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Abstract: The mammalian neocortex features distinct anatomical variation in its tangential and 

radial extents. This review consolidates previously published findings from our group in order 

to compare and contrast the spatial profile of neural activity coherence across these distinct 

cortical dimensions. We focus on studies of ongoing local field potential (LFP) data obtained 

simultaneously from multiple sites in the primary visual cortex in two types of experiments in 

which electrode contacts were spaced either along the cortical surface or at different laminar 

positions. These studies demonstrate that across both dimensions the coherence of ongoing 

LFP fluctuations diminishes as a function of interelectrode distance, although the nature and 

spatial scale of this falloff is very different. Along the cortical surface, the overall LFP coher-

ence declines gradually and continuously away from a given position. In contrast, across the 

cortical layers, LFP coherence is discontinuous and compartmentalized as a function of depth. 

Specifically, regions of high LFP coherence fall into discrete superficial and deep laminar zones, 

with an abrupt discontinuity between the granular and infragranular layers. This spatial pattern 

of ongoing LFP coherence is similar when animals are at rest and when they are engaged in 

a behavioral task. These results point to the existence of partially segregated laminar zones of 

cortical processing that extend tangentially within the laminar compartments and are thus ori-

ented orthogonal to the cortical columns. We interpret these electrophysiological observations 

in light of the known anatomical organization of the cortical microcircuit.
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Introduction
The adoption of the Latin “cortex” to describe the outer gray matter covering of 

the brain paints this structure as a thin bark or rind enveloping the remainder of the 

brain.1 The cerebral cortex, however, is not a homogeneous, two-dimensional mantle. 

Rather, the cortex is a multilayered sheet with rich laminar interconnections.2–6 

Accordingly, there is a notable spatial anisotropy in the radial (laminar) arrange-

ment of cortical cell bodies and their projections. What is the consequence of 

this anatomical organization for neural activity patterns measured in the cortical 

microcircuit? For example, might the intrinsically generated, spontaneous activity 

be highly coordinated within a cortical column but relatively independent between 

cortical columns? Addressing this type of question requires simultaneous measure-

ments at known spatial intervals in the cortex. Recent advances in neurophysiologi-

cal techniques have exploited high-density multicontact recordings of extracellular 

electrical activity in vivo7–9 to facilitate comparison of neuronal signals collected 

simultaneously. This approach allows one to assess the spatial characteristics of 
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neural coordination between known positions within the 

three-dimensional cortical extent.

In this review, we highlight key findings from our group 

that shed light on neuronal activity patterns within the 

three-dimensional volume of the cerebral cortex. We focus 

on primate visual cortex as a model sensory system with 

well described anatomy that has been the subject of a large 

body of neurophysiological studies. To contextualize current 

work, we first provide an overview of the cortex’s anatomical 

features as well as methods to assess spatial coordination of 

neural processes. We then briefly summarize neurophysi-

ological data that demonstrate the fundamental anisotropy of 

neural coherence in the tangential versus radial dimensions 

of the cortex.

Distinct anatomical features  
in the radial and tangential 
dimensions
As early as the 19th century, neuroanatomists began to 

parcel the mammalian cortical sheet across the tangential 

dimension into distinct areas that differ in their cytoarchi-

tecture.10 These areas were subsequently shown to exhibit 

distinct patterns of connectivity and neuronal function. 

Some of the neocortical areas defined in these ways are 

conserved among primates and to some extent among 

other mammalian orders in their topological position and 

pattern of interareal projections.11–13 Within each cortical 

area, certain axonal projections do not enter the white mat-

ter, but instead remain in the neuropil. These “horizontal” 

connections, which are laterally extending branches of 

pyramidal cell axons,14,15 are marked by a high degree of 

functional specificity and often target neurons or columns 

with broadly similar response properties.16 The extent of 

tangential cortical distance covered by these horizontal con-

nections varies considerably between areas and increases at 

higher stages in the cortical hierarchy.17 Whereas axons in 

the primary visual cortex (V1) may reach 2 mm,18 those in 

the inferior temporal cortical area (TE) have been shown 

to project up to 9 mm.19 Horizontal connections tend to 

be reciprocal,20 commonly remain within their cortical 

layer,21,22 and are largely excitatory both in origin as well 

as in their postsynaptic targets.23,24 Functionally speaking, 

horizontal connections are mostly modulatory in nature,25 

and likely contribute to the high activity coherence mea-

sured over short distances in the cortex (see Measuring the 

reach of activity coherence in the cortex).

