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Abbreviations 22 

SVD, single ventricle disease; PLE, protein losing enteropathy; PB, plastic bronchitis; FALD, 23 

Fontan-associated liver disease; PC MRI, phase contrast magnetic resonance imaging; VVCR, 24 

ventricular vascular coupling ration; VO2, rate of oxygen consumption; AAo, ascending aorta; 25 

SVC, superior vena cava; IVC, inferior vena cava; LPA, left pulmonary artery; cMRI, cardiac 26 

MRI; TCPC, total cavopulmonary connection; PCA, principal component analysis; PCs, 27 

principal components; EF, ejection fraction; EDVi, end diastolic volume index; ESVi, end 28 

systolic volume index; CI, cardiac index; BNP, B-type natriuretic peptide; GGT, gamma-29 

glutamyl transferase; AST, aspartate aminotransferase; SaO2, arterial oxygen saturation; FEV1, 30 

forced expiratory volume in one second; mSVCP, mean SVC pressure; mPAP, mean pulmonary 31 

artery pressure; HLHS, hypoplastic left heart syndrome; TA, tricuspid atresia; double outlet right 32 

ventricle, DORV; double inlet left ventricle, DILV; hypoplastic right heart syndrome, HRHS; 33 

TCPC, total cavopulmonary circuit; FVC, forced vital capacity; RV, residual volume; TLC, total 34 

lung capacity; Alk phos, alkaline phosphatase; BUN, blood urea nitrogen  35 
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Abstract 36 

Single ventricle heart disease is a severe and life-threatening illness, and improvements in 37 

clinical outcomes of those with Fontan circulation have not yet yielded acceptable survival over 38 

the past two decades. Patients are at risk of developing a diverse variety of Fontan-associated 39 

comorbidities that ultimately requires heart transplant. Our observational cohort study goal was 40 

to determine if principal component analysis (PCA) applied to data collected from a substantial 41 

Fontan cohort can predict functional decline (N=140). Heterogeneous data broadly consisting of 42 

measures of cardiac and vascular function, exercise (VO2max), lymphatic biomarkers, and blood 43 

biomarkers were collected over 11 years at a single site; in that time, 16 events occurred that are 44 

considered here in a composite outcome measure. After standardization and PCA, principal 45 

components (PCs) representing >5% of total variance were thematically labeled based on their 46 

constituents and tested for association with the composite outcome.  Our main findings suggest 47 

that the 6th PC (PC6), representing 7.1% percent of the total variance in the set, is greatly 48 

influenced by blood serum biomarkers and superior vena cava flow, is a superior measure of 49 

proportional hazard compared to EF, and displayed the greatest accuracy for classifying Fontan 50 

patients as determined by AUC. In bivariate hazard analysis, we found that models combining 51 

systolic function (EF or PC5) and lymphatic dysfunction (PC6) were most predictive, with the 52 

former having the greatest AIC, and the latter having the highest c-statistic. Our findings support 53 

our hypothesis that a multifactorial model must be considered to improve prognosis in the Fontan 54 

population.  55 
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Introduction 56 

Patients born with single ventricle heart disease (SVD), a severe and rare congenital heart 57 

defect (CHD), are subjected to three palliative surgeries that culminate in the Fontan circulation 58 

[1]. While staged palliation addresses the primary concerns of obstructed systemic blood flow 59 

and cyanosis in a condition like hypoplastic left heart syndrome, a range of Fontan associated 60 

comorbidities, including lymphatic, liver, and cardiac damage, are often apparent in adolescence 61 

[2]. Because morbidity and mortality after Fontan surgery remain unacceptably high [2], new 62 

approaches to predict patient decline are sorely needed. The goal of this work is to develop a new 63 

prognostic model for patients with SVD and explore machine learning methods as a tool of risk 64 

stratification in the Fontan population. 65 

Principal component analysis (PCA) is a data reduction technique that is often applied to 66 

large data sets in research [3-7], although it has not yet been applied to the Fontan population 67 

outside of waveform analysis [8, 9]. Examples where PCA has been utilized to find novel 68 

associations in large datasets that would have not have been amenable to more conventional 69 

statistical approaches include: Scientists have used PCA to identify patterns of inflammatory and 70 

adhesion molecules that contribute to muscle weakness acquired in the intensive care unit [4]. A 71 

similar study in a population of adults used PCA to identify inflammatory markers that precede 72 

major adverse cardiovascular events (MACE) following heart attack and found that the PC 73 

influenced by interleukin-6 and interleukin-8 was a better predictor of MACE at one year than 74 

univariate cytokine measures [6]. Additionally, PCA has recognized lymphocyte-monocyte-75 

neutrophil indices that contribute to disease severity in several cohorts of COVID-19 patients [5]. 76 

