
Prediction of Drought-Resistant Genes in Arabidopsis
thaliana Using SVM-RFE
Yanchun Liang1, Fan Zhang1, Juexin Wang1, Trupti Joshi2, Yan Wang1*, Dong Xu1,2*

1 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun,

China, 2 Digital Biology Laboratory, Computer Science Department and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States

of America

Abstract

Background: Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance.
Although massive DNA microarray gene expression data have been generated for plants, current computational approaches
underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been
explored for human diseases, but typically these methods have not been converted into publicly available software tools
and cannot be applied to plants for identifying genes with agronomic traits.

Methodology: In this study, we used 22 sets of Arabidopsis thaliana gene expression data from GEO to predict the key
genes involved in water tolerance. We applied an SVM-RFE (Support Vector Machine-Recursive Feature Elimination) feature
selection method for the prediction. To address small sample sizes, we developed a modified approach for SVM-RFE by
using bootstrapping and leave-one-out cross-validation. We also expanded our study to predict genes involved in water
susceptibility.

Conclusions: We analyzed the top 10 genes predicted to be involved in water tolerance. Seven of them are connected to
known biological processes in drought resistance. We also analyzed the top 100 genes in terms of their biological functions.
Our study shows that the SVM-RFE method is a highly promising method in analyzing plant microarray data for studying
genotype-phenotype relationships. The software is freely available with source code at http://ccst.jlu.edu.cn/JCSB/RFET/.
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Introduction

Among all kinds of environmental stresses (abiotic and biotic) in

worldwide agriculture, drought is a major abiotic stress factor with

significant impact on agricultural production. While resistance to

biotic stresses is sometimes associated with monogenic traits,

abiotic stresses are typically associated with multigenic traits,

making it more difficult to study [1]. Hydropenia can trigger a

cascade of physiological and metabolic activities in plants so the

tolerance and susceptibility to drought are very complex. Among

all the plants, Arabidopsis thaliana is the most popular model

organism used in studying drought tolerance of plants, as it is a

typical glycophyte, and many other xerophytes or desiccation-

tolerant plants are similar to glycophytes in the drought-resistant

mechanism. Hence, we focus on Arabidopsis to explore the drought-

resistant genes in this study.

Recently, several research groups have investigated drought-

mediated changes in gene expression using microarrays [2–5].

Microarray datasets typically include several thousands to tens of

thousands of genes with relatively a small number of samples, but

many genes are irrelevant or redundant for the purpose of this

study. Biologically, there are often tens to hundreds of genes

significantly associated to a trait like drought resistance. Hence, it

is important to develop computational methods to mine these

genes based on microarray data.

Prediction of genes associated with a trait can be formulated as a

feature selection problem where key features (genes) of microarray

data are indicative of a trait. Various feature selection techniques

in handling gene expression data have been proposed. In

particular, three types of classification-based methods were

developed, i.e., filtering methods, wrapper methods, and embed-

ded methods [6]. Feature selection using embedded SVM

evaluation criterion to assess feature relevance is a typical and

successful method [7]. Several other studies have provided

alternative methods. For example, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) was applied to train

SVM for obtaining the weight of each feature and removing the

one with the smallest weight iteratively [7–11]. This algorithm is

superior to the ‘‘naı̈ve’’ ranking with only one time RFE [7,12].

However, this study [13] is the only study to apply the SVM-RFE

method for identifying genes of an agronomic trait. Instead,

current methods typically use a simple t-test for identifying

important genes relevant to a trait [14,15]. This could be

problematic for integrating data from various sources. Further-
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more, many researchers currently study genotype-trait relation-

ships in an ad hoc fashion, e.g. by manually tuning various

parameters that are relatively poorly understood [16]. These issues

may result in vast amounts of plant microarray data being

underutilized for studying genotype-phenotype relationships. One

of the reasons behind these issues is lack of publicly available

advanced tools. For example, while the SVM-RFE method is

highly promising in analyzing microarray data, there was no

software tool available.