Early neuroanatomists also recognized the importance 

of the radial dimension to the composition of the cortex, 

with sheets of cells arranged in segregated layers that form 

early in development.26,27 Four to six cytoarchitectonic lay-

ers can be visualized with a variety of histological staining 

techniques (Figure 1A). The exact delineation of the respec-

tive layer boundaries depends somewhat on the type of 

histological stain used, the cortical areas examined, and the 

animal species.28 The resulting variability in layer count has 

prompted the adoption of slightly different labeling schemes 

over the years,29,30 but broad consensus follows neuroanato-

mist Korbinian Brodmann’s original plan of dividing the neo-

cortex into six major laminae.10 These individual layers are 

further grouped into three visibly distinct laminar domains. 

Layer 4 and its various sublayers are commonly denoted as 

granular, since the high density of spiny cell bodies in this 

domain appears grainy in Nissl-type histological stains. 

Superficial layers 1–3 thus occupy a supragranular position, 

whereas deeper layers 5 and 6 are infragranular.31

In contrast with the pronounced morphological differ-

ences between cortical layers, functional responses across 

layers are similar, and have given rise to the concept of a 

cortical column.32–36 The cortical column is conceptualized 

as a repeated motif of radial units, each supported by a ste-

reotypical pattern of intrinsic connections,37 the functional 

homogeneity of which is often considered a universal and 

critical feature of the cerebral cortex.38 In the primary visual 

cortex, for example, the same basic orientation and eye pref-

erences can be observed across layers of a given column.39 

Moreover, studies point to a basic model of sequential exci-

tation across particular laminae within a column following 

A B

Time

Supragranular

Granular

Infragranular

Tangential

R
ad

ial

Time

White matter

Figure 1 Neurophysiological measures within a cortical volume.
Notes: (A) In most neurophysiological preparations, microelectrodes are inserted into 
the gray matter and time-varying voltage is measured against a nearby reference. (B) If 
recordings are performed at more than one location simultaneously, one can compare 
signals along the radial dimension across the cortical layers or along the tangential 
dimension that runs in parallel with the cortical surface. While radial recordings are 
often performed with linear multielectrode arrays that consist of multiple electrode 
contacts that run along a single electrode shaft, tangential recordings typically require 
two or more needle-shaped microelectrodes spaced apart.
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the arrival of sensory information from the thalamus.40,41 

This model suggests that thalamic input to cortical layer 4 

is relayed to the supragranular layers, where it is integrated 

with various types of modulatory signals,2,42–44 and then 

relayed to the infragranular layers. Infragranular neurons 

send local projections to granular and supragranular targets 

in the same cortical column, as well as long-range projec-

tions to cortical and subcortical structures inside and outside 

of the telencephalon.45 While there are many ways in which 

information can be integrated across columns, and the gen-

erality of functional columns in the cortex remains a topic 

of debate,46–58 this idealized microcircuit model emphasizing 

intracolumnar processing has played an important role in 

understanding the complexity of cortical projection patterns 

and their bearing on measured sensory signals.59,60

To summarize, the anatomical organization of the 

cortex varies considerably across both the radial and tan-

gential dimensions. Within a given area, horizontal con-

nections account for much of the tangential connectivity, 

whereas the interlaminar projections account for the radial 

connectivity.

Measuring the reach of activity 
coherence in the cortex
The local field potential (LFP) represents a collective measure 

of neural activity, including subthreshold synaptic processes 

that are synchronized in space and time.61–66 Its inherent het-

erogeneity limits the precision of the LFP for probing details 

of microcircuit function.67,68 Nonetheless, empirical studies 

have shown that both sensory-evoked LFP responses69 and 

high frequency “gamma” range (.30 Hz) LFP power70,71 are 

often well correlated with local spiking activity in the cortex. 

Thus, it is possible to use the LFP, and in particular its upper 

frequency range, to study neural coordination at different spa-

tial scales. However, a conspicuous feature of the LFP signal 

is its 1/fβ spectral distribution, where f denotes frequency and 

β is the exponent of a power law.72,73 This means that the high 

frequency gamma range is at least one order of magnitude 

smaller in amplitude than the lower frequency fluctuations, 

which dominate the raw signal fluctuations.

Experimental approaches to measure the spatiotemporal 

coordination of neural signals involve simultaneous electro-

physiological measurement from multiple electrodes (Figure 

1B). Having obtained such simultaneous signals, most 

attempts to evaluate the interaction between sites amount 

to a measure of temporal correlation of two or more neural 

signals. To this end, neurophysiologists employ a wide range 

of correlational measures that will not be reviewed here. 

