (fumaric acid, glucuronic acid, malic acid, and
sorbitol), and fatty acid metabolite hexuronic acids. These
findings indicate that MCP-1 deficiency may have altered
metabolism in AIN93G-fed mice, particularly amino acid
metabolism, and that adipose-derived MCP-1 may contribute
to metabolic homeostasis in mice fed a non-obesogenic diet. It
is interest to note that the expression of 14 of these 17
metabolites (except lysine, sorbitol, and tyrosine) were lower
in HFD-fed Mcp-1-/- mice. It suggests that a high-energy intake
may attenuate, at least partly, the metabolic alterations caused
by adipose MCP-1 deficiency.

Multivariate and clustered heatmap analyses showed the
separation of plasma metabolome among the four groups.
Component 1 of the sPLSDA scores plot showed that clusters
of WT mice differed by diet. However, the cluster of HFD-fed
Mcp-1-/- mice remained similar to that of AIN93G-fed WT
controls. This is the case for the major determinant metabolites
shown in the loadings plot for component 1, in which BCAAs
and phenylalanine are major determinants that separate the
dietary groups. BCAAs account for one-third dietary essential
amino acids and make up 20% of total protein content (50).
BCAAs, specifically leucine, activate mammalian target of
rapamycin complex (mTORC) signal pathway that is essential
for initiation of protein synthesis (51, 52). Elevated expression
of BCAAs in HFD-fed WT mice, compared to that in AIN93G-
fed WT mice, are consistent with findings from both human
and rodent studies (53, 54) and support the concept that the
impaired BCAA catabolic pathway in obesity leads to BCAA
buildup in the blood (53, 54). Significantly lower expression of
BCAAs in HFD-fed Mcp-1-/- mice, compared to that in HFD-
fed WT mice, indicates that adipose MCP-1 deficiency may
attenuate the impaired BCAA metabolism in mice fed an
obesogenic diet.

The elevated expression of four metabolites (cholesterol,
phosphate, 1-monoolein, and a-tocopherol) identified by the
heatmap in HFD-fed WT mice suggests accelerated metabolism
in mice fed an obesogenic diet. Phosphate is involved in many
anabolic and catabolic metabolisms. Cholesterol is essential for
membrane biogenesis and a precursor for steroid hormone
synthesis. Cholesterol is elevated in mammary tumors in
MMTV-PyMT mice fed an HFD (55). Hypercholesterolemia
promotes mammary tumorigenesis in MMTV-PyMT mice (56,
57). Elevations in a-tocopherol (an essential nutrient) and 1-
FIGURE 8 | Metabolic network of plasma metabolites between the AIN93G
and high-fat diet (A) and between wild-type and Mcp-1-/- mice (B). Colors, from
white-yellow to red, indicate levels of impact the metabolites have on the
network in an ascending order (the number of connections a node has to
other nodes and the number of shortest paths going through the node).
Network statistics for (A, B) are presented in Supplementary Table 3.
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monoolein (a major hydrolysis product of dietary triacylglycerol)
(58) indicate an increase in nutrient uptake from the diet and an
up-regulation in lipolysis of triacylglycerol in these mice. The
attenuated expression of these metabolites in HFD-fed Mcp-1-/-

mice suggests that adipose-derived MCP-1 may contribute to the
diet-induced metabolic dysregulation in WT mice.

The significant elevation in glucose in HFD-fed Mcp-1-/- mice
suggests impaired glucose metabolism under the MCP-1
deficiency in mice consuming an obesogenic diet. This elevation
is not solely due to MCP-1 deficiency nor HFD alone, because
such elevation was not observed inMcp-1-/- mice fed the AIN93G
diet nor WT mice fed the HFD. Rather, it is likely an interaction
between MCP-1 deficiency and the HFD. The impairment is
supported by the lower expression of 1,5-anhydroglucitol in
these HFD-fed Mcp-1-/- mice. 1,5-Anhydroglucitol is a marker
of glycemic control; its blood level is inversely correlated with
blood glucose (59). Cancer cells demand high glucose uptake for
their rapid, uncontrolled proliferation (60). The roles of adipose-
derived MCP-1 in glucose metabolism under the obesogenic
condition and its impact on mammary tumorigenesis warrant
further investigation.

We found there were no differences in plasma concentrations
of MCP-1 betweenMcp-1-/- andWTmice fed the AIN93G diet. In
this study, the expression of Mcp-1 in adipose tissue was low in
Mcp-1-/- mice. However, it does not exclude the possibility that
MCP-1 from non-adipose tissue may contribute to plasma
concentrations in mice consuming the AIN93G diet.
Nevertheless, significant decreases in plasma MCP-1 in HFD-fed
Mcp-1-/- mice, compared to their WT counterparts, demonstrates
Frontiers in Oncology | www.frontiersin.org 12
the validity of the model and that decreases in plasmaMCP-1 are a
result of MCP-1 deficiency in adipose tissue.

A limitation of this study is that we were not able to analyze
plasma metabolome from tumor-bearing mice because few mice,
particularly Mcp-1-/- mice, developed palpable mammary tumors.
This made us unable to examine the metabolic profile in the
presence of mammary tumor. Furthermore, cautions should be
taken in data interpretation, as the observed plasma alterations
could be results from undetected nonpalpable tumors, stromal or
systematic changes, or their combinations. Nevertheless, this study
showed plasma metabolome in mice carrying PyMT oncogene
and its changes resulted from adipose Mcp-1 knockout and high-
fat consumption. To our knowledge, this is the first study
providing an assessment of plasma metabolic profile in this
male MMTV-PyMT breast cancer model. Metabolomics
differences between mammary tumors and mammary glands
and the resulting systematic changes by adipose MCP-1
deficiency certainly warrant further investigation.

In summary, the present study showed that adipose-specific
MCP-1 deficient mice had longer tumor latency and lower tumor
incidence, tumor progression, and tumor burden compared to
WT mice. It indicates that adipose-derived MCP-1 may
contribute to mammary tumorigenesis in male MMTV-PyMT
mice. Plasma metabolomics analysis identified 56 metabolites
that differed significantly among the four dietary groups.
Pathway and network analyses of the identified metabolites
showed that amino acid and carbohydrate metabolisms are the
most disturbed pathways in MMTV-PyMT mice. These
metabolomics findings warrant further investigation on the
role of adipose-derived MCP-1 in causal relationships between
cancer metabolism and mammary tumorigenesis with this
MMTV-PyMT model and through which to build strategies
for prevention and treatment of male breast cancer.
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