In this study, we developed a systematic tool by improving the

SVM-RFE method for identifying trait-specific genes using

microarray data. The tool characterizes drought-resistant genes

in Arabidopsis thaliana and is generally applicable to study genotype-

phenotype relationships using gene expression data from micro-

array or RNA-Seq. Furthermore, the tool is freely available with

source code at http://ccst.jlu.edu.cn/JCSB/RFET/.

Materials and Methods

Data source
GEO (http://www.ncbi.nlm.nih.gov/geo/) currently contains

1664 datasets with 90 GDSs, 299 platforms and 1275 series for

Arabidopsis thaliana. Among these datasets, we used GSE10670

concerning global expression profiling of wild type and transgenic

Arabidopsis plants in response to water stress published on

September 1, 2008, and last updated on March 15, 2009. From

GEO this is the largest gene expression dataset available up to date

for studying plant drought resistance. The data was generated

from the Affymetrix platform GPL198 Arabidopsis ATH1 Genome

Array. It consists of 22,810 probes and each probe corresponds to

one gene. In all we identified 22 samples from GSM269812 to

GSM269833, including the wild type (WT), two independent

transgenic lines (T6 and T8), and the vector control line (C2),

which was used as an additional control. In all related

experiments, the relative water content (RWC) of wild type and

transgenic leaves during a period of dehydration was monitored.

At day 7 when the transgenic plants were still at an RWC of

.85%, the wild type and vector control plants were at an RWC of

,50–60% [17]. Hence, we first chose experimental samples just

on T6 and T8, which were expected to reveal drought tolerant

genes. Table 1 gives the specific description of the data used, and

the class label (0/1) is according to the different stress conditions.

Table 2 presents the susceptibility genotype (WT and C2) data,

which were used to discard the tuning genes as described later.

Data preprocessing stage
We applied a quantile-based [18] RMA (Robust Multi-chip

Averages) method for normalizing microarray data. The RMA feeds

probes data stored in Affymetrix CEL into a stochastic model to

estimate gene expression and converts the probe data to gene

expression data. We conducted the RMA analysis using Bioconduc-

tor (http://www.bioconductor.org/), which is an open-source tool

for bioinformatics using the R statistical programming language.

T-test method for preliminary selection
For tens of thousands of genes, it would be of high complexity to

use the SVM-RFE directly. Hence, we first employed a t-test [19] to

filter out unlikely genes involved in drought tolerance. In our

preliminary selection we assigned 0.001 as the p-value threshold,

resulting in 736 genes, which are still too many for agronomic studies.

Using SVM-RFE method for gene selection
RFE is an iterative procedure for SVM classifier. A cost

function J computed on training samples is used as an objective

function. Expanding J in Taylor series to the second order using

the OBD algorithm [20], and neglecting the first order term at the

optimum of J, yield:

DJ(i)~
1

2

L2J

Lwi
2

(Dwi)
2 ð1Þ

Here (wi)
2 was used as the ranking criterion and we used

LIBSVM (a library for Support Vector Machines) [21] with a linear

kernel. We present below an outline of the SVM-RFE in the linear

kernel. For more details about this method, see Guyon et al. [7].

Algorithm SVM-RFE.

Inputs:

Training samples (microarray datasets)

X0~½x1,x2,:::,x12�T

Table 1. Resistant samples description.

N. Sample
Transgenic
line

Stress
condition Rep* Class label+

1 GSM269814 T6 well watered 1 1

2 GSM269815 T6 drought 1 0

3 GSM269816 T8 well watered 1 1

4 GSM269817 T8 drought 1 0

5 GSM269822 T6 well watered 2 1

6 GSM269823 T6 drought 2 0

7 GSM269824 T8 well watered 2 1

8 GSM269825 T8 drought 2 0

9 GSM269830 T6 well watered 3 1

10 GSM269831 T6 drought 3 0

11 GSM269832 T8 well watered 3 1

12 GSM269833 T8 drought 3 0

*: Rep is the number of biological replications.
+: Class label is used to indicate well watered (1) and the drought (0),
respectively.

doi:10.1371/journal.pone.0021750.t001

Table 2. Susceptible samples description.