The aforementioned studies support our hypothesis that a PCA approach may be necessary to 77 

understand and predict outcomes in heterogenous disease states like the Fontan population, 78 
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where a very large number of potential predictor variables exist that stem from anatomic, 79 

surgical, imaging, laboratory, functional testing domains.  80 

We have previously applied PCA to characterize non-pulsatile cavopulmonary flow 81 

waveforms [8, 9]; here we expand that approach to include heterogenous biomarkers. Another 82 

benefit of using a PCA approach in clinical data analysis is inclusion of correlative/colinear 83 

parameters, of which many statistical outcomes models prohibit [5]. Our primary objective in 84 

this study was to assess our previously defined novel waveform measures and other clinical 85 

parameters in a heterogenous PCA approach, all in support of the overall hypothesis that 86 

machine-learning extracted PCs will delineate patients with Fontan-associated comorbidities and 87 

reveal parameters that indicate circulatory failure in patients with a Fontan circulation. More 88 

specifically, a machine-learning extracted PC, which will consist of a pattern of abnormalities in 89 

multiple of cardiac and non-cardiac test results, previously unrecognized as an important preditor 90 

of outcomes, will be associated with a composite outcome of Fontan failure.  91 

Methods 92 

One-hundred and forty SVD patients that underwent cardiac MRI (cMRI) at Children’s 93 

Hospital Colorado between July 2011 and August 2022 were included in this retrospective 94 

cohort study, permitted by the Colorado Multiple Institutional Review Board as a portion of 95 

Fontan at Altitude Registry for Outcomes (FAROUT).  All patients cared for in the Fontan 96 

Multidisciplinary Clinic at the Children’s Hospital Colorado have undergone surveillance testing 97 

for end-organ damage and Fontan-associated comorbidities by way of a clinical practice 98 

guideline since 2016 and were included. The FAROUT registry was queried and abstracted data 99 

was used as a foundation for a study database, in addition to our single site venous flow patterns 100 

[10]. Variables collected are shown in Table I. For the purposes of survival analysis, study 101 
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subject status was evaluated as of December 1, 2022, and a composite outcome was defined as 102 

the development of plastic bronchitis (PB, n=1),  protein-losing enteropathy (PLE, n=2), referral 103 

to transplant (RTT, n=9), received a transplant (n=4), or death (n=0) from the time of cMRI to 104 

time to follow up. 105 

cMRI Acquisition 106 

Phase images and corresponding magnitude images of the superior vena cava (SVC), 107 

inferior vena cava (IVC), and left pulmonary artery (LPA) were obtained using a PC-MRI, ECG 108 

gated sequence as previously described  [11, 12] by applying a 1.5 or 3.0 Magnetom Avanto 109 

(Siemens Medical Solutions, Erlangen, Germany) or Ingenia (Philips Medical System, Best, 110 

Netherlands) Tesla magnet using a phased-array body surface coil. A free breathing PC-MRI 111 

sequence was used under the following conditions: time to repetition, 14-28 milliseconds/25-40 112 

cardiac phases; time to echo, 2.2-3.5 milliseconds; matrix, 160 x 256; flip angle, 25 degrees; 113 

100% k space sampling; cross-sectional pixel resolution, 0.82 x 0.82 mm2 and 1.56 x 1.56 mm2; 114 

slice thickness, 5 millimeters. Heart rate dependent, PC-MRI acquisition varied 2-3 minutes for 115 

each vessel. Aliasing was accommodated for using the following velocity-encoding values: SVC 116 

and IVC, 75-100 cm/second; LPA, 50-100 cm/second. The AAo, SVC, and IVC images were 117 

acquired in axial cine stack and the LPA in vertical long axis, all orthogonal to flow. 118 