Here we describe one common measure, the mean squared 

coherence, which measures signal correlation as a function 

of frequency. Whether or not frequency is a natural domain 

across which to divide neural signals is a matter of debate, 

although this practice is very common. What is clear is that 

doing so allows one to isolate aspects of the LFP signal 

that correlate with particular behavioral or neural events, 

such as the close relationship between the local spiking 

and the low amplitude gamma range mentioned above. It is 

important to mention that the precision of LFP coherence 

as a measure of neural coordination is limited by electric 

volume conduction. In contrast with spiking activity, where 

the signal source can be identified as one or more nearby 

neurons, the LFP reflects an ambiguous combination of 

superimposed local and distant neural events.65,67

In the following section, we use mean squared coherence 

as a measure to assess the coherence across the different corti-

cal dimensions. Of particular interest is how the pronounced 

anatomical anisotropy of the cortex described in the previous 

section influences the spatial coordination of neural activity 

across these different dimensions.

Distinct laminar sheets  
of coherent LFP
Given the columnar cortical architecture outlined above, 

one might predict that LFP coherence would also follow a 

columnar pattern. Would intrinsic LFP fluctuations show 

more coherence within a column than between columns? 

Interestingly, the data suggest nearly the opposite: the spatial 

stretch of LFP coordination is perpendicular to the cortical 

columns. The LFP is spatially coherent along zones extending 

tangentially, but is sharply discontinuous within a column.

Between electrodes spaced tangentially along the corti-

cal surface, LFP coherence falls off continuously and in a 

frequency-dependent fashion. One study of the macaque 

visual cortex examined the coherence of ongoing activity 

across distances spanning from a few hundred microns to 

over a centimeter as monkeys rested idly in a dark room.74 

The main findings of that study were that LFP coherence 

falls off monotonically, and that the falloff is steeper for high 

frequency than for low frequency LFP components (Figures 

2A and 3A). A subsequent study showed that this falloff 

reflects the cortical distance rather than the absolute distance 

between the electrode contacts, since LFP coherence between 

electrodes placed on either side of a sulcus showed a drop 

reflecting the span of the infolded cortex.75 This general pat-

tern of coherence is qualitatively similar during rest and when 

monkeys perform a simple behavioral task (ie, when they are 
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Figure 2 LFP coherence as a function of tangential and radial distance.
Notes: (A) LFP coherence (ordinate) is computed between a seed electrode in the primary visual cortex and several neighboring electrodes that are spaced at varying 
intervals of tangential cortical distance (abscissa). Each point of the graph depicts the LFP coherence value measured at that cortical recording location with respect to the 
seed position. High frequency LFP coherence (red line) and low frequency LFP coherence (blue line) are shown separately. Note the difference in tangential falloff of LFP 
coherence, indicating that slow neural processes are more widespread along the cortical mantle compared with locally confined fast neural activity (see Leopold et al74 for 
details and statistics). (B) LFP coherence as a function of radial (laminar) cortical distance. Each point of the graph corresponds to an electrode contact position of a linear 
electrode array that was placed to record neural activity across all of primary visual cortex’s layers between the pia mater and the white mater. LFP coherence for each of 
these recording locations is computed against the electrode contact in the infragranular layers marked as the seed position. Dashed horizontal line marks the transition zone 
between the granular and infragranular layers. Note that for the same radial cortical distance LFP coherence remains higher in the infragranular compartment than in the 
supragranular compartment (see Maier et al79 for details and statistics).
Abbreviations: LFP, local field potential; sg, supragranular; g, granular; ig, infragranular.
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Figure 3 Volumetric profile of LFP coherence.
Notes: (A) LFP coherence is shown as a function of frequency and tangential distance relative to a seed electrode at distance 0. Note the monotonic falloff of LFP coherence 
with tangential cortical distance (see Leopold et al74 for details). (B) LFP coherence is shown as a function of frequency and cortical depth. A seed electrode (yellow dashed 
line) was chosen in the supragranular layers (left) or in the infragranular layers (right), and coherence was computed as a function of frequency in spatial increments of  
100 microns. Note the falloff of coherence for high frequency activity in the laminar compartment where the seed is located (see Maier et al79 for details). 
Abbreviations: LFP, local field potential; sg, supragranular; g, granular; ig, infragranular.

behaviorally engaged) and is comparable in amplitude and 

slope between areas V1, V2, and V4. The results are consis-

tent with other findings that show steep (,5 mm) falloff in 

high frequency LFP and spiking76 and more gradual (.5 mm) 

falloff in low frequency LFP coherence as a function of lateral 

cortical distance.67,69,74,77

In the radial dimension, coherence has recently been 

assessed between contacts occupying different laminar 
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Figure 4 Schematic representation of the spatial anisotropy of LFP coherence along the tangential and radial dimensions of primate primary visual cortex.
Notes: (A) Graphic depicting the spatial falloff in LFP coherence with increasing distance from an electrode location in the supragranular layers. The three-dimensional 
expanse of the neocortical tissue sample is depicted as a blue-grayish box. Cortical columns are conceptualized as black cylinders. The electrode tip is indicated as “seed”. 
(B) Same as A, but with electrode recording location in the deep (infragranular) layers of cortex. 
Abbreviations: LFP, local field potential; sg, supragranular; g, granular; ig, infragranular.