N. Sample Genotype
Stress
condition Rep Class label

1 GSM269812 WT well watered 1 1

2 GSM269813 WT drought 1 0

3 GSM269818 C2 well watered 1 1

4 GSM269819 C2 drought 1 0

5 GSM269820 WT well watered 2 1

6 GSM269821 WT drought 2 0

7 GSM269826 C2 well watered 2 1

8 GSM269827 C2 drought 2 0

9 GSM269828 WT well watered 3 1

10 GSM269829 WT drought 3 0

Table caption follows Table 1.
doi:10.1371/journal.pone.0021750.t002

Predicting Drought-Resistant Genes Using SVM-RFE

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e21750



Class labels (1 for well watered or 0 for drought)

y~½y1,y2,:::,y12�T

Initialize:

Surviving genes

s~½1,2,:::736�

Gene-ranking list

r~½�

Limit training samples to good genes

X~X0( :,s)

Train the classifier

a~SVM{train(X ,y)

Compute the weight from each selected gene:

w~
X

k

akykxk

where k indicates the k-th training pattern.

Compute the ranking criterion for the i-th gene

R(i)~(wi)
2

Mark the gene with the lowest ranking

g~ arg min (R)

Renew the gene-ranking list

r~½s(g),r�

Eliminate the gene with the lowest ranking

s~s(1 : g{1,gz1 : length(s))

Repeat until s~½�
Output:

A gene-ranking list r.

We trained the classifier, computed the ranking for the 736

genes obtained and then removed the gene with the lowest

ranking. We repeated the process until all the genes were removed.

This iterative process is a sequence backward selection (SBS)

procedure and at last the method produces a gene-ranking list with

weights from high to low.

To improve prediction accuracy we conducted several rounds of

bootstrapping in the SVM-RFE procedure and in each round one

sorted list was produced. However, there is a shortage of

experimental samples that are needed to train the SVM. This

brings up two issues: one is how to generate training and test sets,

and the other is how to combine the weights of each gene in each

sorted list. To address these two issues, we developed the following

two solutions:

1) In order to make good use of limited data for predicting

drought-resistant genes in Arabidopsis, the generation of training

set is a key factor. The dataset was randomly split into n subsets

of approximately equal size, then one subset was removed, and

the remaining samples formed the training set. Each time a

different subset was selected in such a way that all the samples

had an equal chance to be selected as the training data. We call

it n-CV, where n could be equal to 12, 6, 4, or 3, respectively.

In the following examples, there are 12 samples from

transgenic lines described in Table 1, and a 6-CV was used

for each subset with two samples. Then the Leave One Out

Cross Validation (LOOCV) was used for training SVM (see

Figure 1). After that we performed 100 times of 6-CV and each

6-CV ran 6 times of the SVM-RFE procedure. The

computational complexity of each n-CV is n*(g*O(s3)), where

s is the number of samples and g is the number of genes [22].

The computational time on the training stage primarily

depends on the number of genes given the small number of

training samples. Hence, the computational complexity can be

easily handled by filtering out unlikely genes involved. The 100

times 6-CV training took around 90 minutes to get the results

on a desktop computer with Intel Core 2 Duo E6750 and

DDR2 2GB memory.

2) We acquired 100 sorted lists, and designed a re-ranking

measure to take occurrence and ranking of every gene into

account to form a final ranking list of all genes:

Wf ~
Xp

k~1

WLk
,1ƒkƒp, ð2Þ

where p is the number of times for CV, Wf is the sum of one

gene’s weights in p experiments, and WLk
is the weight in the

k-th occurrence in sorted lists. Lk shows the ranking of one

feature in the k-th list.

WLk
~

Nz1{Lk

N
,1ƒLkƒN

0,LkwN

8<
: ð3Þ

Here, we have top 10 (N) genes and 100 (p) SVM-RFE trainings.

Thus, we obtain a final list containing the optimal genes sorted by

Wf in decreasing order. The algorithm flowchart is shown in

Figure 2.