Flow Profile Analysis 119 

Flow profile characteristics were assessed as described previously with slight 120 

modifications [9]. Flow waveforms were acquired by precise parallel segmentation of 2D phase-121 

contrast image series in Circle CVi42 (Calgary, Canada). Flow data was captured for each 122 

patient at the SVC, IVC, and LPA and imported into MATLAB (Natick, MA). Each waveform 123 

was normalized by dividing each flow point by patient BSA to minimize size effect on the raw 124 
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data. Data was interpolated using cubic spline interpolation to 40 points, guaranteeing size-125 

matched array lengths for further analyses. Three data matrices were created containing single-126 

site flow data and the size of each data matrix varied and is as follows: SVC (124 x 40), IVC 127 

(132 x 40), LPA (125 x 40). 128 

Clinical Biomarkers 129 

 Global cardiovascular and ventricular indicators (EF, CO, CI, EDVi, ESVi, SVi) have 130 

long been established as the benchmark for Fontan patient status [8, 13-15]  and therefore were 131 

included in the analysis for validation purposes. VVCR, mean catheterization pressures (mPAP 132 

and SVC mean pressure), VO2max, BNPmax and O2 saturations were also included in the outcomes 133 

analysis, all of which have been independently linked to Fontan circulation health and outcomes 134 

[16-19] .  We have previously determined that biomarkers indicative of lymphatic function and 135 

PLE, specifically aspartate aminotransferase, alkaline phosphatase, cystatin-c and creatinine 136 

were associated with caval flow patterns [9], strongly indicating that these parameters may 137 

identify, or be a predictive of, which Fontan patients will experience circulatory failure. 138 

Similarly, biomarkers such as albumin, total protein, blood urea nitrogen and platelet count were 139 

included due to previous reports relating these to Fontan patient cyanosis and pulmonary blood 140 

flow [20, 21].  141 

Principal Component Analysis  142 

PCA requires that the input data matrix has a value assigned to each position, and 143 

therefore after the exported registry was read into MATLAB, patients with more than five 144 

measures missing were removed from analysis. This was done in an effort to maintain a missing 145 

data rate of less than 5% [22], and the resulting clinical parameters and demographic information 146 

can be found in Table I. Patients that had missing values less than or equal to five were replaced 147 
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with the column median, as a value is required for each position in the input matrix. Columns 148 

were normalized by subtracting the column mean from each sample and dividing by the 149 

corresponding column standard deviation, and the resulting matrix was the input for PCA. Scree 150 

plots were created to determine PCs representing greater than 5% of total variance.  151 

Interpretation of which clinical parameters had the greatest influence on each PC were 152 

graphically determined by visualizing PC eigenvectors. 153 

Statistics  154 

Statistical analyses were performed in GraphPad Prism and began by determining the 155 

univariate Cox hazard ratio (HR) for PCs 1-10 and EF, a measure of systolic function that serves 156 

as a benchmark diagnostic for patients with a Fontan circulation [23]. Akaike’s information 157 

criterion (AIC) and the c-statistic were also gathered, and measures with the greatest c-statistic 158 

were used to create receiver operating characteristic (ROC) curves and determine the area under 159 

the curve (AUC) and Youden’s index, defined as (sensitivity(x) – specificity(x)) -1. The 160 

optimum sensitivity, specificity and clinical threshold for grouping was found and used to 161 

defined groups for Kaplan-Meier survival analysis. The Mantel-Cox log-rank test was used to 162 

determine if a significant difference existed between Kaplan-Meier curves. Univariate 163 

parameters with the greatest c-statistics were used, up to two parameters at a time, for 164 

multivariate (bivariate) regression analysis and AIC was used to compare univariate and 165 

multivariate predictive models.  166 

Results 167 

Principal Component Analysis 168 

The size of the original data matrix imported to MATLAB was 140 x 31 and was reduced 169 

to 115 x 31 after removal of patients missing greater than five measures. The remaining matrix 170 
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had a 4.15% rate of missing data, and therefore fell within the 5% acceptable rate [22]. Columns 171 

of the matrix included scores for single site SVC, IVC, and LPA flow patterns, each representing 172 

a patient’s contribution to that PC’s waveform pattern, EF, EDVi, ESVi, SVi, CO, CI, BSA, 173 