positions of the visual cortex. In contrast with the gradual 

falloff in LFP coherence along the cortical surface, the pattern 

of laminar coherence is discontinuous and strongly compart-

mentalized, particularly for frequency ranges below the gamma 

range (Figures 2B and 3B).78,79 Probing the spatial pattern of 

coherence from different seeds reveals two prominent laminar 

zones of coherent LFP activity separated by the deep granular 

layer, with one zone dominating within the superficial layers 

(1–3) and another zone in the deep layers (5 and 6). While the 

LFP coherence within these zones was high, that between them 

was nearly zero across a wide frequency range (see Figure 3B). 

This spatial structure was present in the ongoing activity both 

during rest and when the animals were engaged in a behavioral 

task. Taken together, the studies outlined above suggest that 

the spatial extent of ongoing LFP coherence spreads broadly 

in the tangential direction but is restricted in the radial direc-

tion. The resulting spatial pattern can be conceptualized as two 

laminar sheets of coherent activity (Figure 4), which constitutes 

a marked deviation from the radial anisotropy predicted by the 

columnar architecture described above.

The findings reviewed here point to an intricate three-

dimensional structure of neural coherence that reflects a laminar 

compartmentalization emerging when the brain is not explicitly 

stimulated (with the animals being either at rest or behaviorally 

engaged). Neither known interlaminar connections nor innerva-

tion from the thalamus or other cortical areas can fully explain 

the strictly separate domains of intracortical coherence37,80–83 we 

observed in the upper and lower cortical layers. Nonetheless, it 

is interesting to speculate that in the absence of specific sensory 

input (ie, during periods of rest or between sensory events), 

cortical activity may switch from a “columnar mode”, where 

the sensory world is parsed by a large number of columnar 

units dedicated to extracting features of the world, to a “laminar 

mode”, where functional differences in the tangential direction 

become less important, and activity segregates by layer.

What might be the basis for this laminar segregation of 

intrinsic activity? One possibility is that it reflects a division 

between intracortical versus thalamocortical interactions, 

with one contributing most strongly to the upper layer fluc-

tuations and the other to the lower layer fluctuations. While 

clearly a speculation at this point, this explanation would 

account for the apparently separate laminar sheets of ongoing 

cortical activity that are largely uncoordinated across their 

boundary in the granular layer.

At first sight, our observation of radially anisotropic ongoing 

activity seems at odds with the columnar structure of stimulus-

evoked responses because of the apparent compartmentaliza-

tion that has been reported in certain studies. However, several 

other neurophysiological phenomena have been described that 

exhibit similar laminar specificity. For example, neurophysi-

ological recordings with multiple laminar electrodes inserted 

simultaneously into rat auditory cortex found that the spatial 

pattern of spiking activity within the supragranular layers was 

highly localized, sparse, and strongly specific to a small subset of 
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sensory stimuli. In contrast, spiking within the infragranular lay-

ers was widespread, constant, and promiscuous with respect to 

sensory stimulation.84 Furthermore, analysis of spontaneous LFP 

recorded in several visual areas found a peak of low frequency 

(∼10 Hz) coherence between LFP and multiunit spiking activity 

in the infragranular layers that was absent in the supragranular 

layers.85 In contrast, the recently described repeating patterns of 

clustered cortical synchronization termed “neuronal avalanches” 

seem to be confined to the superficial layers of primate sensory 

cortex.86 Stimulus-evoked LFP power87 and multiunit spiking 

activity88 of macaque V1 have been demonstrated to exhibit pro-

nounced anisotropies between upper and lower cortical layers. 

Moreover, reversible inactivation (cooling) of the supragranular 

layers of cat primary visual cortex had little influence, if any, 

on the response properties of infragranular neurons.89,90 Lastly, 

some authors have reported stark differences in orientation tun-

ing between supragranular and infragranular neurons within the 

same cortical column of macaque visual cortex,91–93 which they 

interpreted as evidence for a functional dichotomy between deep 

and superficial layers.94

These results, taken together with the coherence dif-

ferences in LFP discussed above, hint at a strict functional 

division between the main laminar compartments of visual 

cortex. The laminar pattern of LFP activity described here 

thus may provide a unique window on the spatiotemporal 

structure of neuronal population activity that warrants fur-

ther investigation into the relationship between structure and 

function within the cortical microcircuitry.
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