Figure 1. LOOCV for twelve samples.
doi:10.1371/journal.pone.0021750.g001

Predicting Drought-Resistant Genes Using SVM-RFE
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Results and Discussion

By applying the SVM-RFE method in analyzing the drought-

resistant genotype based on the microarray data, we selected 10

genes in the final list according to Wf in Eq. 2, as summarized in

Table 3. Figure 3 shows the occurrence of these genes in top-10 list

and also in top-30 list when conducting 100 times of 6-CV. It

shows that the occurrence of these genes in the top list is very high

and consistent. We checked the functional annotations using GO

(http://www.geneontology.org/), KEGG pathways (http://www.

genome.jp/kegg/) and the literatures [2,23–28], and obtained the

related information shown in Table 3. From Table 3 it can be seen

that most of the genes have no specific molecular function

annotations. This is not surprising as the water stress tolerance is a

complex trait, which resulted from sophisticated coordination of

physiological and biochemical alterations at the cellular and

molecular levels [24].

Table 3 reveals some interesting biological features. Both the

first and second genes directly respond to water deprivation. The

cellular component of the second gene is chloroplast where

photosynthesis of plants occurs. As photosynthesis uses carbon

dioxide and water releasing oxygen, it is likely that this gene plays

some role in water utilization in chloroplast. The third and fifth

genes are both related to defense response, whose pathway is

known to have cross-talk with drought resistance pathway [29].

The sixth gene in the table responds to wounding and it may

help repair the damage of cell caused by water loss. Some other

genes in the list may also be related to drought resistance. The

eighth-ranked gene responds to osmotic stress and salt stress.

Osmotic adjustment is an important physiological mechanism

adapting to water stress [24]. Osmotic adjustment can maintain a

dynamic balance between damage and repair of cellular

components to relieve plants injury and improve plants’ ability

of stress resistance.

In the column GO: Component of Table 3, all of the 3rd, 5th,

6th, 7th, and 8th genes belong to membrane systems, like

endomembrane, plasma membrane, and so on. Membrane system

is the key part damaged by drought stress and it is the most

sensitive original reaction site against adversity [25]. Membrane,

together with associated proteins, provides cells with not only a

relatively stable internal environment, but also provides a switch to

material transportation, energy exchange and information trans-

mission between cells and the environment. Therefore, these five

genes may help adjust osmotic membranes to boost drought

resistance. In all we have demonstrated that seven genes may be

closely related to water tolerance for Arabidopsis, i.e., the 1st, 2nd,

3rd, 5th, 6th, 7th, and 8th genes in Table 3.

We also repeated the computational process with the suscep-

tibility genotype samples (WT and C2), and obtained the top-10

gene list as described in Table 4. From the relative function

annotations, it appears that most of these genes have little

relationship with the ability of drought resistance, which may

explain why these genotypes do not have capacities of drought

resistance.

Our understanding of the functions of these seven genes is far

from complete. Compared the top-10 gene list obtained from the

resistant genotype with the susceptibility genotype list, 3 genes are

the same, which are the 1st, 2nd, and 8th in Table 3, and the 10th,

8th, and 5th in Table 4. We call the same ones tuning genes [16].

Maybe their adaptability to hydropenia is the result of irritable

reactions to environmental changes. So by removing the tuning

genes from the top-10 gene list with transgenic genotype, the

inference is that the real drought-resistant genes should be in the 7

ones in Table 5 (a subset of Table 3). And with the same thought,

we analyzed the two top 100 gene lists using the resistant genotype

and the susceptibility genotype, respectively (see Table S1 and

Table S2 for the detailed information). Comparing the top-100

gene list obtained from the resistant genotype with the suscepti-

bility genotype list, it can be seen that 37 genes overlap (tuning

genes). In Table S1, the ‘‘Overlap’’ column indicates the tuning

genes. We compared our result against the result published by

Huang et al. [30] to look for the overlap of the genes identified to

be involved in drought resistance. Our comparison shows that 5

out of the 10 genes from resistant genotype and 6 out of the 10

genes from susceptible genotype are identified to be the same.