BNP max, AST, VVCR, lowest SaO2, SVC mean pressure, mPAP, albumin, platelets, alkaline 174 

phosphatase, total protein, creatinine, BUN, and cystatin-C (Table I).  175 

Following PCA, a scree plot was used to identify the percent each PC contributed to the 176 

overall variance in the original data set and can be seen in Figure 1. The first PC accounted for 177 

about 17.5% of the original data matrix variance, followed by approximately 11.5% for PC2, 178 

8.5% for PC3, and subsequently decreased as the PC number increased (Figure 1). Each of the 179 

first 7 PCs accounted for more than 5% of the total variance, and together explained 70.3% of 180 

that variance; PCs up to PC10 (3.6% of total variance, 77.7% cumulative variance) were 181 

considered for survival analysis. 182 

Interpretation of the first two PCs was aided by the biplot displayed in Figure 2, where 183 

the blue lines represent the eigenvectors, or PC coefficients, and the length and direction 184 

represents that parameter’s influence on each PC. For example, further distance from the origin 185 

on the x-axis means greater contribution to PC1, therefore EDVi, ESVi, EF, and VVCR 186 

contributed greatest to PC1 (Figure 2). PC2 variance is explained by deviance from zero along 187 

the y-axis, and major influencing parameters include CO, SVi, LPA PC1 and IVC PC1 (Figure 188 

2). The red data points represent the scores, or how each patient sample contributes to the PCs.  189 

The clinical implications of each PC were  examined using bar graphs of the PC 190 

eigenvectors, where the clinical parameters (x axis) and their relative contributions to each PC (y 191 

axis) are displayed in Figure 3. The first PC was highly influenced by cardiac parameters, 192 

including EF, EDVi, ESVi, CI, VVCR, AST, SVC PC1 Scores, and IVC PC1 scores, which 193 
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primarily describe cardiac function and the downstream effects in the Fontan circulation. The 194 

fourth PC was highly influenced by IVC and LPA waveform patterns in addition to 195 

cavopulmonary pressures and cystatin-C. PC5 was influenced by cardiac parameters 196 

representative of systolic function, such as EF, SVi, CI, and VVCR, and waveform patterns IVC 197 

PC2, SVC PC1 scores, and BUN. Albumin, alkaline phosphatase, total protein, BUN, BNP max, 198 

and SVC waveforms scores influenced PC 6. 199 

Survival Analysis 200 

Univariate Cox proportional hazard ratio was determined for each PC and can be found in 201 

Table II. The single best predictor of which patient is at a greater hazard is PC6 (AIC=109), 202 

followed by the standard measure used for prediction in this population, EF (AIC=111) (Table 203 

II). PC1 and PC5 also performed well, with AICs of 113 and 115. The hazard ratio for EF and 204 

each PC is displayed in a forest plot in Figure 3, and the bars represent the 95% confidence 205 

intervals. If a parameter’s confidence interval crossed one, it was not statistically significant 206 

(Figure 4).  207 

Parameters with the greatest c-statistics were tested as classifiers of patients with Fontan 208 

decline using ROC curves, and PC6 returned the greatest AUC at 0.767, followed by PC5 209 

(AUC=0.740), and EF (AUC=0.696) (Figure 5). The accompanying optimum sensitivity and 210 

specificity, determined using the greatest distance from the null hypothesis line or Youden’s 211 

index, was also found and shows that, while EF is highly specific (0.771) and therefore able to 212 

designate patients with Fontan failure correctly (low EF is almost always accompanied by SVD 213 

circulatory failure), its sensitivity is lacking at 0.643 (Figure 5). Sensitivity determines a 214 

classifier’s ability to label patients without Fontan decline correctly, and all PCs had the same, if 215 

not superior, sensitivity compared to EF (Figure 5). PC6 had the greatest sensitivity (0.786) with 216 
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a reasonably balanced specificity at 0.686, suggesting it can rule healthy Fontan patients out as 217 

having circulatory failure, and PC1 had both optimum sensitivity and specificity at 0.714 (Figure 218 

4). PC6 also displayed the greatest maximum effective biomarker, represented by Youden’s 219 

index of 0.471 (Figure 5).  220 

Grouping patients based on Youden’s index allows for Kaplan-Meier curve generation, 221 

displayed in Figure 6. Though EF was determined to have statistically significant differences in 222 

survival using the Mantel Cox log rank test (p=0.0006), PC1 and PC5 performed better with p 223 

values of 0.0003 and 0.0005 (Figure 6). PC6 also had highly significant differences in survival 224 

(p=0.0008), though it was not as significant as EF, and PC4 also displayed a significant 225 

difference in survival (p=0.07) (Figure 6).  226 

The inputs for multivariate Cox hazard regression analysis were EF, ESVi, and PC1 and 227 

PCs 4-6 and were chosen based on their univariate c-statistics. The models developed and each 228 

covariate’s HR estimate, 95% CI, p-value, c-statistic, and AIC are listed in Table III. The 229 

greatest AIC, and therefore predictive model, was model B (0.807, AIC=97) and included EF 230 

and PC6. However, model F, consisting of PC5 and PC6, has a greater c-statistic (0.845, 231 

AIC=103) and therefore is more probable to randomly identify a patient that experienced an 232 

event has a greater risk score than a patient that did not experience an event.  233 

Discussion 234 

In this study, we explored univariate and multivariate associations between composite outcomes 235 

in a relatively large, single-center Fontan cohort, evaluating standard and ML-derived parameters 236 

both singly as well as through heterogeneous feature reduction (PCA). Through use of PCA, we 237 

determined PCs that appear to relate to specific features of Fontan decline, and that these features 238 

were significant univariate and multivariate predictors of a composite event. 239 
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PC6 was identified as a highly significant measure of hazard in our cohort and was the 240 

greatest univariate predictor of outcomes with an AIC of 109. The parameters that contributed 241 

the greatest to this PC have also been associated with development of lymphatic dysfunction,  242 

specifically PLE, in the Fontan population and include albumin, alkaline phosphatase, total 243 

protein, BUN and BNP max [23-25]. Cavopulmonary flow patterns were also found to influence 244 

PC6 and have previously been suspected as contributors to PLE [23]. PC6 was also the most 245 

accurate classifier of patients with Fontan decline from those without, which supports our 246 

understanding of PLE development and poorer prognosis in the Fontan population. It is also 247 

worth noting that only two patients (of 16) experienced a composite outcome of PLE. 248 

Additionally, with a sensitivity of 78.6% and specificity of 68.6%, this PC may be clinically 249 

useful in categorizing (or risk stratifying) patients. For example, after undergoing surveillance 250 

testing for end-organ damage and Fontan-related comorbidities, a patient could have their CMR-251 

derived flow waveforms and other biomarkers examined here projected into a known feature set 252 

(heterogeneous PCs), after which these latter PCs would be used to classify the patient as either 253 

at-risk or not, based on the present analysis. Additional work, in terms of data collection and 254 

validation, as well as potentially longitudinal studies targeting causality, must be performed to 255 

identify the role parameters represented by PC6 play in the development of PLE, though this 256 

study provides a promising foundation for further research.  257 

Survival was significantly predicted by all PCs identified as having a significant hazard 258 

ratio (1, 4, 5, 6), though two performed superior to EF, the standard measure of health and 259 

cardiac function in this population. PC1 performed better at prediction than EF alone and 260 

represented components of general cardiac function, including EF, EDVi, ESVi, VVCR, CI, and 261 

cavopulmonary flow measures. Our findings suggest that PCA is a supported method for 262 
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inclusion of colinear parameters, and inclusion of such measures does in fact improve prediction 263 

of outcomes better than a single measure of ventricular function or multivariate testing. PC5 also 264 

improved prediction of outcomes compared to EF and was influenced by EF, SVi, CI, BSA, 265 

VVCR, BUN, SVC and LPA waveform patterns, most of which are affected by systolic 266 

ventricular function. However, little improvement was noted in a multivariate model that 267 

included EF and PC1 (AIC=112) and EF and PC5 (AIC=110) compared to the individual 268 

parameter’s AIC scores [EF (111), PC1 (115), and PC5 (109)] which may be due to redundant 269 

information (i.e. EF, and thus, systolic function, is now accounted for twice in the model). These 270 

results suggest that a PCA approach can improve outcomes prediction in the Fontan population 271 

and continue to support the hypothesis that machine-learning extracted PCs will clearly delineate 272 