When we expanded our analysis to include the top 100 genes, 50

genes of the resistant genotype and 42 of the susceptible genotype

overlap with the gene lists in the published results. GO term

enrichment analysis was also performed for the annotations of the

Figure 2. Algorithm flowchart for identifying drought-resistant
genes.
doi:10.1371/journal.pone.0021750.g002

Predicting Drought-Resistant Genes Using SVM-RFE
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top 100 genes in the resistant and susceptibility genotypes,

respectively using Amigo GO Term Enrichment Tool (http://

amigo.geneontology.org/cgi-bin/amigo/term_enrichment) as shown

in Table 6. All the GO terms identified for both genotypes with a

significant p-value less than 0.001 have functional categories related

to the drought stress.

Figure 3. The occurrence of selected 10 genes in the top-10 and top-30 lists when conducting 100 times of 6-CV. The gene order is the
same as that in Table 3.
doi:10.1371/journal.pone.0021750.g003

Table 3. Selected 10 genes related to drought-resistant genotype.

Rank Probe ID Platform ORF Gene Title GO: Function GO: Process GO: Component

1 248352_at At5g52300 LTI65(LOW-TEMPERATURE-INDUCED 65) abscisic acid mediated
signaling pathway/
response to abscisic
acid stimulus/response
to cold/response to
salt stress/response
to water deprivation

2 247723_at At5g59220 Protein phosphatase 2C,putative/PP2C,
putative

catalytic activity/protein
serine/hreonine
phosphatase activity

response to abscisic
acid stimulus/ response
to water deprivation

chloroplast

3 249052_at At5g44420 PDF1.2 defense response cell wall / endomembrane
system

4 265342_at At2g18300 basic helix-loop-helix (bHLH)
family protein

nucleus

5 257365_x_at At2g26020 PDF1.2b(plant defensin 1.2b) defense response cell wall / endomembrane
system

6 266743_at At2g02990 RNS1(RIBONUCLEASE1);
endoribonuclease/ribonuclease

endoribonuclease activity/
ribonuclease activity

response to wounding cell wall/extracellular
region/plasma membrane

7 258897_at At3g05730 hypothetical protein endomembrane system

8 266462_at At2g47770 benzodiazepine receptor-related response to abscisic
acid stimulus/response
to osmotic stress/
response to salt stress

Golgi stack/endoplasmic
reticulum/membrane

9 248218_at At5g53710 hypothetical protein

10 262347_at At1g64110 AAA-type ATPase family protein ATP binding/nucleotide
binding

doi:10.1371/journal.pone.0021750.t003

Predicting Drought-Resistant Genes Using SVM-RFE
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The SVM-RFE algorithm was used in cancer marker gene

prediction with abundant datasets. However, there are much

fewer microarray samples for finding the drought-resistant genes of

Arabidopsis. Hence, we modified the original SVM-RFE method to

address this drawback by using bootstrapping and leave-one-out

cross-validation. Our study shows that the improved method is

effective for identifying drought-resistance genes. Since the

sparseness of gene expression data for studying genotype-trait

relationships is a common issue, the method provides a framework

for handling this issue. The framework has some advantages over

some other feature selection methods that require extensive

training data, such as random forest [31]. This is by no means a

replacement of additional experimental data, but it can effectively

utilize the sparse data available to generate useful hypotheses and

guide further targeted experimental work.

Although Arabidopsis is a model organism for plant gene

function analysis and gene expression studies, few genes related to

drought resistance mechanisms are annotated with direct

experimental evidences. There is a need to predict additional

drought-resistance genes based on gene expression data. The

predictions of drought-resistance genes generated by the JU/MU

development of the SVM-RFE method-based software provides

useful hypothesis for experimentalists to verify. For example, the

3rd, 8th and 10th genes in Table 3 are not annotated as drought-

resistance genes, but they are highly likely involved in drought

resistance. Perhaps a major challenge in the future is to inquire

into the relative contribution of each gene to water tolerance.

The JU/MU approach is applicable to the study of plant genes

related to other stress resistance and genes associated with any

agronomic trait in general.