SVD patients with Fontan-associated comorbidities to those without, in addition to our 273 

previously published hypothesis that a multivariable approach, in this case PCA, improves 274 

prediction of this heterogenous patient population with multiple organ systems in various stages 275 

of failure [9].  276 

The best predictive model explored in this study, determined by AIC, is the multivariate 277 

Cox regression model B (Table III) including covariates EF and PC6. If PC6 is in fact linked to 278 

PLE, our findings suggest a combination of systolic ventricular function and measures indicative 279 

of lymphatic dysfunction may be an avenue for improved prognostication. This model, however, 280 

did not have the greatest c-statistic, which suggests it may not be suitable for ranking patients 281 

according to risk. Model F, including covariates PC5 and PC6, had the greatest c-statistic and is 282 

most suitable in determining which patients are at a higher risk.  283 

The limitations of this study, as previously described [8], include those inherent to PCA. 284 

Linear data reduction does not consider non-linear reduction methods and, as the name suggests, 285 
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compresses the original data for usability and is accompanied by a loss of, ideally insignificant, 286 

original data variance. Additionally, several patients were removed from analysis because PCA 287 

requires that the input matrix has no missing data. The cohort may contain a selection bias, 288 

because not all of our Fontan patients received a routine CMR examination in the past.  Finally, 289 

machine learning methods thrive on large datasets, and while the final set used for PCA (N=115) 290 

is large for a pediatric population, clearly multicenter studies or learning networks that pool such 291 

data will offer even greater insights into disease progression. Despite limitations, this work has 292 

established that a heterogenous approach to PCA is beneficial to outcomes prediction in Fontan 293 

patients, and that our novel single site venous waveform patterns contribute to PCs predictive of 294 

decline.  295 

Conclusion 296 

The goal of this study was to determine if a heterogenous PCA approach applied to the Fontan 297 

cohort can predict functional decline in this population. Our main findings suggest that PC6, 298 

which represented roughly 7% of the overall variance and is greatly influenced by blood serum 299 

biomarkers and SVC flow, is a superior measure of proportional hazard in this population 300 

compared to EF. We also found that PC6 displayed the greatest accuracy for classifying Fontan 301 

patients, as determined by AUC, and we identified two PCs that indeed predicted survival in this 302 

population better than EF. Our findings support our suspicions that a multifactorial model must 303 

be considered to improve prognosis in the Fontan population. 304 
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Table I. Measures used in heterogenous PCA, including novel single vessel waveform data, 
hemodynamic, global cardiovascular, blood, kidney, liver, and respiratory biomarkers, and their 
mean or median and corresponding standard deviation or interquartile range. 

Measure Mean or Median St. dev or IQR 

SVC Single PC1 Scores -0.522 -2.87 - 3.12 
SVC Single PC2 Scores -0.478 -0.870 - 0.0638 
IVC Single PC1 Scores -0.172 -3.21 - 3.69 
IVC Single PC2 Scores 0.21 -1.53 - 1.35 
LPA Single PC1 Score 0.397 -3.01 - 2.07 
LPA Single PC2 Score 0.181 -0.656 - 1.24 
EF 47.9 8.11 
EDVi 93.3 27 
ESVi 49.8 20.5 
SVi 43.5 10.4 
CO 4.43 1.43 
CI 3.41 1.04 
BSA 1.32 0.415 
BNP max 30 15 - 61.8 
AST 45 38 - 57 
VVCR 0.963 0.3 
Lowest SaO2 86.4 5.56 
SVC Mean 13 11 - 14 
mPAP 12 10 - 13 
Alb 4.54 0.685 
Platelets 197 65.2 
Alk Phos 158 80.3 
Total Protein 7.53 1.1 
Creatanine 0.61 0.49 - 0.763 
BUN 14 12 - 17 
Cystatin C 0.86 0.755 - 0.96 
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Table II. Univariate cox regression hazard ratio for each PC and EF, the gold standard for systolic 
function and patient decline in the Fontan population, and the accompanying 95% confidence 
intervals, their p-value, c-statistic and AIC.  

Variable HR 95% CI P value c stat AIC 

PC1 1.40 1.12 to 1.75 0.00280 0.705 115 

PC2 0.836 0.607 to 1.13 0.254 0.555 121 

PC3 0.941 0.649 to 1.38 0.753 0.453 123 

PC4 1.43 1.00 to 1.99 0.0404 0.619 119 

PC5 0.502 0.315 to 0.773 0.00250 0.718 113 

PC6 0.449 0.280 to 0.691 0.000500 0.759 109 

PC7 1.50 0.894 to 2.60 0.140 0.617 120.5 

PC8 0.931 0.558 to 1.59 0.793 0.587 123 

PC9 0.741 0.469 to 1.27 0.242 0.539 122 

PC10 0.929 0.574 to 1.58 0.777 0.519 123 

EF 0.873 0.803 to 0.944 0.000900 0.726 111 
 385 
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Table III. Multivariate models were developed, up to two measures at a time, for each PC and 
systolic measures EF and ESVi, the corresponding HR estimates, 95% CIs, p-values, c-statistic and 
AIC (used for model selection).  

 Covariates HR Estimate 95% CI p value c stat AIC 

A EF 0.906 0.804 to 1.02 0.101 0.726 112 ESVi 1.02 0.979 to 1.06 0.413 

B PC6 0.455 0.287 to 0.682 0.0003 0.807 97 EF 0.875 0.811 to 0.939 0.0003 

C PC5 0.667 0.402 to 1.04 0.0931 0.738 110 EF 0.901 0.822 to 0.988 0.0247 

D PC4 1.37 0.960 to 1.93 0.0765 0.756 110 EF 0.884 0.814 to 0.952 0.0019 

E PC1 1.11 0.802 to 1.52 0.505 0.734 112 EF 0.895 0.802 to 0.994 0.0413 

F PC5 0.574 0.372 to 0.841 0.0071 0.845 103 PC6 0.461 0.279 to 0.721 0.0012 

G PC4 1.395 0.982 to 1.95 0.0558 0.803 108 PC6 0.445 0.271 to 0.695 0.0007 

H PC4 1.448 1.01 to 2.06 0.0426 0.764 111 PC5 0.501 0.313 to 0.771 0.0024 

I PC1 1.322 1.06 to 1.65 0.0123 0.799 105 PC6 0.516 0.327 to 0.766 0.0022 

J PC1 1.595 1.22 to 2.11 0.0006 0.784 103 PC5 0.482 0.313 to 0.717 0.0005 

K PC1 1.404 1.12 to 1.75 0.0028 0.781 113 PC4 1.462 1.01 to 2.10 0.0425 
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 388 
  389 

Figure 1. The scree pot displays each PC (x axis) and the percent variance it represents in the 
original data set (y axis). 

Figure 2. Principal component biplot that displays the scores returned from PCA, or each sample, in 
the original dimension and are represented by the red data points. The eigenvectors, or the 
coefficients, for each clinical parameter are displayed as the blue lines and the direction and length 
represent the influence each parameter has on PC1 (x axis) and PC2 (y axis). 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.11.24310309doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310309
http://creativecommons.org/licenses/by-nc/4.0/


  390 

Figure 3. Bar graphs for PC1 and PCs 4-6 display each clinical parameter considered in PCA, or the 
column headers, and the amount (y axis, 0 up to 1) that parameter influences each PC. 
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Figure 4. The forest plot displays the hazard ratio for each PC and EF and the corresponding 95% 
confidence intervals. Bars that cross 1, or the null hypothesis, represents no difference in hazards 
between patients that experienced an event versus those that did not. 

Figure 5. ROC curves for each PC that returned the greatest c-statistics and EF and the accompanying 
AUC, p-value, optimum sensitivity and specificity and the corresponding clinical cut off. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2024. ; https://doi.org/10.1101/2024.07.11.24310309doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.11.24310309
http://creativecommons.org/licenses/by-nc/4.0/


 392 

Figure 6. Kaplan-Meier curves for each PC that returned the greatest c-statistics and EF, and the p 
value returned from the log-rank Mantel Cox p-value. Groups were created using the Youden’s index 
defined cut-off values. 
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