Table 4. Selected 10 related to water-susceptibility genotype.

Rank Probe ID Platform ORF Gene Title GO: Function GO: Process GO: Component

1 262128_at At1g52690 late embryogenesis
abundant protein, putative /
LEA protein, putative

embryonic development ending in
seed dormancy

2 264580_at At1g05340 hypothetical protein biological_process

3 258499_at At3g02540 RAD23-3 (PUTATIVE DNA
REPAIR PROTEIN RAD23-3);
damaged DNA binding

proteasome binding///
ubiquitin binding

nucleotide-excision repair/
proteasomal ubiquitin-dependent
protein catabolic process

nucleus

4 258239_at At3g27690 LHCB2.3; chlorophyll
binding

chlorophyll binding photosynthesis/response to blue
light/response to far red light/
response to red light

chloroplast envelope/
chloroplast thylakoid
membrane/light-harvesting
complex/thylakoid

5 266462_at At2g47770 benzodiazepine
receptor-related

response to abscisic acid
stimulus/response to osmotic
stress/response to salt stress

Golgi stack/endoplasmic
reticulum/membrane

6 258347_at At3g17520 late embryogenesis abundant
domain-containing protein /
LEA domain-containing
protein

embryonic development
ending in seed dormancy

7 247095_at At5g66400 RAB18 (RESPONSIVE TO ABA
18)

cold acclimation/response to 1-
aminocyclopropane-1-carboxylic
acid/response to abscisic acid
stimulus/response to stress/
response to water deprivation

8 247723_at At5g59220 protein phosphatase 2C,
putative / PP2C, putative

catalytic activity/protein
serine/threonine
phosphatase activity

response to abscisic acid
stimulus/response to water
deprivation

chloroplast

9 262382_at At1g72920 disease resistance protein
(TIR-NBS class), putative

transmembrane
receptor activity

intrinsic to membrane

10 248352_at At5g52300 LTI65 (LOW-TEMPERATURE-
INDUCED 65)

abscisic acid mediated signaling
pathway/response to abscisic acid
stimulus/response to cold/
response to salt stress/
response to water deprivation

doi:10.1371/journal.pone.0021750.t004

Table 5. The new list with the tuning genes removed from the top-10 resistant gene list.

Rank 1 2 3 4 5 6 7

Probe ID 249052_at 265342_at 257365_x_at 266743_at 258897_at 248218_at 262347_at

Platform
ORF

At5g44420 At2g18300 At2g26020 At2g02990 At3g05730 At5g53710 At1g64110

doi:10.1371/journal.pone.0021750.t005
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Supporting Information

Table S1 Detailed information of top 100 genes from resistant

genotype.

(DOC)

Table S2 Detailed information of top 100 genes from suscep-

tibility genotype.

(DOC)
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Table 6. GO Term Enrichment for resistant and susceptibility genotypes.

Resistant Genotype GO Term Aspect P-value Sample frequency Background frequency

GO:0050896 response to stimulus P 1.49e-04 36/99 (36.4%) 4570/29887 (15.3%)

GO:0006950 response to stress P 5.10e-04 23/99 (23.2%) 2221/29887 (7.4%)

GO:0009628 response to abiotic stimulus P 6.17e-04 18/99 (18.2%) 1421/29887 (4.8%)

GO:0009725 response to hormone stimulus P 1.74e-03 14/99 (14.1%) 935/29887 (3.1%)

GO:0009719 response to endogenous stimulus P 4.41e-03 14/99 (14.1%) 1014/29887 (3.4%)

GO:0009611 response to wounding P 7.93e-03 6/99 (6.1%) 151/29887 (0.5%)

GO:0042221 response to chemical stimulus P 9.68e-03 20/99 (20.2%) 2085/29887 (7.0%)

Susceptibility Genotype GO:0009628 response to abiotic stimulus P 5.47e-04 18/100 (18.0%) 1421/29887 (4.8%)

GO:0009266 response to temperature stimulus P 4.96e-03 9/100 (9.0%) 407/29887 (1.4%)
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